
Pegasus 4.0 User Guide

Pegasus 4.0 User Guide

iii

Table of Contents
1. Introduction . 1

Overview and Features . 1
Workflow Gallery . 2
About this Document . 2

2. New User Walkthrough .. 3
Walkthrough Objectives . 3
Virtual Box Pegasus VM ... 3

Running the VM with Virtual Box .. 3
Creating the Workflow (DAX) .. 4
Submitting the Workflow .. 6
Monitoring, Debugging and Statistics . 8

3. Installation . 10
Prerequisites . 10
Optional Software . 10
Environment . 10
Native Packages (RPM/DEB) .. 11

RHEL / CentOS / Scientific Linux .. 11
Debian . 11

Pegasus from Tarballs . 11
Tarball without Condor . 12
Tarball with Included Condor . 12

4. Creating Workflows .. 13
Abstract Workflows (DAX) .. 13
Data Discovery (Replica Catalog) . 15

File . 16
JDBCRC .. 16
Replica Location Service . 16
MRC .. 17

Resource Discovery (Site Catalog) . 18
XML3 .. 18
XML .. 20
Text . 21
Site Catalog Client pegasus-sc-client . 22
Site Catalog Converter pegasus-sc-converter . 22

Executable Discovery (Transformation Catalog) . 22
MultiLine Text based TC (Text) . 23
Singleline Text based TC (File) . 24
Database TC (Database) . 25
TC Client pegasus-tc-client . 25
TC Converter Client pegasus-tc-converter . 26

5. Running Workflows .. 27
Executable Workflows (DAG) .. 27
Mapping Refinement Steps . 29

Data Reuse . 29
Site Selection . 30
Job Clustering . 32
Addition of Data Transfer and Registration Nodes . 32
Addition of Create Dir and Cleanup Jobs . 34
Code Generation . 35

Data Staging Configuration . 36
Shared File System .. 37
Non Shared Filesystem .. 39
Condor Pool Without a Shared Filesystem .. 40

PegasusLite . 42
Pegasus-Plan . 42
Basic Properties . 43

pegasus.home .. 44

Pegasus 4.0 User Guide

iv

Catalog Properties . 44
Data Staging Configuration . 48

6. Execution Environments . 50
General execution environment: Localhost . 50
General execution environment: Condor Pool . 50

Glideins . 52
General execution environment: Clouds . 53
General execution environment: Globus GRAM enabled Cluster . 55
General execution environment: Glite . 56

Changes to Jobs . 57
Campus Cluster . 57
XSEDE .. 58
Open Science Grid / glideinWMS .. 59

.. 59
FutureGrid Cloud / Nimbus . 59
Amazon AWS Cloud .. 59

.. 59
Using S3 for intermediate files . 60

7. Submit Directory Details . 61
Layout . 61
Condor DAGMan File . 62

Sample Condor DAG File . 62
Kickstart XML Record . 63

Reading a Kickstart Output File . 64
Jobstate.Log File . 65

Pegasus Workflow Job States and Delays . 67
Braindump File . 67
Pegasus static.bp File . 69

8. Monitoring, Debugging and Statistics . 70
Overview of the Stampede Database Schema. 70

Stampede Schema Upgrade Tool . 70
Storing of Exitcode in the database . 71
Multiplier Factor . 72

Workflow Status . 72
pegasus-monitord . 72
pegasus-status . 73
pegasus-analyzer . 74
pegasus-remove .. 75
Resubmitting failed workflows .. 75

Plotting and Statistics . 76
pegasus-statistics . 76
pegasus-plots . 80

9. Example Workflows .. 88
Grid Examples . 88

Black Diamond .. 88
NASA/IPAC Montage . 90
Rosetta . 90

Condor Examples . 90
Black Diamond - condorio . 90

Local Shell Examples . 91
Black Diamond .. 91

Notifications Example . 91
Workflow of Workflows .. 91

Galactic Plane . 91
10. Reference Manual . 93

Properties . 93
pegasus.home .. 93
Local Directories . 94
Site Directories . 95
Schema File Location Properties . 97

Pegasus 4.0 User Guide

v

Database Drivers For All Relational Catalogs . 98
Catalog Properties . 100
Replica Selection Properties . 106
Site Selection Properties . 108
Data Staging Configuration . 111
Transfer Configuration Properties . 112
Gridstart And Exitcode Properties . 118
Interface To Condor And Condor Dagman .. 120
Monitoring Properties . 121
Job Clustering Properties . 123
Logging Properties . 125
Miscellaneous Properties . 127

Profiles . 130
Profile Structure Heading . 131
Profile Namespaces . 131
Sources for Profiles . 137
Profiles Conflict Resolution . 139
Details of Profile Handling . 139

Replica Selection . 140
Configuration . 140
Supported Replica Selectors . 141

Job Clustering . 142
Overview .. 142

Data Transfers . 152
Data Staging Configuration . 152
Local versus Remote Transfers . 158
Symlinking Against Input Data . 158
Addition of Separate Data Movement Nodes to Executable Workflow .. 159
Executable Used for Transfer Jobs . 161
Executables used for Directory Creation and Cleanup Jobs . 161
Credentials Staging . 162
Staging of Executables . 163
Staging of Pegasus Worker Package . 164

Hierarchical Workflows .. 165
Introduction . 165
Specifying a DAX Job in the DAX .. 166
Specifying a DAG Job in the DAX .. 167
File Dependencies Across DAX Jobs . 168
Recursion in Hierarchal Workflows .. 168
Example . 172

Notifications . 172
Specifying Notifications in the DAX .. 172
Notify File created by Pegasus in the submit directory . 173
Configuring pegasus-monitord for notifications . 174
Default Notification Scripts . 175

API Reference . 175
DAX XML Schema .. 175
DAX Generator API . 185
DAX Generator without a Pegasus DAX API . 190

Command Line Tools . 191
11. Useful Tips . 263

Migrating From Pegasus 3.1 to Pegasus 4.X .. 263
Move to FHS layout . 263
Stampede Schema Upgrade Tool . 263
Existing users running in a condor pool with a non shared filesystem setup . 264
New Clients for directory creation and file cleanup .. 265

Migrating From Pegasus 2.X to Pegasus 3.X .. 266
PEGASUS_HOME and Setup Scripts . 266
Changes to Schemas and Catalog Formats . 266
Properties and Profiles Simplification . 267

Pegasus 4.0 User Guide

vi

Transfers Simplification . 268
Clients in bin directory . 268

Best Practices For Developing Portable Code . 269
Supported Platforms .. 269
Packaging of Software . 269
MPI Codes . 269
Maximum Running Time of Codes . 269
Codes cannot specify the directory in which they should be run . 269
No hard-coded paths . 270
Wrapping legacy codes with a shell wrapper . 270
Propogating back the right exitcode . 270
Static vs. Dynamically Linked Libraries . 270
Temporary Files . 270
Handling of stdio . 270
Configuration Files . 271
Code Invocation and input data staging by Pegasus . 271
Logical File naming in DAX .. 271

12. Glossary . 273
13. Pegasus Tutorial Using Self-contained Virtual Machine . 276

Downloading and Running the VM using Virtual Box .. 276
Download the VM for Virtual Box use . 276
Running the VM with Virtual Box .. 276

Mapping and Executing Workflows using Pegasus . 277
Creating a DIAMOND DAX .. 277
Replica Catalog . 278
The Site Catalog . 280
Transformation Catalog . 282
Properties . 287
Planning and Running Workflows Locally . 288

Monitoring, Debugging and Statistics . 289
Tracking the progress of the workflow and debugging the workflows. 289
Debugging a failed workflow using pegasus-analyzer . 292
Kickstart and Condor DAGMan format and log files . 293
Removing a running workflow .. 299
Generating statistics and plots of a workflow run . 299

Planning and Executing Workflow against a Remote Resource . 314
Advanced Exercises . 315

Optimizing a workflow by clustering small jobs (To Be Done offline) . 315
Data Reuse . 315
Hierarchal Workflows .. 316
Running Workflow without a Shared File System .. 319

vii

List of Figures
2.1. Figure: Black Diamond DAX .. 4
2.2. Terminal Window .. 5
2.3. Figure: Black Diamond DAG Image .. 7
4.1. Sample Workflow .. 14
4.2. Schema Image of the Site Catalog XML 3 .. 18
5.1. Black Diamond DAG .. 27
5.2. Workflow Data Reuse . 30
5.3. Workflow Site Selection . 32
5.4. Addition of Data Transfer Nodes to the Workflow .. 33
5.5. Addition of Data Registration Nodes to the Workflow .. 34
5.6. Addition of Directory Creation and File Removal Jobs . 35
5.7. Final Executable Workflow .. 36
5.8. Shared File System Setup . 38
5.9. Non Shared Filesystem Setup . 39
5.10. Condor Pool Without a Shared Filesystem .. 41
5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching compute jobs 42
6.1. The distributed resources appear to be part of a Condor pool. 51
6.2. Cloud Sample Site Layout . 53
6.3. Grid Sample Site Layout . 55
6.4. Amazon EC2 .. 59
8.1. Stampede Database Schema .. 70
8.2. pegasus-plot index page . 80
8.3. DAX Graph .. 81
8.4. DAG Graph .. 82
8.5. Gantt Chart . 83
8.6. Host over time chart . 84
8.7. Time chart . 85
8.8. Breakdown chart . 86
10.1. . 144
10.2. . 146
10.3. . 148
10.4. . 148
10.5. . 150
10.6. Shared File System Setup . 154
10.7. Non Shared Filesystem Setup . 155
10.8. Condor Pool Without a Shared Filesystem .. 157
10.9. Default Transfer Case : Input Data To Workflow Specific Directory on Shared File System 160
10.10. Planning of a DAX Job .. 165
10.11. Planning of a DAG Job .. 166
10.12. Recursion in Hierarchal Workflows .. 169
10.13. Execution Time-line for Hierarchal Workflows .. 171
13.1. Figure: Home Page . 303
13.2. Figure: Black Diamond DAX Image .. 305
13.3. Figure: Black Diamond DAG Image .. 307
13.4. Figure: Gantt Chart of Workflow Execution . 309
13.5. Figure: Gantt Chart of Workflow Execution . 311
13.6. Figure: Invocation Breakdown Chart . 313

viii

List of Tables
5.1. Table 1: Key Value Pairs that are currently generated for the site selector temporary file that is generated
in the NonJavaCallout. 31
5.2. Table2: Basic Properties that need to be set . 43
7.1. Table 1: The job lifecycle when executed as part of the workflow .. 66
7.2. Table 2: Information Captured in Braindump File . 67
8.1. Workflow Statistics . 77
8.2. Job statistics . 78
8.3. Transformation Statistics . 79
8.4. Invocation statistics by host per day . 80
10.1. Table 1: Useful Environment Settings . 131
10.2. Table 2: Useful Globus RSL Instructions . 132
10.3. Table 3: RSL Instructions that are not permissible . 132
10.4. Table 4: Useful Condor Commands . 133
10.5. Table 5: Condor commands prohibited in condor profiles . 134
10.6. Table 6: Useful dagman Commands that can be associated at a per job basis . 134
10.7. Table 7: Useful dagman Commands that can be specified in the properties file. 135
10.8. Table 8: Useful pegasus Profiles. 136
10.9. Property Variations for pegasus.transfer.*.remote.sites . 158
10.10. Pegasus Profile Keys For the Bundle Transfer Refiner . 159
10.11. Transfer Clients interfaced to by pegasus-transfer . 161
10.12. Clients interfaced to by pegasus-create-dir . 161
10.13. Clients interfaced to by pegasus-cleanup .. 161
10.14. Transformation Mappers Supported in Pegasus . 163
10.15. Options inherited from parent workflow .. 167
10.16. Table 1. Invoke Element attributes and meaning. 172
10.17. . 176
10.18. . 179
10.19. . 181
10.20. . 182
11.1. Clients interfaced to by pegasus-create-dir . 265
11.2. Clients interfaced to by pegasus-cleanup .. 265
11.3. Table 1: Property Keys removed and their Profile based replacement . 267
11.4. Table 2: Old and New Names For Job Clustering Profile Keys . 268
11.5. Table 3: Old and New Names For Transfer Bundling Profile Keys . 268
11.6. Table 1: Old Client Names and their New Names . 268
13.1. Table Workflow Statistics . 300
13.2. Table Job Statistics . 301
13.3. Table: Logical Transformation Statistics . 301
13.4. Table: Submit Directory Structure for Hierarchal Workflows .. 318
13.5. Table: Execution Directory Structure for Hierarchal Workflows .. 318

1

Chapter 1. Introduction
Overview and Features

Pegasus WMS [http://pegasus.isi.edu] is a configurable system for mapping and executing abstract application
workflows over a wide range of execution environment including a laptop, a campus cluster, a Grid, or a commercial
or academic cloud. Today, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science Grid, the TeraGrid, and
many campus clusters. One workflow can run on a single system or across a heterogeneous set of resources. Pegasus
can run workflows ranging from just a few computational tasks up to 1 million.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computational
resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution environment or the particulars of the low-level
specifications required by the middleware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current
cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description
of the abstract workflow in XML format.

Pegasus allows researchers to translate complex computational tasks into workflows that link and manage ensembles
of dependent tasks and related data files. Pegasus automatically chains dependent tasks together, so that a single
scientist can complete complex computations that once required many different people. New users are encouraged to
explore the New User Walkthrough chapter to become familiar with how to operate Pegasus for their own workflows.
Users create and run a sample project to demonstrate Pegasus capabilities. Users can also browse the Useful Tips
chapter to aid them in designing their workflows.

Pegasus has a number of features that contribute to its useability and effectiveness.

• Portability / Reuse

User created workflows can easily be run in different environments without alteration. Pegasus currently runs
workflows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus,
and many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.

• Performance

The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.

• Scalability

Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few computational tasks up to 1 million. The number of resources
involved in executing a workflow can scale as needed without any impediments to performance.

• Provenance

By default, all jobs in Pegasus are launched via the kickstart process that captures runtime provenance of the job
and helps in debugging. The provenance data is collected in a database, and the data can be summaries with tools
such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

• Data Management

Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to
a workflow as auxilliary jobs by the Pegasus planner.

• Reliability

Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer
helps the user to debug the workflow in case of non-recoverable failures.

• Error Recovery

http://pegasus.isi.edu
http://pegasus.isi.edu

Introduction

2

When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by
providing workflow-level checkpointing, by re-mapping portions of the workflow, by trying alternative data sources
for staging data, and, when all else fails, by providing a rescue workflow containing a description of only the work
that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have
enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance)
including the locations of data used and produced, and which software was used with which parameters.

• Operating Environments

Pegasus workflows can be deployed across a variety of environments:

• Local Execution

Pegasus can run a workflow on a single computer with Internet access. Running in a local environment is quicker
to deploy as the user does not need to gain access to muliple resources in order to execute a workfow.

• Condor Pools and Glideins

Condor is a specialized workload management system for compute-intensive jobs. Condor queues workflows,
schedules, and monitors the execution of each workflow. Condor Pools and Glideins are tools for submitting
and executing the Condor daemons on a Globus resource. As long as the daemons continue to run, the remote
machine running them appears as part of your Condor pool. For a more complete description of Condor, see the
Condor Project Pages [http://www.cs.wisc.edu/condor/description.html]

• Grids

Pegasus WMS is entirely compatible with Grid computing. Grid computing relies on the concept of distributed
computations. Pegasus apportions pieces of a workflow to run on distributed resources.

• Clouds

Cloud computing uses a network as a means to connect a Pegasus end user to distributed resources that are based
in the cloud.

Workflow Gallery
Pegasus is curently being used in a broad range of applications. To review example workflows, see the Example
Workflows chapter. To see additional details about the workflows of the applications see the Gallery of Workflows
[http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator].

We are always looking for new applications willing to leverage our workflow technologies. If you are interested please
contact us at pegasus at isi dot edu.

About this Document
This document is designed to acquaint new users with the capabilities of the Pegasus Workflow Management System
(WMS) and to demonstrate how WMS can efficiently provide a variety of ways to execute complex workflows on
distributed resources. Readers are encouraged to take the walkthrough to acquaint themselves with the components
of the Pegasus System. Readers may also want to navigate through the chapters to acquaint themselves with the
components on a deeper level to understand how to integrate Pegasus with your own data resources to resolve your
individual computational challenges.

http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

3

Chapter 2. New User Walkthrough
Walkthrough Objectives

This walkthrough is intended for new users who want so get a quick overview of the Pegasus concepts and system.
A preconfigured virtual machine is provided so that no software installation (except Virtal Box) is required. The
walkthrough covers creating a workflow, submitting, monitoring, debugging, and generating run statistics. As concepts
and tools are introduced, links to the main Pegasus documentation are provided.

Virtual Box Pegasus VM
Note
Virtual Box is required to run the virtual machine on your computer. If you do not already have it installed,
download the binary version desired and install it from the Virtual Box Website [http://www.virtualbox.org/
wiki/Downloads]

Download the corresponding disk image.

Virtual Box Pegasus Image [http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip]

It is around 600 MB in size. The Image is in zip format. You will need to unzip it.

After untarring a folder named Pegasus-3.1-Debian-6-x86.vbox will be created that has the vmdk files for the VM.
Load this VM using Virtual Box. Once you see the simple Linux desktop, move on to the next step.

Running the VM with Virtual Box
Launch Virtual Box on your machine. Follow the steps to add the vmdk file to Virtual Box and create a virtual machine
inside the Virtual Box

1. In the Menu, click File and select Virtual Media Manager (File > Virtual Media Manager)

2. The Virtual Media Manager Windows opens up.

3. Click on "Add" button to add thePegasus-3.1.0-Debian-6-x86.vbox/Debian-6-x86.vmdk file that you just
downloaded and unzipped.

4. You will now see the Debian-6-x86.vmdk in the list of hard disks with Actual size listed as around 3.0 GB

5. Close the Window for the Virtual Media Manager

We will now create a Virtual Machine in the Virtual Box.

1. In the Menu, click Machine and select New (Machine > New)

2. It will open the New Virtual Machine Wizard. Click Continue

3. In the VM Name and OS Type Window specify the name as PegasusVM-3.1.0.

4. Select the Operating System as Linuxand Version as Debian. Click Continue.

5. Set the base memory to 384 MB . It defaults to 512 MB. Click Continue

6. We now select the Virtual Hard Disk to use with the machine. Select the option box for Use Existing Hard Disk.
Select Debian-6-x86.vmdk from the list . Click Continue

7. Click Done.

http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip
http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip

New User Walkthrough

4

8. Now in the Virtual Box , start the PegasusVM-3.1.0 machine.

Creating the Workflow (DAX)
Pegasus takes in an abstract workflow (DAX) and generates an executable workflow (DAG) that is run in an
environment. For the purposes of this walkthrough, we will demonstrate the characteristics and structure of workflows
by generating a workflow with a bit of Python code that uses the DAX API to generate a DAX. For a detailed
description of workflows, how to create them, and how they are used in Pegasus see Creating Workflows

The workflow we will be creating is called Black Diamond because its shape. It is a made up workflow which has
4 jobs, files (f.*) passed between the jobs, and it is an interesting example as it shows data and job dependencies.
The workflow looks like:

Figure 2.1. Figure: Black Diamond DAX

To create the DAX, open a new terminal:

New User Walkthrough

5

Figure 2.2. Terminal Window

All the exercises in this Chapter will be run from the $HOME/walkthrough/ directory . All the files that are required
reside in this directory.

Change the directory to $HOME/walkthrough:

$ cd $HOME/walkthrough

The piece of code which generates the DAX is called a DAX generator, and in this case the code is written in Python.
APIs are also available for Java and Perl, and if that does not fit in your tool chain, you can also write the DAX
XML directly.

Open the file create_diamond_dax.py

$ nano create_diamond_dax.py

The code has 6 logical sections:

1. Imports and Pegasus location setup. We need to know the location of Pegasus because we need to import the
DAX3 Pegasus Python module, and we need to know where on the file system the keg executable is.

2. A new abstract dag (DAX) is created. This is the main DAX object that we will add data, jobs and flow information
to.

3. A replica catalog is set up. Replica catalogs tell Pegasus where to find data. In this example workflow, we only
have one input, f.a, and thus the replica catalog only has one entry. For larger workflows, it is not uncommon to
have thousands of entries in the replica catalog, and sometimes mulitple physical locations for the same logical
filename so that Pegasus can pick which replica to use. Replica catalogs can either be included in the DAX (like in
this example) or be standalone files or services. For more information about replica catalogs, see the Data Discovery
chapter.

4. Executables are added. Just like we the replica catalog informs Pegasus on where to find data, the transformation
catalog tells Pegasus where to find the executables for the workflow. The transformation catalog can exist inside
the DAX (as in this example) or in a standalone file. You can list the same logical exectuable existing on multiple
resources, and Pegasus will pick the appropiate one when the workflow is planned. More information can be found
in the Executable Discovery chapter.

5. Jobs are added. The 4 jobs in the Black Diamond in the picture above are added. Arguments are defined, and
uses clauses are added to list input and output files. This is an imporant step, as it allows Pegasus to track the files,
and stage the data if necessary.

6. Control flows are set up. This is the edges in the picture, and defines parent/child relationships between the jobs.
When the workflow is executing, this is the order the jobs will run in.

Close the file and execute it giving the location of the Pegasus install as argument:

$./create_diamond_dax.py /opt/pegasus/default

The output is the DAX XML:

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2011-07-19 12:59:14.617059 -->
<!-- generated by: tutorial -->
<!-- generator: python -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX"

New User Walkthrough

6

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX
 http://pegasus.isi.edu/schema/dax-3.3.xsd"
 version="3.3" name="diamond">
 <file name="f.a">
 <pfn url="file:///home/tutorial/walkthrough/f.a" site="PegasusVM"/>
 </file>
 <executable name="preprocess" namespace="diamond" version="4.0"
 arch="x86_64" os="linux" installed="true">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="PegasusVM"/>
 </executable>
 <executable name="analyze" namespace="diamond" version="4.0"
 arch="x86_64" os="linux" installed="true">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="PegasusVM"/>
 </executable>
 <executable name="findrange" namespace="diamond" version="4.0"
 arch="x86_64" os="linux" installed="true">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="PegasusVM"/>
 </executable>
 <job id="ID0000001" namespace="diamond" name="preprocess" version="4.0">
 <argument>-a preprocess -T60 -i <file name="f.a"/>
 -o <file name="f.b1"/> <file name="f.b2"/></argument>
 <uses name="f.b1" link="output" executable="false"/>
 <uses name="f.a" link="input" executable="false"/>
 <uses name="f.b2" link="output" executable="false"/>
 </job>
 <job id="ID0000002" namespace="diamond" name="findrange" version="4.0">
 <argument>-a findrange -T60 -i <file name="f.b1"/>
 -o <file name="f.c1"/></argument>
 <uses name="f.c1" link="output" executable="false"/>
 <uses name="f.b1" link="input" executable="false"/>
 </job>
 <job id="ID0000003" namespace="diamond" name="findrange" version="4.0">
 <argument>-a findrange -T60 -i <file name="f.b2"/>
 -o <file name="f.c2"/></argument>
 <uses name="f.c2" link="output" executable="false"/>
 <uses name="f.b2" link="input" executable="false"/>
 </job>
 <job id="ID0000004" namespace="diamond" name="analyze" version="4.0">
 <argument>-a analyze -T60 -i <file name="f.c1"/>
 <file name="f.c2"/> -o <file name="f.d"/></argument>
 <uses name="f.c2" link="input" executable="false"/>
 <uses name="f.d" link="output" register="true" executable="false"/>
 <uses name="f.c1" link="input" executable="false"/>
 </job>
 <child ref="ID0000002">
 <parent ref="ID0000001"/>
 </child>
 <child ref="ID0000003">
 <parent ref="ID0000001"/>
 </child>
 <child ref="ID0000004">
 <parent ref="ID0000002"/>
 <parent ref="ID0000003"/>
 </child>
</adag>

We need the DAX in a file to give to Pegasus, so run the same command again, but redirect it to file:

$./create_diamond_dax.py /opt/pegasus/default > diamond.xml

More information about creating workflows can be found in the Creating Workflows chapter.

Submitting the Workflow
Submitting a Pegasus workflow consists of two steps, planning and submitting, but are often made by one single
command for convenience. However, the planning stage is where Pegasus is doing powerful transformations to your
workflow, so it is important to at least have an idea on what is happening under the covers. Planning includes, but
is not limited to:

1. Adding remote create dir jobs

2. Adding stage in jobs to transfer data into the remote work directory

New User Walkthrough

7

3. Adding cleanup jobs to clean up the work directory as the workflow progresses

4. Adding stage out jobs to transfer data to the final output location

5. Adding registration jobs to register the data in a replica catalog

6. Clusters job together - useful if you have many short tasks

7. Adds wrappers to the jobs to collect provenance information - this is so statistics and plots can be created after a run

In the case of our black diamond workflow, here is what it looks like after the Pegasus planner has processed the DAX:

Figure 2.3. Figure: Black Diamond DAG Image

To plan and submit the workflow, run:

$ pegasus-plan --conf pegasusrc --sites PegasusVM --dir runs --output local --dax diamond.xml --
submit

The output will look something like:

New User Walkthrough

8

Submitting job(s).
1 job(s) submitted to cluster 18.

File for submitting this DAG to Condor : diamond-0.dag.condor.sub
Log of DAGMan debugging messages : diamond-0.dag.dagman.out
Log of Condor library output : diamond-0.dag.lib.out
Log of Condor library error messages : diamond-0.dag.lib.err
Log of the life of condor_dagman itself : diamond-0.dag.dagman.log

Your Workflow has been started and runs in base directory given below

cd /home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001

*** To monitor the workflow you can run ***

pegasus-status -l /home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001

*** To remove your workflow run ***
pegasus-remove /home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001

Tip

The work directory created by Pegasus is where the concrete workflow exists, and the directory is also the
handle for Pegasus commands acting on that instance. Using this handle will be covered in the next section.

Further information about planning and submitting workflows can be found in the Running Workflows chapter.
Information about the files in the work directory can be found in the Submit Directory Details chapter.

Monitoring, Debugging and Statistics
Once the workflow has been submitted, you can check status of it with the pegasus-status tool. Use the directory
handle (which is different for every workflow you submit) from the previous step and run it with the -l flag:

$ pegasus-status -l /home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001
STAT IN_STATE JOB
Run 02:59 diamond-0
Run 00:34 |-findrange_ID0000002
Run 00:32 |-findrange_ID0000003
Idle 00:19 _clean_up_preprocess_ID0000001
Summary: 4 Condor jobs total (I:1 R:3)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 8 0 0 4 0 4 0 25.0 Running *diamond-0.dag
Summary: 1 DAG total (Running:1)

The first section shows jobs released to be handled by Condor. The second section shows a summary of the state of
the workflow. Keep on checking the workflow with pegasus-status until it is 100% done.

Once the workflow has finished, you may use the pegasus-analyzer to debug the workflow. This is obviously most
useful when workflows have failed for some reason. pegasus-analyzer will show you which jobs failed and the output
of those jobs. Our simple black diamond should finish successfully, and pegasus-analyzer output should look like:

$ pegasus-analyzer --dir=/home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001
pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 15 (100.00%)
 # jobs succeeded : 15 (100.00%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 0 (0.00%)

**************************************Done**************************************

pegasus-analyzer: end of status report

To get detailed run statistics, use the pegasus-statistics tool:

$ pegasus-statistics /home/tutorial/walkthrough/runs/tutorial/pegasus/diamond/run0001

New User Walkthrough

9

Workflow summary - Summary of the workflow execution. It shows total
 tasks/jobs/sub workflows run, how many succeeded/failed etc.
 In case of hierarchical workflow the calculation shows the
 statistics across all the sub workflow.

Workflow wall time - The walltime from the start of the workflow execution
 to the end as reported by the DAGMAN.In case of rescue dag the value
 is the cumulative of all retries.

Workflow cumulative job wall time - The sum of the walltime of all jobs as
 reported by kickstart. In case of job retries the value is the
 cumulative of all retries. For workflows having sub workflow jobs
 (i.e SUBDAG and SUBDAX jobs), the walltime value includes jobs from
 the sub workflows as well.

Cumulative job walltime as seen from submit side - The sum of the walltime of
 all jobs as reported by DAGMan. This is similar to the regular
 cumulative job walltime, but includes job management overhead and
 delays. In case of job retries the value is the cumulative of all
 retries. For workflows having sub workflow jobs (i.e SUBDAG and
 SUBDAX jobs), the walltime value includes jobs from the sub workflows
 as well.

Type Succeeded Failed Unsubmitted Total
Tasks 4 0 0 4
Jobs 15 0 0 15
Sub Workflows 0 0 0 0
--
Workflow wall time : 5 mins, 35 secs, (total 335 seconds)

Workflow cumulative job wall time : 4 mins, 1 sec, (total 241 seconds)

Cumulative job walltime as seen from submit side : 4 mins, 2 secs, (total 242 seconds)

More information about monitoring, debugging and statistics can be found in the Monitoring, Debugging and Statistics
chapter.

10

Chapter 3. Installation
Prerequisites

Pegasus has a few dependencies:

• Java 1.6 or higher. Check with:

java -version
java version "1.6.0_07"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.6.0_07-164)
Java HotSpot(TM) Client VM (build 1.6.0_07-87, mixed mode, sharing)

• Python 2.4 or higher. Check with:

python -v
Python 2.6.2

• Condor 7.6 or higher. See http://www.cs.wisc.edu/condor/ for more information. You should be able to run
condor_q and condor_status.

Optional Software
• Globus 4.0 or higher. Globus is only needed if you want to run against grid sites or use GridFTP for data transfers.

See http://www.globus.org/ for more information. Check Globus Installation

echo $GLOBUS_LOCATION
/path/to/globus/install

Make sure you source the Globus environment

GLOBUS_LOCATION/etc/globus-user-env.sh

Check the setup by running:#

globus-version
5.2.0

Environment
To use Pegasus, you need ot have the pegasus-* tools in your PATH. If you have installed Pegasus from RPM/DEB
packages. the tools will be in the default PATH, in /usr/bin. If you have installed Pegasus from binary tarballs or
source, add the bin/ directory to your PATH.

 Example for bourne shells:

 # export PATH=/some/install/pegasus-4.0.0/bin:$PATH

Note

Pegasus 4.0 is different from previous versions of Pegasus in that it does not require PEGASUS_HOME to
be set or sourcing of any environtment setup scripts.

If you want to use the DAX APIs, you might also need to set your PYTHONPATH, PERLLIB, or CLASSPATH. The
right setting can be found by using pegasus-config:

export PYTHONPATH=`pegasus-config --python`
export PERLLIB=`pegasus-config --perl`
export CLASSPATH=`pegasus-config --classpath`

ttp://www.cs.wisc.edu/condor/
http://www.globus.org/

Installation

11

Native Packages (RPM/DEB)
The preferred way to install Pegasus is with native (RPM/DEB) packages. It is recommended that you also install
Condor (yum [http://research.cs.wisc.edu/condor/yum/], debian [http://research.cs.wisc.edu/condor/debian/]) from
native packages.

Note

Pegasus 4.0 is the first release of Pegasus which is Filesystem Hierarchy Standard (FHS) [http://
www.pathname.com/fhs/] compliant. The native packages no longer installs under /opt. Instead, pegasus-*
binaries are in /usr/bin/ and example workflows can be found under /usr/share/pegasus/examples/. To find
Pegasus system components, a pegasus-config tool is provided. For example, to find the PYTHONPATH
for the DAX API, run: export PYTHONPATH=`pegasus-config --python`

RHEL / CentOS / Scientific Linux
Add the Pegasus repository to yum downloading the Pegasus repos file and adding it to /etc/yum.repos.d/.
For RHEL 5 based systemes:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/wms/download/rhel/5/
pegasus.repo

For RHEL 6 based systems:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/wms/download/rhel/6/
pegasus.repo

Search for, and install Pegasus:

yum search pegasus
pegasus.x86_64 : Workflow management system for Condor, grids, and clouds
yum install pegasus
Running Transaction
Installing : pegasus

Installed:
pegasus :4.0.0-1

Complete!

Debian
To be able to install and upgrade from the Pegasus apt repository, you will have to trust the repository key. You only
need to add the repository key once:

gpg --keyserver keyring.debian.org --recv-keys 81C2A4AC
gpg -a --export 81C2A4AC | apt-key add -

Add the Pegasus apt repository to your /etc/apt/sources.list file:

deb http://download.pegasus.isi.edu/wms/download/debian squeeze main

Install Pegasus with apt-get :

apt-get update
...
apt-get install pegasus

Pegasus from Tarballs
The Pegaus prebuild tarballs can be downloaded from the Pegasus Download Page [http://download.pegasus.isi.edu/
wms/downloads].

http://research.cs.wisc.edu/condor/yum/
http://research.cs.wisc.edu/condor/yum/
http://research.cs.wisc.edu/condor/debian/
http://research.cs.wisc.edu/condor/debian/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://download.pegasus.isi.edu/wms/downloads
http://download.pegasus.isi.edu/wms/downloads
http://download.pegasus.isi.edu/wms/downloads

Installation

12

Tarball without Condor
Use these tarballs if you already have Condor installed or prefer to keep the Condor installation separate from the
Pegasus installation.

• Untar the tarball

tar zxf pegasus-*.tar.gz

• include the Pegasus bin directory in your PATH

export PATH=/path/to/pegasus-4.0.0:$PATH

Tarball with Included Condor
For convenience, there is Pegasus WMS tarballs which has Condor included. This way you can install Pegasus and
Condor at the same time, with just minor configuration to get up and running.

• Untar the tarball

tar zxf pegasus-wms-*.tar.gz

• Edit the Condor Configuration file. The configuration file is currently configured to run only as a submit side (Runs
schedd) supporting schedule, local and grid universe. If you want to use it for gt4, lsf, pbs or condor-c additional
configuration changes may be required. Please check the Condor Manual for appropriate parameters.

2 parameters need to change at this point. Change !!PEGASUS_HOME!! to the actual path where
PEGASUS_WMS is installed and CHANGE !!USER!! to the user who will receive email in case of error. (This
can be just your username)

vim $PEGASUS_HOME/etc/condor_config

RELEASE_DIR = !!PEGASUS_HOME!! # CHANGE THIS TO PATH OF PEGASUS_WMS INSTALLATION
WILL GET EMAIL IN CASE OF ERROR.

• Set up the environment:

export PATH=PEGASUS_HOME/bin:PEGASUS_HOME/condor/bin:$PATH
export CONDOR_CONFIG=PEGASUS_HOME/etc/condor_config

• Start Condor by running ./sbin/condor_master

./sbin/condor_master

• Verify that Condor is up by running the condor-q command

condor_q

-- Submitter: gmehta@smarty.isi.edu : <128.9.72.26:60126> : smarty.isi.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 idle, 0 running, 0 held

13

Chapter 4. Creating Workflows
Abstract Workflows (DAX)

The DAX is a description of an abstract workflow in XML format that is used as the primary input into Pegasus.
The DAX schema is described in dax-3.2.xsd [http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] The
documentation of the schema and its elements can be found in dax-3.2.html [http://pegasus.isi.edu/wms/docs/schemas/
dax-3.2/dax-3.2.html].

A DAX can be created by all users with the DAX generating API in Java, Perl, or Python format

Note
We highly recommend using the DAX API.

Advanced users who can read XML schema definitions can generate a DAX directly from a script

The sample workflow below incorporates some of the elementary graph structures used in all abstract workflows.

• fan-out, scatter, and diverge all describe the fact that multiple siblings are dependent on fewer parents.

The example shows how the Job 2 and 3 nodes depend on Job 1 node.

• fan-in, gather, join, and converge describe how multiple siblings are merged into fewer dependent child nodes.

The example shows how the Job 4 node depends on both Job 2 and Job 3 nodes.

• serial execution implies that nodes are dependent on one another, like pearls on a string.

• parallel execution implies that nodes can be executed in parallel

http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.html

Creating Workflows

14

Figure 4.1. Sample Workflow

The example diamond workflow consists of four nodes representing jobs, and are linked by six files.

• Required input files must be registered with the Replica catalog in order for Pegasus to find it and integrate it into
the workflow.

• Leaf files are a product or output of a workflow. Output files can be collected at a location.

• The remaining files all have lines leading to them and originating from them. These files are products of some
job steps (lines leading to them), and consumed by other job steps (lines leading out of them). Often, these files
represent intermediary results that can be cleaned.

There are two main ways of generating DAX's

Creating Workflows

15

1. Using a DAX generating API in Java, Perl or Python.

Note: We recommend this option.

2. Generating XML directly from your script.

Note: This option should only be considered by advanced users who can also read XML schema definitions.

One example for a DAX representing the example workflow can look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2010-11-22T22:55:08Z -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.2.xsd"
 version="3.2" name="diamond" index="0" count="1">
 <!-- part 2: definition of all jobs (at least one) -->
 <job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
 <argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /
></argument>
 <uses name="f.b2" link="output" register="false" transfer="false" />
 <uses name="f.b1" link="output" register="false" transfer="false" />
 <uses name="f.a" link="input" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000002">
 <argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
 <uses name="f.b1" link="input" register="false" transfer="false" />
 <uses name="f.c1" link="output" register="false" transfer="false" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000003">
 <argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
 <uses name="f.c2" link="output" register="false" transfer="false" />
 <uses name="f.b2" link="input" register="false" transfer="false" />
 </job>
 <job namespace="diamond" name="analyze" version="2.0" id="ID000004">
 <argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></
argument>
 <uses name="f.c2" link="input" register="false" transfer="false" />
 <uses name="f.d" link="output" register="false" transfer="true" />
 <uses name="f.c1" link="input" register="false" transfer="false" />
 </job>
 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" />
 <parent ref="ID000003" />
 </child>
</adag>

The example workflow representation in form of a DAX requires external catalogs, such as transformation catalog
(TC) to resolve the logical job names (such as diamond::preprocess:2.0), and a replica catalog (RC) to resolve the
input file f.a. The above workflow defines the four jobs just like the example picture, and the files that flow between
the jobs. The intermediary files are neither registered nor staged out, and can be considered transient. Only the final
result file f.d is staged out.

Data Discovery (Replica Catalog)
The Replica Catalog keeps mappings of logical file ids/names (LFN's) to physical file ids/names (PFN's). A single
LFN can map to several PFN's. A PFN consists of a URL with protocol, host and port information and a path to a file.
Along with the PFN one can also store additional key/value attributes to be associated with a PFN.

Pegasus supports 3 different implemenations of the Replica Catalog.

1. File(Default)

Creating Workflows

16

2. Database via JDBC

3. Replica Location Service

• RLS

• LRC

4. MRC

File
In this mode, Pegasus queries a file based replica catalog. The file format is a simple multicolumn format. It is neither
transactionally safe, nor advised to use for production purposes in any way. Multiple concurrent instances will conflict
with each other. The site attribute should be specified whenever possible. The attribute key for the site attribute is
"pool".

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equal sign, it must be
quoted and escaped. The same conditions apply for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be quoted. The LFN sentiments about quoting apply.

The file mode is the Default mode. In order to use the File mode you have to set the following properties

1. pegasus.catalog.replica=File

2. pegasus.catalog.replica.file=<path to the replica catalog file>

JDBCRC
In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. The sql schema’s for this
catalog can be found at $PEGASUS_HOME/sql directory. You will have to install the schema into either PostgreSQL
or MySQL by running the appropriate commands to load the two scheams create-XX-init.sql and create-XX-rc.sql
where XX is either my (for MySQL) or pg (for PostgreSQL)

To use JDBCRC, the user additionally needs to set the following properties

1. pegasus.catalog.replica.db.url=<jdbc url to the databse>

2. pegasus.catalog.replica.db.user=<database user>

3. pegasus.catalog.replica.db.password=<database password>

Replica Location Service
Replica Location Service (RLS) is a distributed replica catalog, that ships with Globus. There is an index service
called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC) report. Each LRC can contain
all or a subset of mappings.

Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

RLS

In this mode, Pegasus queries the central RLI to discover in which LRC’s the mappings for a LFN reside.
It then queries the individual LRC’s for the PFN’s. To use this mode the following properties need
to be set:

1. pegasus.catalog.replica=RLS

http://www.globus.org/toolkit/data/rls/

Creating Workflows

17

2. pegasus.catalog.replica.url=<url to the globus LRC>

LRC

This mode is availabe If the user does not want to query the RLI (Replica Location Index), but instead wishes to
directly query a single Local Replica Catalog. To use the LRC mode the follow properties need to be set

1. pegasus.catalog.replica=LRC

2. pegasus.catalog.replica.url=<url to the globus LRC>

Details about Globus Replica Catalog and LRC can be found at http://www.globus.org/toolkit/data/rls/

MRC
In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid.

To use it set

1. pegasus.catalog.replica=MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies the following properties

• pegasus.catalog.replica.mrc.[value] - specifies the type of replica catalog.

• pegasus.catalog.replica.mrc.[value].key - specifies a property name key for a particular catalog

For example, to query two lrcs at the same time specify the following:

• pegasus.catalog.replica.mrc.lrc1=LRC

• pegasus.catalog.replica.mrc.lrc1.url=<url to the 1st globus LRC>

• pegasus.catalog.replica.mrc.lrc2=LRC

• pegasus.catalog.replica.mrc.lrc2.url=<url to the 2nd globus LRC>

In the above example,lrc1 and lrc2 are any valid identifier names and url is the property key that needed to be
specified.

Replica Catalog Client pegasus-rc-client

The client used to interact with the Replica Catalogs is pegasus-rc-client. The implementation that the client talks to
is configured using Pegasus properties.

Lets assume we create a file f.a in your home directory as shown below.

$ date > $HOME/f.a

We now need to register this file in the File replica catalog located in $HOME/rc using the pegasus-rc-client. Replace
the gsiftp://url with the appropriate parameters for your grid site.

$ rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc insert \
 f.a gsiftp://somehost:port/path/to/file/f.a pool=local

You may first want to verify that the file registeration is in the replica catalog. Since we are using a File catalog we
can look at the file $HOME/rc to view entries.

$ cat $HOME/rc

file-based replica catalog: 2010-11-10T17:52:53.405-07:00
f.a gsiftp://somehost:port/path/to/file/f.a pool=local

http://www.globus.org/toolkit/data/rls/

Creating Workflows

18

The above line shows that entry for file f.a was made correctly.

You can also use the pegasus-rc-client to look for entries.

$ pegasus-rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc lookup
 LFN f.a

f.a gsiftp://somehost:port/path/to/file/f.a pool=local

Resource Discovery (Site Catalog)
The Site Catalog describes the compute resources (which are often clusters) that we intend to run the workflow
upon. A site is a homogeneous part of a cluster that has at least a single GRAM gatekeeper with a jobmanager-fork
andjobmanager-<scheduler> interface and at least one gridftp server along with a sh$ cat $HOME ared file system.
The GRAM gatekeeper can be either WS GRAM or Pre-WS GRAM. A site can also be a condor pool or glidein pool
with a shared file system.

Pegasus currently supports two implementation of the Site Catalog:

1. XML3(Default)

2. XML(Deprecated)

3. File(Deprecated)

XML3
This is the default format for Pegasus 3.0. This format allows defining filesystem of shared as well as local type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.2. Schema Image of the Site Catalog XML 3

Below is an example of the XML3 site catalog

Creating Workflows

19

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="isi" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="auxillary"/
>
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/nfs/scratch01" />
 <internal-mount-point mount-point="/nfs/scratch01"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/exports/storage01"/>
 <internal-mount-point mount-point="/exports/storage01"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu"/>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/vdt/pegasus</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/vdt/globus</profile>
 </site>
</sitecatalog>

Described below are some of the entries in the site catalog.

1. site - A site identifier.

2. replica-catalog - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation
of the RC. This is optional

3. File Systems - Info about filesystems mounted on the remote clusters head node or worker nodes. It has several
configurations

• head-fs/scratch - This describe the scratch file systems (temporary for execution) available on the head node

• head-fs/storage - This describes the storage file systems (long term) available on the head node

• worker-fs/scratch - This describe the scratch file systems (temporary for execution) available on the worker
node

• worker-fs/storage - This describes the storage file systems (long term) available on the worker node

Each scratch and storage entry can contain two sub entries,

• SHARED for shared file systems like NFS, LUSTRE etc.

• LOCAL for local file systems (local to the node/machine)

Each of the filesystems are defined by used a file-server element. Protocol defines the protocol uses to access the
files, URL defines the url prefix to obtain the files from and mount-point is the mount point exposed by the file
server.

Along with this an internal-mount-point needs to defined to access the files directly from the machine without any
file servers.

4. arch,os,osrelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AIX, PPC.

OS can have one of the following values LINUX,SUNOS,MACOSX. The default value for sysinfo if none specified
is X86::LINUX

Creating Workflows

20

5. Profiles - One or many profiles can be attached to a pool.

One example is the environments to be set on a remote pool.

To use this site catalog the follow properties need to be set:

1. pegasus.catalog.site=XML3

2. pegasus.catalog.site.file=<path to the site catalog file>

XML

Warning

This format is now deprecated in favor of the XML3 format. If you are still using the XML or File format
you should convert it to XML3 formation using the pegasus-sc-converter client

$ cat $HOME/sites.xml

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-2.0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0">
 <site handle="local" gridlaunch="/nfs/vdt/pegasus/bin/kickstart"
 sysinfo="INTEL32::LINUX">
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/vdt/pegasus</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/vdt/globus</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/vdt/globus/lib</profile>
 <profile namespace="env" key="JAVA_HOME" >/vdt/java</profile>
 <lrc url="rlsn://localhost" />
 <gridftp url="gsiftp://localhost" storage="/$HOME/storage" major="4" minor="0"
 patch="5">
 </gridftp>
 <jobmanager universe="transfer" url="localhost/jobmanager-fork" major="4" minor="0"
 patch="5" />
 <jobmanager universe="vanilla" url="localhost/jobmanager-fork" major="4" minor="0"
 patch="5" />
 <workdirectory >$HOME/workdir</workdirectory>
 </site>
 <site handle="clus1" gridlaunch="/opt/nfs/vdt/pegasus/bin/kickstart"
 sysinfo="INTEL32::LINUX">
 <profile namespace="env" key="PEGASUS_HOME" >/opt/nfs/vdt/pegasus</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/opt/vdt/globus</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/opt/vdt/globus/lib</profile>
 <lrc url="rlsn://clus1.com" />
 <gridftp url="gsiftp://clus1.com" storage="/jobmanager-fork" major="4" minor="0"
 patch="3">
 </gridftp>
 <jobmanager universe="transfer" url="clus1.com/jobmanager-fork" major="4" minor="0"
 patch="3" />
 <jobmanager universe="vanilla" url="clus1.com/jobmanager-pbs" major="4" minor="0"
 patch="3" />
 <workdirectory >$HOME/workdir-clus1</workdirectory>
 </site>
</sitecatalog>

1. site - A site identifier.

2. lrc - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation of the RC

3. workdirectory - A remote working directory (Should be on a shared file system)

4. gridftp - A URL prefix for a remote storage location. and a path to the storage location

5. jobmanager - Url to the jobmanager entrypoints for the remote grid. Different universes are supported which map
to different batch jobmanagers.

"vanilla" for compute jobs and "transfer" for transfer jobs are mandatory. Generally a transfer universe should map
to the fork jobmanager.

Creating Workflows

21

6. gridlaunch - Path to the remote kickstart tool (provenance tracking)

7. sysinfo - The arch/os/osversion/glibc of the site. The format is ARCH::OS:OSVER:GLIBC where OSVERSION
and GLIBC are optional.

ARCH can have one of the following values INTEL32, INTEL64, SPARCV7, SPARCV9, AIX, AMD64.
OS can have one of the following values LINUX,SUNOS. The default value for sysinfo if none specified is
INTEL32::LINUX

8. Profiles - One or many profiles can be attached to a pool.

Profiles such as the environments to be set on a remote pool.

To use this format you need to set the following properties

1. pegasus.catalog.site=XML

2. pegasus.catalog.site.file=<path to the site catalog file>

Text

Warning

This format is now deprecated in favor of the XML3 format. If you are still using the File format you should
convert it to XML3 format using the client pegasus-sc-converter

The format for the File is as follows

site site_id {
 #required. Can be a dummy value if using Simple File RC
 lrc "rls://someurl"

 #required on a shared file system
 workdir "path/to/a/tmp/shared/file/sytem/"

 #required one or more entries
 gridftp "gsiftp://hostname/mountpoint” "GLOBUS VERSION"

 #required one or more entries
 universe transfer "hostname/jobmanager-<scheduler>" "GLOBUS VERSION"

 #reqired one or more entries
 universe vanilla "hostname/jobmanager-<scheduler>" "GLOBUS VERSION"

 #optional
 sysinfo "ARCH::OS:OSVER:GLIBC"

 #optional
 gridlaunch "/path/to/gridlaunch/executable"

 #optional zero or more entries
 profile namespace "key" "value"
}

The gridlaunch and profile entries are optional. All the rest are required for each pool. Also the transfer and vanilla
universe are mandatory. You can add multiple transfer and vanilla universe if you have more then one head node on
the cluster. The entries in the Site Catalog have the following meaning:

1. site - A site identifier.

2. lrc - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation of the RC

3. workdir - A remote working directory (Should be on a shared file system)

4. gridftp gridftp - A URL prefix for a remote storage location.

5. universe - Different universes are supported which map to different batch jobmanagers.

Creating Workflows

22

"vanilla" for compute jobs and "transfer" for transfer jobs are mandatory. Generally a transfer universe should map
to the fork jobmanager.

6. gridlaunch - Path to the remote kickstart tool (provenance tracking)

7. sysinfo - The arch/os/osversion/glibc of the site. The format is ARCH::OS:OSVER:GLIBC where OSVERSION
and GLIBC are optiona.

ARCH can have one of the following values INTEL32, INTEL64, SPARCV7, SPARCV9, AIX, AMD64.
OS can have one of the following values LINUX,SUNOS. The default value for sysinfo if none specified is
INTEL32::LINUX

8. Profiles - One or many profiles can be attached to a pool.

Profiles such as the environments to be set on a remote pool.

To use this format you need to set the following properties:

1. pegasus.catalog.site=Text

2. pegasus.catalog.site.file=<path to the site catalog file>

Site Catalog Client pegasus-sc-client
The pegasus-sc-client can be used to generate a site catalog for Open Science Grid (OSG) by querying their Monitoring
Interface likes VORS or OSGMM. See pegasus-sc-client --help for more details

Site Catalog Converter pegasus-sc-converter
Pegasus 3.0 by default now parses Site Catalog format conforming to the SC schema 3.0 (XML3) available here
[http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the Catalog Properties
section of Running Workflows.

Pegasus 3.0 comes with a pegasus-sc-converter that will convert users old site catalog (XML) to the XML3 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML -o sample.sites.xml3 -O XML3

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml3

To use the converted site catalog, in the properties do the following:

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML3

2. point pegasus.catalog.site.file to the converted site catalog

Executable Discovery (Transformation Catalog)
The Transformation Catalog maps logical transformations to physical executables on the system. It also provides
additional information about the transformation as to what system they are compiled for, what profiles or environment
variables need to be set when the transformation is invoked etc.

Pegasus currently supports two implementations of the Transformation Catalog

1. Text: A multiline text based Transformation Catalog (DEFAULT)

2. File: A simple multi column text based Transformation Catalog

3. Database: A database backend (MySQL or PostgreSQL) via JDB

http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd

Creating Workflows

23

In this guide we will look at the format of the Multiline Text based TC.

MultiLine Text based TC (Text)
The multile line text based TC is the new default TC in Pegasus. This format allows you to define the transformations

The file is read and cached in memory. Any modifications, as adding or deleting, causes an update of the memory
and hence to the file underneath. All queries are done against the memory representation. The file sample.tc.text in
the etc directory contains an example

tr example::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 profile env "HELLo" "WORLD"
 profile condor "FOO" "bar"
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "INSTALLED"
 }

 site wind {
 profile env "CPATH" "/usr/cpath"
 profile condor "universe" "condor"
 pfn "file:///path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "STAGEABLE"
 }
}

The entries in this catalog have the following meaning

1. tr tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are
optional.)

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally a url (file:/// or http:// or gridftp://) if of type STAGEABLE

3. site - The site identifier for the site where the transformation is available

4. type - The type of transformation. Whether it is Iinstalled ("INSTALLED") on the remote site or is availabe to
stage ("STAGEABLE").

5. arch, os, osrelease, osversion - The arch/os/osrelease/osversion of the transformation. osrelease and osversion are
optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
is x86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

6. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site.

To use this format of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transformation=Text

Creating Workflows

24

2. pegasus.catalog.transformation.file=<path to the transformation catalog file>

Singleline Text based TC (File)

Warning

This format is now deprecated in favor of the multiline TC. If you are still using the single line TC you
should convert it to multiline using the tc-converter client.

The format of the this TC is as follows.

#site logicaltr physicaltr type system profiles(NS::KEY="VALUE")

site1 sys::date:1.0 /usr/bin/date INSTALLED INTEL32::LINUX:FC4.2:3.6 ENV::PATH="/usr/
bin";PEGASUS_HOME="/usr/local/pegasus"

The system and profile entries are optional and will use default values if not specified. The entries in the file format
have the following meaning:

1. site - A site identifier.

2. logicaltr - The logical transformation name. The format is NAMESPACE::NAME:VERSION where
NAMESPACE and NAME are optional.

3. physicaltr - The physical transformation path or URL.

If the transformation type is INSTALLED then it needs to be an absolute path to the executable. If the type is
STAGEABLE then the path needs to be a HTTP, FTP or gsiftp URL

4. type - The type of transformation. Can have on of two values

• INSTALLED: This means that the transformation is installed on the remote site

• STAGEABLE: This means that the transformation is available as a static binary and can be staged to a remote
site.

5. system - The system for which the transformation is compiled.

The formation of the sytem is ARCH::OS:OSVERSION:GLIBC where the GLIBC and OS VERSION are
optional. ARCH can have one of the following values INTEL32, INTEL64, SPARCV7, SPARCV9, AIX, AMD64.
OS can have one of the following values LINUX,SUNOS. The default value for system if none specified is
INTEL32::LINUX

6. Profiles - The profiles associated with the transformation. For indepth information about profiles and their priorities
read the Profile Guide.

The format for profiles is NS::KEY="VALUE" where NS is the namespace of the profile e.g.
Pegasus,condor,DAGMan,env,globus. The key and value can be any strings. Remember to quote the value with
double quotes. If you need to specify several profiles you can do it in several ways

• NS1::KEY1="VALUE1",KEY2="VALUE2";NS2::KEY3="VALUE3",KEY4="VALUE4"

This is the most optimized form. Multiple key values for the same namespace are separated by a comma "," and
different namespaces are separated by a semicolon ";"

• NS1::KEY1="VALUE1";NS1::KEY2="VALUE2";NS2::KEY3="VALUE3";NS2::KEY4="VALUE4"

You can also just repeat the triple of NS::KEY="VALUE" separated by semicolons for a simple format;

To use this format of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transformation=File

2. pegasus.catalog.transformation.file=<path to the transformation catalog file>

Creating Workflows

25

Database TC (Database)
The database TC alows you to use a relational database. To use the database TC you need to have installed a MySQL
or PostgreSQL server. The schema for the database is available in $PEGASUS_HOME/sql directory. You will have to
install the schema into either PostgreSQL or MySQL by running the appropriate commands to load the two scheams
create-XX-init.sql and create-XX-tc.sql where XX is either my (for MySQL) or pg (for PostgreSQL)

To use the Database TC you need to set the following properties

1. pegasus.catalog.transformation.db.driver=MySQL | Postgres

2. pegasus.catalog.transformation.db.url=<jdbc url to the databse>

3. pegasus.catalog.transformation.db.user=<database user>

4. pegasus.catalog.transformation.db.password=<database password>

TC Client pegasus-tc-client
We need to map our declared transformations (preprocess, findranage, and analyze) from the example DAX above
to a simple "mock application" name "keg" ("canonical example for the grid") which reads input files designated by
arguments, writes them back onto output files, and produces on STDOUT a summary of where and when it was run.
Keg ships with Pegasus in the bin directory. Run keg on the command line to see how it works.

$ keg -o /dev/fd/1

Timestamp Today: 20040624T054607-05:00 (1088073967.418;0.022)
Applicationname: keg @ 10.10.0.11 (VPN)
Current Workdir: /home/unique-name
Systemenvironm.: i686-Linux 2.4.18-3
Processor Info.: 1 x Pentium III (Coppermine) @ 797.425
Output Filename: /dev/fd/1

Now we need to map all 3 transformations onto the "keg" executable. We place these mappings in our File
transformation catalog for site clus1.

Note

In earlier version of Pegasus users had to define entries for Pegasus executables such as transfer, replica
client, dirmanager, etc on each site as well as site "local". This is no longer required. Pegasus versions 2.0
and later automatically pick up the paths for these binaries from the environment profile PEGASUS_HOME
set in the site catalog for each site.

A single entry needs to be on one line. The above example is just formatted for convenience.

Alternatively you can also use the pegasus-tc-client to add entries to any implementation of the transformation catalog.
The following example shows the addiition the last entry in the File based transformation catalog.

$ pegasus-tc-client -Dpegasus.catalog.transformation=Text \
-Dpegasus.catalog.transformation.file=$HOME/tc -a -r clus1 -l black::analyze:1.0 \
-p gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg -t STAGEABLE -s INTEL32::LINUX \
-e ENV::KEY3="VALUE3"

2007.07.11 16:12:03.712 PDT: [INFO] Added tc entry sucessfully

To verify if the entry was correctly added to the transformation catalog you can use the pegasus-tc-client to query.

$ pegasus-tc-client -Dpegasus.catalog.transformation=File \
-Dpegasus.catalog.transformation.file=$HOME/tc -q -P -l black::analyze:1.0

#RESID LTX PFN TYPE SYSINFO

clus1 black::analyze:1.0 gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg
 STAGEABLE INTEL32::LINUX

Creating Workflows

26

TC Converter Client pegasus-tc-converter
Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file /lfs1/software/install/
pegasus/pegasus-3.0.0cvs/etc/sample.tc.text

To use the converted transformation catalog, in the properties do the following:

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

27

Chapter 5. Running Workflows
Executable Workflows (DAG)

The DAG is an executable (concrete) workflow that can be executed over a variety of resources. When the workflow
tasks are mapped to multiple resources that do not share a file system, explicit nodes are added to the workflow for
orchestrating data. transfer between the tasks.

When you take the DAX workflow created in Creating Workflows, and plan it for a single remote grid execution, here
a site with handle hpcc, and plan the workflow without clean-up nodes, the following concrete workflow is built:

Figure 5.1. Black Diamond DAG

Planning augments the original abstract workflow with ancillary tasks to facility the proper execution of the workflow.
These tasks include:

• the creation of remote working directories. These directories typically have name that seeks to avoid conflicts with
other simultaneously running similar workflows. Such tasks use a job prefix of create_dir.

Running Workflows

28

• the stage-in of input files before any task which requires these files. Any file consumed by a task needs to be staged
to the task, if it does not already exist on that site. Such tasks use a job prefix of stage_in.If multiple files from
various sources need to be transferred, multiple stage-in jobs will be created. Additional advanced options permit
to control the size and number of these jobs, and whether multiple compute tasks can share stage-in jobs.

• the original DAX job is concretized into a compute task in the DAG. Compute jobs are a concatination of the job's
name and id attribute from the DAX file.

• the stage-out of data products to a collecting site. Data products with their transfer flag set to false will not be
staged to the output site. However, they may still be eligible for staging to other, dependent tasks. Stage-out tasks
use a job prefix of stage_out.

• If compute jobs run at different sites, an intermediary staging task with prefix stage_inter is inserted between
the compute jobs in the workflow, ensuring that the data products of the parent are available to the child job.

• the registration of data products in a replica catalog. Data products with their register flag set to false will not
be registered.

• the clean-up of transient files and working directories. These steps can be omitted with the --no-cleanup option
to the planner.

The " Reference Manual" Chapter details more about when and how staging nodes are inserted into the workflow.

The DAG will be found in file diamond-0.dag, constructed from the name and index attributes found in the root
element of the DAX file.

##
PEGASUS WMS GENERATED DAG FILE
DAG diamond
Index = 0, Count = 1
##

JOB create_dir_diamond_0_hpcc create_dir_diamond_0_hpcc.sub
SCRIPT POST create_dir_diamond_0_hpcc /opt/pegasus/default/bin/pegasus-exitcode
 create_dir_diamond_0_hpcc.out

JOB stage_in_local_hpcc_0 stage_in_local_hpcc_0.sub
SCRIPT POST stage_in_local_hpcc_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_in_local_hpcc_0.out

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /opt/pegasus/default/bin/pegasus-exitcode preprocess_ID000001.out

JOB findrange_ID000002 findrange_ID000002.sub
SCRIPT POST findrange_ID000002 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000002.out

JOB findrange_ID000003 findrange_ID000003.sub
SCRIPT POST findrange_ID000003 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000003.out

JOB analyze_ID000004 analyze_ID000004.sub
SCRIPT POST analyze_ID000004 /opt/pegasus/default/bin/pegasus-exitcode analyze_ID000004.out

JOB stage_out_local_hpcc_2_0 stage_out_local_hpcc_2_0.sub
SCRIPT POST stage_out_local_hpcc_2_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_out_local_hpcc_2_0.out

PARENT findrange_ID000002 CHILD analyze_ID000004
PARENT findrange_ID000003 CHILD analyze_ID000004
PARENT preprocess_ID000001 CHILD findrange_ID000002
PARENT preprocess_ID000001 CHILD findrange_ID000003
PARENT analyze_ID000004 CHILD stage_out_local_hpcc_2_0
PARENT stage_in_local_hpcc_0 CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000002
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000003
PARENT create_dir_diamond_0_hpcc CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD analyze_ID000004
PARENT create_dir_diamond_0_hpcc CHILD stage_in_local_hpcc_0
##
End of DAG
##

Running Workflows

29

The DAG file declares all jobs and links them to a Condor submit file that describes the planned, concrete job. In the
same directory as the DAG file are all Condor submit files for the jobs from the picture plus a number of additional
helper files.

The various instructions that can be put into a DAG file are described in Condor's DAGMAN documentation [http://
www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html].The constituents of the submit directory
are described in the "Submit Directory Details"chapter

Mapping Refinement Steps
During the mapping process, the abstract workflow undergoes a series of refinement steps that converts it to an
executable form.

Data Reuse

The abstract workflow after parsing is optionally handed over to the Data Reuse Module. The Data Reuse Algorithm
in Pegasus attempts to prune all the nodes in the abstract workflow for which the output files exist in the Replica
Catalog. It also attempts to cascade the deletion to the parents of the deleted node for e.g if the output files for the
leaf nodes are specified, Pegasus will prune out all the workflow as the output files in which a user is interested in
already exist in the Replica Catalog.

The Data Reuse Algorithm works in two passes

First Pass - Determine all the jobs whose output files exist in the Replica Catalog. An output file with the transfer
flag set to false is treated equivalent to the file existing in the Replica Catalog , if the output file is not an input to
any of the children of the job X.

Second Pass - The algorithm removes the job whose output files exist in the Replica Catalog and tries to cascade the
deletion upwards to the parent jobs. We start the breadth first traversal of the workflow bottom up.

(It is already marked for deletion in Pass 1
 OR
 (ALL of it's children have been marked for deletion
 AND
 Node's output files have transfer flags set to false
)
)

Tip

The Data Reuse Algorithm can be disabled by passing the --force option to pegasus-plan.

http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html

Running Workflows

30

Figure 5.2. Workflow Data Reuse

Site Selection
The abstract workflow is then handed over to the Site Selector module where the abstract jobs in the pruned workflow
are mapped to the various sites passed by a user. The target sites for planning are specified on the command line using
the --sites option to pegasus-plan. If not specified, then Pegasus picks up all the sites in the Site Catalog as candidate
sites. Pegasus will map a compute job to a site only if Pegasus can

• find an INSTALLED executable on the site

• OR find a STAGEABLE executable that can be staged to the site as part of the workflow execution.

Pegasus supports variety of site selectors with Random being the default

• Random

The jobs will be randomly distributed among the sites that can execute them.

• RoundRobin

The jobs will be assigned in a round robin manner amongst the sites that can execute them. Since each site cannot
execute every type of job, the round robin scheduling is done per level on a sorted list. The sorting is on the basis
of the number of jobs a particular site has been assigned in that level so far. If a job cannot be run on the first
site in the queue (due to no matching entry in the transformation catalog for the transformation referred to by the
job), it goes to the next one and so on. This implementation defaults to classic round robin in the case where all
the jobs in the workflow can run on all the sites.

• Group

Group of jobs will be assigned to the same site that can execute them. The use of the PEGASUS profile key
group in the DAX, associates a job with a particular group. The jobs that do not have the profile key associated

Running Workflows

31

with them, will be put in the default group. The jobs in the default group are handed over to the "Random" Site
Selector for scheduling.

• Heft

A version of the HEFT processor scheduling algorithm is used to schedule jobs in the workflow to multiple grid
sites. The implementation assumes default data communication costs when jobs are not scheduled on to the same
site. Later on this may be made more configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus profile key runtime
with the entries.

The number of processors in a site is picked up from the attribute idle-nodes associated with the vanilla
jobmanager of the site in the site catalog.

• NonJavaCallout

Pegasus will callout to an external site selector.In this mode a temporary file is prepared containing the job
information that is passed to the site selector as an argument while invoking it. The path to the site selector is
specified by setting the property pegasus.site.selector.path. The environment variables that need to be set to run
the site selector can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary file
contains information about the job that needs to be scheduled. It contains key value pairs with each key value
pair being on a new line and separated by a =.

The following pairs are currently generated for the site selector temporary file that is generated in the
NonJavaCallout.

Table 5.1. Table 1: Key Value Pairs that are currently generated for the site selector
temporary file that is generated in the NonJavaCallout.

Key Value

version is the version of the site selector api,currently 2.0.

transformation is the fully-qualified definition identifier for the
transformation (TR) namespace::name:version.

derivation is the fully qualified definition identifier for the
derivation (DV), namespace::name:version.

job.level is the job's depth in the tree of the workflow DAG.

job.id is the job's ID, as used in the DAX file.

resource.id is a pool handle, followed by whitespace, followed
by a gridftp server. Typically, each gridftp server is
enumerated once, so you may have multiple occurances
of the same site. There can be multiple occurances of
this key.

input.lfn is an input LFN, optionally followed by a whitespace
and file size. There can be multiple occurances of this
key,one for each input LFN required by the job.

wf.name label of the dax, as found in the DAX's root element.
wf.index is the DAX index, that is incremented for each
partition in case of deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being used .e.g
condor

vo.name is the name of the virtual organization that is running
this workflow. It is currently set to NONE

vo.group unused at present and is set to NONE.

Running Workflows

32

Tip

The site selector to use for site selection can be specified by setting the property pegasus.selector.site

Figure 5.3. Workflow Site Selection

Job Clustering
After site selection, the workflow is optionally handed for to the job clustering module, which clusters jobs that are
scheduled to the same site. Clustering is usually done on short running jobs in order to reduce the remote execution
overheads associated with a job. Clustering is described in detail in the Reference Manual chapter.

Tip

The job clustering is turned on by passing the --cluster option to pegasus-plan.

Addition of Data Transfer and Registration Nodes
After job clustering, the workflow is handed to the Data Transfer module that adds data stage-in , inter site and stage-
out nodes to the workflow. Data Stage-in Nodes transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the staging site associated with the job. The staging site for a job
is the execution site if running in a sharedfs mode, else it is the one specified by --staging-site option to the planner.
In case, multiple locations are specified for the same input file, the location from where to stage the data is selected
using a Replica Selector . Replica Selection is described in detail in the Replica Selection section of the Reference
Manual. More details about staging site can be found in the data staging configuration chapter.

Running Workflows

33

The process of adding the data stage-in and data stage-out nodes is handled by Transfer Refiners. All data transfer jobs
in Pegasus are executed using pegasus-transfer . The pegasus-transfer client is a python based wrapper around various
transfer clients like globus-url-copy, s3cmd, irods-transfer, scp, wget, cp, ln . It looks at source and destination url and
figures out automatically which underlying client to use. pegasus-transfer is distributed with the PEGASUS and can
be found in the bin subdirectory . Pegasus Transfer Refiners are are described in the detail in the Transfers section of
the Reference Manual. The default transfer refiner that is used in Pegasus is the Bundle Transfer Refiner, that bundles
data stage-in nodes and data stage-out nodes on the basis of certain pegasus profile keys associated with the workflow.

Figure 5.4. Addition of Data Transfer Nodes to the Workflow

Data Registration Nodes may also be added to the final executable workflow to register the location of the output files
on the final output site back in the Replica Catalog . An output file is registered in the Replica Catalog if the register
flag for the file is set to true in the DAX.

Running Workflows

34

Figure 5.5. Addition of Data Registration Nodes to the Workflow

The data staged-in and staged-out from a directory that is created on the head node by a create dir job in the workflow.
In the vanilla case, the directory is visible to all the worker nodes and compute jobs are launched in this directory
on the shared filesystem. In the case where there is no shared filesystem, users can turn on worker node execution,
where the data is staged from the head node directory to a directory on the worker node filesystem. This feature will
be refined further for Pegasus 3.1. To use it with Pegasus 3.0 send email to pegasus-support at isi.edu.

Tip

The replica selector to use for replica selection can be specified by setting the property
pegasus.selector.replica

Addition of Create Dir and Cleanup Jobs
After the data transfer nodes have been added to the workflow, Pegasus adds a create dir jobs to the workflow. Pegasus
usually , creates one workflow specific directory per compute site , that is on the staging site associated with the job.
In the case of shared shared filesystem setup, it is a directory on the shared filesystem of the compute site. In case
of shared filesystem setup, this directory is visible to all the worker nodes and that is where the data is staged-in by
the data stage-in jobs.

The staging site for a job is the execution site if running in a sharedfs mode, else it is the one specified by --staging-
site option to the planner. More details about staging site can be found in the data staging configuration chapter.

After addition of the create dir jobs, the workflow is optionally handed to the cleanup module. The cleanup module
adds cleanup nodes to the workflow that remove data from the directory on the shared filesystem when it is no longer
required by the workflow. This is useful in reducing the peak storage requirements of the workflow.

Running Workflows

35

Tip

The addition of the cleanup nodes to the workflow can be disabled by passing the --nocleanup option to
pegasus-plan.

Figure 5.6. Addition of Directory Creation and File Removal Jobs

Code Generation

The last step of refinement process, is the code generation where Pegasus writes out the executable workflow in a
form understandable by the underlying workflow executor. At present Pegasus supports the following code generators

1. Condor

This is the default code generator for Pegasus . This generator generates the executable workflow as a Condor DAG
file and associated job submit files. The Condor DAG file is passed as input to Condor DAGMan for job execution.

2. Shell

This Code Generator generates the executable workflow as a shell script that can be executed on the submit host.
While using this code generator, all the jobs should be mapped to site local i.e specify --sites local to pegasus-plan.

Tip

To use the Shell code Generator set the property pegasus.code.generator Shell

Running Workflows

36

Figure 5.7. Final Executable Workflow

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

Running Workflows

37

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

Running Workflows

38

Figure 5.8. Shared File System Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Running Workflows

39

Non Shared Filesystem
In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 5.9. Non Shared Filesystem Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

Running Workflows

40

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be
specified using the --staging-site option to pegasus-plan.

Condor Pool Without a Shared Filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Running Workflows

41

Figure 5.10. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on the submit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Running Workflows

42

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

PegasusLite
Starting Pegasus 4.0 , all compute jobs (single or clustered jobs) that are executed in a non shared filesystem setup,
are executed using lightweight job wrapper called PegasusLite.

Figure 5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching
compute jobs

When PegasusLite starts on a remote worker node to run a compute job , it performs the following actions:

1. Discovers the best run-time directory based on space requirements and create the directory on the local filesystem
of the worker node to execute the job.

2. Prepare the node for executing the unit of work. This involves discovering whether the pegasus worker tools are
already installed on the node or need to be brought in.

3. Use pegasus-transfer to stage in the input data to the runtime directory (created in step 1) on the remote worker node.

4. Launch the compute job.

5. Use pegasus-transfer to stage out the output data to the data coordination site.

6. Remove the directory created in Step 1.

Pegasus-Plan
pegasus-plan is the main executable that takes in the abstract workflow (DAX) and generates an executable workflow
(usually a Condor DAG) by querying various catalogs and performing several refinement steps. Before users can
run pegasus plan the following needs to be done:

1. Populate the various catalogs

a. Replica Catalog

The Replica Catalog needs to be catalogued with the locations of the input files required by the workflows. This
can be done by using pegasus-rc-client (See the Replica section of Creating Workflows).

b. Transformation Catalog

The Transformation Catalog needs to be catalogued with the locations of the executables that the workflows
will use. This can be done by using pegasus-tc-client (See the Transformation section of Creating Workflows).

c. Site Catalog

The Site Catalog needs to be catalogued with the site layout of the various sites that the workflows can execute
on. A site catalog can be generated for OSG by using the client pegasus-sc-client (See the Site section of the
Creating Workflows).

Running Workflows

43

2. Configure Properties

After the catalogs have been configured, the user properties file need to be updated with the types and locations
of the catalogs to use. These properties are described in the basic.properties files in the etc sub directory (see the
Properties section of theReference chapter.

The basic properties that need to be set usually are listed below:

Table 5.2. Table2: Basic Properties that need to be set

pegasus.catalog.replica

pegasus.catalog.replica.file | pegasus.catalog.replica.url

pegasus.catalog.transformation

pegasus.catalog.transformation.file

pegasus.catalog.site

pegasus.catalog.site.file

To execute pegasus-plan user usually requires to specify the following options:

1. --dax the path to the DAX file that needs to be mapped.

2. --dir the base directory where the executable workflow is generated

3. --sites comma separated list of execution sites.

4. --output the output site where to transfer the materialized output files.

5. --submit boolean value whether to submit the planned workflow for execution after planning is done.

Basic Properties

This is the reference guide to the basic properties regarding the Pegasus Workflow Planner, and their respective default
values. Please refer to the advanced properties guide to know about all the properties that a user can use to configure the
Pegasus Workflow Planner. Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

Running Workflows

44

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site XML3
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml3

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home
Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: RLS

Value[1]: LRC

Value[2]: JDBCRC

Value[3]: File

Value[4]: MRC

Default: RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. There is an index
service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC) report. Each
LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central RLI to discover in
which LRC's the mappings for a LFN reside. It then queries the individual LRC's for the PFN's. To use

Running Workflows

45

RLS, the user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the
RLI to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

LRC If the user does not want to query the RLI, but directly a single Local Replica Catalog. To use LRC, the
user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the LRC to
query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

JDBCRC In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. The sql schema's
for this catalog can be found at $PEGASUS_HOME/sql directory. To use JDBCRC, the user additionally
needs to set the following properties

1. pegasus.catalog.replica.db.url

2. pegasus.catalog.replica.db.user

3. pegasus.catalog.replica.db.password

File In this mode, Pegasus queries a file based replica catalog. It is neither transactionally safe, nor advised
to use for production purposes in any way. Multiple concurrent access to the File will end up clobbering
the contents of the file. The site attribute should be specified whenever possible. The attribute key for the
site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality sign,
it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be in quoted. The LFN sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to specify pegasus.catalog.replica.file property to specify the path
to the file based RC.

MRC In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any
legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies
the following properties.

pegasus.catalog.replica.mrc.[value] specifies the type of replica catalog.
pegasus.catalog.replica.mrc.[value].key specifies a property name key for a
particular catalog

For example, if a user wants to query two lrc's at the same time he/she can specify as follows

pegasus.catalog.replica.mrc.lrc1 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://sukhna
pegasus.catalog.replica.mrc.lrc2 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://smarty

In the above example, lrc1, lrc2 are any valid identifier names and url is the property key that needed to
be specified.

pegasus.catalog.replica.url

System: Pegasus

Running Workflows

46

Since: 2.0

Type: URI string

Default: (no default)

When using the modern RLS replica catalog, the URI to the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

Site Catalog

pegasus.catalog.site

System: Site Catalog

Since: 2.0

Type: enumeration

Value[0]: XML3

Value[1]: XML

Default: XML3

The site catalog file is available in three major flavors: The Text and and XML formats for the site catalog are
deprecated. Users can use pegasus-sc-converter client to convert their site catalog to the newer XML3 format.

1. THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-sc-converter
to convert XML format to XML3 Format. The "XML" format is an XML-based file. The XML format reads site
catalog conforming to the old site catalog schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-2.0/
sc-2.0.xsd

2. The "XML3" format is an XML-based file. The XML format reads site catalog conforming to the old site catalog
schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.xsd

pegasus.catalog.site.file

System: Site Catalog

Since: 2.0

Type: file location string

Default: ${pegasus.home.sysconfdir}/sites.xml3 |
${pegasus.home.sysconfdir}/sites.xml

See also: pegasus.catalog.site

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected. The default value
is dependant on the value specified for the property pegasus.catalog.site . If type of SiteCatalog used is XML3, then
sites.xml3 is picked up from sysconfdir else sites.xml

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 2.0

Type: enumeration

Running Workflows

47

Value[0]: Text

Value[1]: File

Default: Text

See also: pegasus.catalog.transformation.file

Text In this mode, a multiline file based format is understood. The file is read and cached in memory. Any
modifications, as adding or deleting, causes an update of the memory and hence to the file underneath. All
queries are done against the memory representation.

The file sample.tc.text in the etc directory contains an example

Here is a sample textual format for transfomation catalog containing one transformation on two sites

tr example::keg:1.0 {
#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1. The resource ID is represented in the first column.

2. The logical transformation uses the colonized format ns::name:vs.

3. The path to the application on the system

4. The installation type is identified by one of the following keywords - all upper case: INSTALLED,
STAGEABLE. If not specified, or NULL is used, the type defaults to INSTALLED.

5. The system is of the format ARCH::OS[:VER:GLIBC]. The following arch types are understood:
"INTEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaults to INTEL32::LINUX.

6. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY3=VALUE3 Multiple
key-values for same namespace are seperated by a comma "," and multiple namespaces are seperated by a
semicolon ";". If any of your profile values contains a comma you must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems: Transformation Catalog

Running Workflows

48

Type: file location string

Default: ${pegasus.home.sysconfdir}/tc.text |
${pegasus.home.sysconfdir}/tc.data

See also: pegasus.catalog.transformation

This property is used to set the path to the textual transformation catalogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

Data Staging Configuration

pegasus.data.configuration

System: Pegasus

Since: 3.1

Type: enumeration

Value[0]: sharedfs

Value[1]: nonsharedfs

Value[2]: condorio

Default: sharedfs

This property sets up Pegasus to run in different environments.

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share a filesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory.The compute jobs in the executable workflow are launched in the directory on the shared
filesystem. Internally, if this is set the following properties are set.

pegasus.execute.*.filesystem.local false

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File IO.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file IO. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem across the VM's may be tricky. On loading this property, internally the following
properies are set

pegasus.transfer.sls.*.impl Condor
pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. You can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein

Running Workflows

49

and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to
this directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only a few sites have large amounts of data storage exposed that can be used to place data during a
workflow run. This setup is also helpful when running workflows in the cloud environment where
setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

50

Chapter 6. Execution Environments
Pegasus supports a number of execution environments. An execution environment is a setup where jobs from a
workflow are running.

General execution environment: Localhost
In this configuration , Pegasus schedules the jobs to run locally on the submit host. Running locally is a good
approach for smaller workflows, testing workflows, and for demonstations such as the Pegasus tutorial using Virtual
Machines.Pegasus supports two methods of local execution: local Condor pool, and shell planner. The former is
preferred as the latter does not support all Pegasus' features (such as notifications).

Running on a local Condor pool is achieved by executing the workflow on site local (--sites local option to pegasus-
plan). The site "local" is a reserved site in Pegasus and results in the jobs to run on the submit host in condor universe
local. The site catalog can be left very simple in this case:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage"/>
 </shared>
 </storage>
 </head-fs>
 </site>
</sitecatalog>

The simplest execution environment does not involve Condor. Pegasus is capable of planning small workflows for
local execution using a shell planner. Please refer to the share/pegasus/examples directory in your Pegasus
installation, the shell planner's documentation section, or the tutorials, for details.

General execution environment: Condor Pool
A Condor pool is a set of machines that use Condor for resource management. A Condor pool can be a cluster of
dedicated machines or a set of distributively owned machines. Pegasus can generate concrete workflows that can be
executed on a Condor pool.

Execution Environments

51

Figure 6.1. The distributed resources appear to be part of a Condor pool.

The workflow is submitted using DAGMan from one of the job submission machines in the Condor pool. It is the
responsibility of the Central Manager of the pool to match the task in the workflow submitted by DAGMan to the
execution machines in the pool. This matching process can be guided by including Condor specific attributes in the
submit files of the tasks. If the user wants to execute the workflow on the execution machines (worker nodes) in a
Condor pool, there should be a resource defined in the site catalog which represents these execution machines. The
universe attribute of the resource should be vanilla. There can be multiple resources associated with a single Condor
pool, where each resource identifies a subset of machine (worker nodes) in the pool.

When running on a Condor pool, the user has to decide how Pegasus should transfer data. Please see the Data Staging
Configuration for the options. The easiest is to use condorio as that mode does not require any extra setup - Condor
will do the transfers using the existing Condor daemons. For an example of this mode see the example workflow in
share/pegasus/examples/condor-blackdiamond-condorio/ . In condorio mode, the site catalog for
the execution site is very simple as storage is provided by Condor:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage"/>
 </shared>
 </storage>
 </head-fs>
 </site>
 <site handle="condorpool" arch="x86_86" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>

Execution Environments

52

 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profhile>
 </site>
</sitecatalog>

There is a set of Condor profiles which are used commonly when running Pegasus workflows. You may have to set
some or all of these depending on the setup of the Condor pool:

 <!-- Change the style to Condor for jobs to be executed in the Condor Pool.
 By default, Pegasus creates jobs suitable for grid execution. -->
 <profile namespace="pegasus" key="style">condor</profile>

 <!-- Change the universe to vanilla to make the jobs go to remote compute
 nodes. The default is local which will only run jobs on the submit host -->
 <profile namespace="condor" key="universe" >vanilla</profhile>

 <!-- The requirements expression allows you to limit where your jobs go -->
 <profile namespace="condor" key="requirements">(Target.FileSystemDomain !=
 "yggdrasil.isi.edu")</profile>

 <!-- The following two profiles forces Condor to always transfer files. This
 has to be used if the pool does not have a shared filesystem -->
 <profile namespace="condor" key="should_transfer_files">True</profile>
 <profile namespace="condor" key="when_to_transfer_output">ON_EXIT</profile>

Glideins

In this section we describe how machines from different administrative domains and supercomputing centers can be
dynamically added to a Condor pool for certain timeframe. These machines join the Condor pool temporarily and
can be used to execute jobs in a non preemptive manner. This functionality is achieved using a Condor feature called
glideins (see http://cs.wisc.edu/condor/glidein) . The startd daemon is the Condor daemon which provides the compute
slots and runs the jobs. In the glidein case, the submit machine is usually a static machine and the glideins are told
configued to report to that submit machine. The glideins can be submitted to any type of resource: a GRAM enabled
cluster, a campus cluster, a cloud environment such as Amazon AWS, or even another Condor cluster.

Tip

As glideins are usually coming from different compute resource, and/or the glideins are running in an
administrative domain different from the submit node, there is usually no shared filesystem available. Thus
the most common data staging modes are condorio and nonsharedfs .

There are many useful tools which submits and manages glideins for you:

• GlideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a tool and host
environment used mostly on the Open Science Grid [http://www.opensciencegrid.org/].

• CorralWMS [http://pegasus.isi.edu/projects/corralwms] is a personal frontend for GlideinWMS. CorralWMS was
developed by the Pegasus team and works very well for high throughput workflows.

• condor_glidein [http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html] is a simple glidein tool for
Globus GRAM clusters. condor_glidein is shipped with Condor.

• Glideins can also be created by hand or scripts. This is a useful solution for example for cluster which have no
external job submit mechanisms or do not allow outside networking.

http://cs.wisc.edu/condor/glidein
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://pegasus.isi.edu/projects/corralwms
http://pegasus.isi.edu/projects/corralwms
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html

Execution Environments

53

General execution environment: Clouds
Figure 6.2. Cloud Sample Site Layout

The pevious figure shows a sample layout for sky computing (as in: multiple clouds) as supported by Pegasus. At this
point, it is up to the user to provision the remote resources with a proper VM image that includes a Condor startd and
proper Condor configuration to report back to a Condor collector that the Condor schedd has access to.

In this discussion, the submit host (SH) is located logically external to the cloud provider(s). The SH is the point
where a user submits Pegasus workflows for execution. This site typically runs a Condor collector to gather resource
announcements, or is part of a larger Condor pool that collects these announcement. Condor makes the remote
resources available to the submit host’s Condor installation.

The figure above shows the way Pegasus WMS is deployed in cloud computing resources, ignoring how these
resources were provisioned. The provisioning request shows multiple resources per provisioning request.

The provisioning broker -- Nimbus, Eucalyptus or EC2 -- at the remote site is responsible to allocate and set up the
resources. For a multi-node request, the worker nodes often require access to a form of shared data storage. Concretely,
either a POSIX-compliant shared file system (e.g. NFS, PVFS) is available to the nodes, or can be brought up for
the lifetime of the application workflow. The task steps of the application workflow facilitate shared file systems to
exchange intermediary results between tasks on the same cloud site. Pegasus also supports an S3 data mode for the
application workflow data staging.

The initial stage-in and final stage-out of application data into and out of the node set is part of any Pegasus-planned
workflow. Several configuration options exist in Pegasus to deal with the dynamics of push and pull of data, and when

Execution Environments

54

to stage data. In many use-cases, some form of external access to or from the shared file system that is visible to the
application workflow is required to facilitate successful data staging. However, Pegasus is prepared to deal with a
set of boundary cases.

The data server in the figure is shown at the submit host. This is not a strict requirement. The data server for consumed
data and data products may both be different and external to the submit host.

Once resources begin appearing in the pool managed by the submit machine’s Condor collector, the
application workflow can be submitted to Condor. A Condor DAGMan will manage the application workflow
execution. Pegasus run-time tools obtain timing-, performance and provenance information as the application
workflow is executed. At this point, it is the user's responsibility to de-provision the allocated resources.

In the figure, the cloud resources on the right side are assumed to have uninhibited outside connectivity. This enables
the Condor I/O to communicate with the resources. The right side includes a setup where the worker nodes use all
private IP, but have out-going connectivity and a NAT router to talk to the internet. The Condor connection broker
(CCB) facilitates this setup almost effortlessly.

The left side shows a more difficult setup where the connectivity is fully firewalled without any connectivity except
to in-site nodes. In this case, a proxy server process, the generic connection broker (GCB), needs to be set up in the
DMZ of the cloud site to facilitate Condor I/O between the submit host and worker nodes.

If the cloud supports data storage servers, Pegasus is starting to support workflows that require staging in two steps:
Consumed data is first staged to a data server in the remote site's DMZ, and then a second staging task moves the data
from the data server to the worker node where the job runs. For staging out, data needs to be first staged from the
job's worker node to the site's data server, and possibly from there to another data server external to the site. Pegasus
is capable to plan both steps: Normal staging to the site's data server, and the worker-node staging from and to the
site's data server as part of the job. We are working on expanding the current code to support a more generic set by
Pegasus 3.1.

Execution Environments

55

General execution environment: Globus GRAM
enabled Cluster

Figure 6.3. Grid Sample Site Layout

A generic grid environment shown in the figure above. We will work from the left to the right top, then the right bottom.

On the left side, you have a submit machine where Pegasus runs, Condor schedules jobs, and workflows are executed.
We call it the submit host (SH), though its functionality can be assumed by a virtual machine image. In order to
properly communicate over secured channels, it is important that the submit machine has a proper notion of time, i.e.
runs an NTP daemon to keep accurate time. To be able to connect to remote clusters and receive connections from the
remote clusters, the submit host has a public IP address to facilitate this communication.

In order to send a job request to the remote cluster, Condor wraps the job into Globus calls via Condor-G. Globus
uses GRAM to manage jobs on remote sites. In terms of a software stack, Pegasus wraps the job into Condor. Condor
wraps the job into Globus. Globus transports the job to the remote site, and unwraps the Globus component, sending
it to the remote site's resource manager (RM).

To be able to communicate using the Globus security infrastructure (GSI), the submit machine needs to have the
certificate authority (CA) certificates configured, requires a host certificate in certain circumstances, and the user a
user certificate that is enabled on the remote site. On the remote end, the remote gatekeeper node requires a host
certificate, all signing CA certificate chains and policy files, and a goot time source.

In a grid environment, there are one or more clusters accessible via grid middleware like the Globus Toolkit [http://
www.globus.org/]. In case of Globus, there is the Globus gatekeeper listening on TCP port 2119 of the remote cluster.
The port is opened to a single machine called head node (HN).The head-node is typically located in a de-militarized
zone (DMZ) of the firewall setup, as it requires limited outside connectivity and a public IP address so that it can be

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/

Execution Environments

56

contacted. Additionally, once the gatekeeper accepted a job, it passes it on to a jobmanager. Often, these jobmanagers
require a limited port range, in the example TCP ports 40000-41000, to call back to the submit machine.

For the user to be able to run jobs on the remote site, the user must have some form of an account on the remtoe site.
The user's grid identity is passed from the submit host. An entity called grid mapfile on the gatekeeper maps the user's
grid identity into a remote account. While most sites do not permit account sharing, it is possible to map multiple user
certificates to the same account.

The gatekeeper is the interface through which jobs are submitted to the remote cluster's resource manager. A resource
manager is a scheduling system like PBS, Maui, LSF, FBSNG or Condor that queues tasks and allocates worker nodes.
The worker nodes (WN) in the remote cluster might not have outside connectivity and often use all private IP addresses.
The Globus toolkit requires a shared filesystem to properly stage files between the head node and worker nodes.

Note

The shared filesystem requirement is imposed by Globus. Pegasus is capable of supporting advanced site
layouts that do not require a shared filesystem. Please contact us for details, should you require such a setup.

To stage data between external sites for the job, it is recommended to enable a GridFTP server. If a shared networked
filesystem is involved, the GridFTP server should be located as close to the file-server as possible. The GridFTP server
requires TCP port 2811 for the control channel, and a limited port range for data channels, here as an example the TPC
ports from 40000 to 41000. The GridFTP server requires a host certificate, the signing CA chain and policy files, a
stable time source, and a gridmap file that maps between a user's grid identify and the user's account on the remote site.

The GridFTP server is often installed on the head node, the same as the gatekeeper, so that they can share the grid
mapfile, CA certificate chains and other setups. However, for performance purposes it is recommended that the
GridFTP server has its own machine.

General execution environment: Glite
This section describes the various changes required in the site catalog for Pegasus to generate an executable workflow
that uses gLite blahp to directly submit to PBS on the local machine. This mode of submission should only be used
when the condor on the submit host can directly talk to scheduler running on the cluster. It is recommended that the
cluster that gLite talks to is designated as a separate compute site in the Pegasus site catalog. To tag a site as a gLite
site the following two profiles need to be specified for the site in the site catalog

1. pegasus profile style with value set to glite.

2. condor profile grid_resource with value set to pbs|lsf

An example site catalog entry for a glite site looks as follows in the site catalog

 <site handle="isi_viz_glite" arch="x86_64" os="LINUX">
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" \
 mount-point="/nfs/scratch01"\>
 <internal-mount-point mount-point="/nfs/scratch01"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" \
 mount-point="/exports/storage01"\>
 <internal-mount-point mount-point="/exports/storage01"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu" />

 <!-- following profiles reqd for glite grid style-->

Execution Environments

57

 <profile namespace="pegasus" key="style">glite</profile>
 <profile namespace="condor" key="grid_resource">pbs</profile>
 </site>

Changes to Jobs
As part of applying the style to the job, this style adds the following classads expressions to the job description.

1. +remote_queue - value picked up from globus profile queue

2. +remote_cerequirements - See below

Remote CE Requirements

The remote CE requirements are constructed from the following profiles associated with the job. The profiles for a
job are derived from various sources

1. transformation catalog

2. site catalog

3. DAX

4. user properties

The following globus profiles if associated with the job are picked up and translated to corresponding glite key

1. hostcount -> PROCS

2. count -> NODES

3. maxwalltime -> WALLTIME

The following condor profiles if associated with the job are picked up and translated to corresponding glite key

1. priority -> PRIORITY

All the env profiles are translated to MYENV

The remote_cerequirements expression is constructed on the basis of the profiles associated with job . An example
+remote_cerequirements classad expression in the submit file is listed below

+remote_cerequirements = "PROCS==18 && NODES==1 && PRIORITY==10 && WALLTIME==3600 \
 && PASSENV==1 && JOBNAME==\"TEST JOB\" && MYENV ==\"JAVA_HOME=/bin/java,APP_HOME=/bin/app\""

Specifying directory for the jobs

gLite blahp does not follow the remote_initialdir or initialdir classad directives. Hence, all the jobs that have this style
applied don't have a remote directory specified in the submit directory. Instead, Pegasus relies on kickstart to change
to the working directory when the job is launched on the remote node.

Campus Cluster
There are almost as many different configurations of campus clusters as there are campus clusters, and because of that
it can be hard to determine what the best way to run Pegasus workflows. Below is a ordered checklist with some ideas
we have collected from working with users in the past:

1. If the cluster scheduler is Condor, please see the Condor Pool section.

2. If the cluster is Globus GRAM enabled, see the Globus GRAM section. If you have have a lot of short jobs, also
read the Glidein section.

Execution Environments

58

3. For clusters without GRAM, you might be able to do glideins. If outbound network connectivity is allowed, your
submit host can be anywhere. If the cluster is setup to not allow any network connections to the outside, you will
probably have to run the submit host inside the cluster as well.

If the cluster you are trying to use is not fitting any of the above scenarios, please post to the Pegasus users mailing
list [http://pegasus.isi.edu/support] and we will help you find a solution.

XSEDE
The Extreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] provides a set of
High Performance Computing (HPC) and High Throughput Computing (HTC) resources.

For the HPC resources, it is recommended to run using Globus GRAM or glideins. Most of these resources have
fast parallel file systesm, so running with sharedfs data staging is recommended. Below is example site catalog and
pegasusrc to run on SDSC Trestles [http://www.sdsc.edu/us/resources/trestles/]:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work" />
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage" />
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://dummyValue.url.edu" />
 <profile namespace="env" key="GLOBUS_LOCATION" >/opt/globus/5.0.2</profile>
 </site>
 <site handle="Trestles" arch="x86_64" os="LINUX">
 <grid type="gt2" contact="trestles.sdsc.edu:2119/jobmanager-fork" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt2" contact="trestles.sdsc.edu:2119/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://trestles-dm1.sdsc.edu" mount-
point="/phase1/USERNAME"/>
 <internal-mount-point mount-point="/phase1/USERNAME" />
 </shared>
 </scratch>
 <storage />
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://dummyValue.url.edu" />
 </site>
</sitecatalog>

pegasusrc:

pegasus.catalog.replica=SimpleFile
pegasus.catalog.replica.file=rc

pegasus.catalog.site=XML3
pegasus.catalog.site.file=sites.xml

pegasus.catalog.transformation=Text
pegasus.catalog.transformation.file=tc

pegasus.data.configuration = sharedfs

Pegasus might not be installed, or be of a different version
so stage the worker package

http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
https://www.xsede.org/
https://www.xsede.org/
http://www.sdsc.edu/us/resources/trestles/
http://www.sdsc.edu/us/resources/trestles/

Execution Environments

59

pegasus.transfer.worker.package = true

The HTC resources available on XSEDE are all Condor based, so standard Condor Pool setup will work fine.

If you need to run high throughput workloads on the HPC machines (for example, post processing after a large parallel
job), glideins can be useful as it is a more efficient method for small jobs on these systems.

Open Science Grid / glideinWMS
glideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a glidein system widely used
on Open Science Grid. Running on top of glideinWMS is like running on a Condor Pool without a shared filesystem.

FutureGrid Cloud / Nimbus
FutureGrid [https://portal.futuregrid.org/] provides a distributed testbed for Clouds, Grids and HPC. For the cloud
case, and more specifically for Nimbus [http://www.nimbusproject.org/], tutorials are available on how to use Pegasus
in that environment:

• http://pegasus.isi.edu/futuregrid/tutorials/

• https://wiki.futuregrid.org/index.php/Pegasus

Amazon AWS Cloud
In order to use Amazon to execute workflows you need to a) set up an execution environment in EC2, and b) configure
Pegasus to plan workflows for that environment.

There are many different ways to set up the execution environment in Amazon. The easiest way is to use a submit
machine outside the cloud, and to provision several worker nodes and a file server node in the cloud as shown here:

Figure 6.4. Amazon EC2

The submit machine runs Pegasus and a Condor master (collector, schedd, negotiator),the workers run a Condor startd,
and the file server node exports an NFS file system. The workers' startd is configured to connect to the master running
outside the cloud. The worker also mounts the NFS file system. More information on setting up Condor for this
environment can be found at http://www.isi.edu/~gideon/condor-ec2/.

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
https://portal.futuregrid.org/
https://portal.futuregrid.org/
http://www.nimbusproject.org/
http://www.nimbusproject.org/
http://pegasus.isi.edu/futuregrid/tutorials/
https://wiki.futuregrid.org/index.php/Pegasus
http://www.isi.edu/~gideon/condor-ec2/

Execution Environments

60

To set up Pegasus to plan workflows for Amazon you need to create an 'ec2' entry your site catalog. The site
configuration is similar to what you would create for running on a local Condor pool with nonshared file system.

Using S3 for intermediate files
This section will show you how to use S3 to store intermediate files. In this mode, Pegasus transfers workflow inputs
from the input site to S3 if they are not already in S3. When a job runs, the inputs for that job are fetched from S3 to
the worker node, the job is executed, then the output files are transferred from the worker node back to S3.

In order to use S3 for your workflows, you need to first create a config file for the S3 transfer client, pegasus-s3. See
the man page for details on how to create the config file. You also need to specify S3 as a staging site.

Next, you need to modify your site catalog to tell the location of your s3cfg file. See Credential Staging. A sample
site catalog specifying the location of the s3cfg file and s3 URLs:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage"/>
 </shared>
 </storage>
 </head-fs>
 <profile namespace="env" key="S3CFG" >/home/username/.s3cfg</profile>
 </site>
 <site handle="s3" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="s3" url="s3://user@amazon" mount-point="/wf-scratch"/>
 <internal-mount-point mount-point="/wf-scratch"/>
 </shared>
 </scratch>
 </head-fs>
 </site>
 <site handle="condorpool" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 <profile namespace="condor" key="requirements" >(Target.Arch == "X86_64")</profile>
 </site>
</sitecatalog>

61

Chapter 7. Submit Directory Details
This chapter describes the submit directory content after Pegasus has planned a workflow. Pegasus takes in an abstract
workflow (DAX) and generates an executable workflow (DAG) in the submit directory.

This document also describes the various Replica Selection Strategies in Pegasus.

Layout
Each executable workflow is associated with a submit directory, and includes the following:

1. <daxlabel-daxindex>.dag

This is the Condor DAGMman dag file corresponding to the executable workflow generated by Pegasus. The dag
file describes the edges in the DAG and information about the jobs in the DAG. Pegasus generated .dag file usually
contains the following information for each job

a. The job submit file for each job in the DAG.

b. The post script that is to be invoked when a job completes. This is usually located at $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's.out file and determines the exitcode.

c. JOB RETRY - the number of times the job is to be retried in case of failure. In Pegasus, the job postscript exits
with a non zero exitcode if it determines a failure occurred.

2. <daxlabel-daxindex>.dag.dagman.out

When a DAG (.dag file) is executed by Condor DAGMan , the DAGMan writes out it's output to the <daxlabel-
daxindex>.dag.dagman.out file . This file tells us the progress of the workflow, and can be used to determine
the status of the workflow. Most of pegasus tools mine the dagman.out or jobstate.log to determine the progress
of the workflows.

3. <daxlabel-daxindex>.static.bp

This file contains netlogger events that link jobs in the DAG with the jobs in the DAX. This file is parsed by
pegasus-monitord when a workflow starts and populated to the stampede backend.

4. <daxlabel-daxindex>.notify

This file contains all the notifications that need to be set for the workflow and the jobs in the executable workflow.
The format of notify file is described here

5. <daxlabel-daxindex>.replica.store

This is a file based replica catalog, that only lists file locations are mentioned in the DAX.

6. <daxlabel-daxindex>.dot

Pegasus creates a dot file for the executable workflow in addition to the .dag file. This can be used to visualize the
executable workflow using the dot program.

7. <job>.sub

Each job in the executable workflow is associated with it's own submit file. The submit file tells Condor how to
execute the job.

8. <job>.out.00n

The stdout of the executable referred in the job submit file. In Pegasus, most jobs are launched via kickstart. Hence,
this file contains the kickstart XML provenance record that captures runtime provenance on the remote node where
the job was executed. n varies from 1-N where N is the JOB RETRY value in the .dag file. The exitpost executable

Submit Directory Details

62

is invoked on the <job>.out file and it moves the <job>.out to <job>.out.00n so that the the job's .out files are
preserved across retries.

9. <job>.err.00n

The stderr of the executable referred in the job submit file. In case of Pegasus, mostly the jobs are launched via
kickstart. Hence, this file contains stderr of kickstart. This is usually empty unless there in an error in kickstart
e.g. kickstart segfaults , or kickstart location specified in the submit file is incorrect. The exitpost executable is
invoked on the <job>.out file and it moves the <job>.err to <job>.err.00n so that the the job's .out files are
preserved across retries.

10.jobstate.log

The jobstate.log file is written out by the pegasus-monitord daemon that is launched when a workflow is submitted
for execution by pegasus-run. The pegasus-monitord daemon parses the dagman.out file and writes out the
jobstate.log that is easier to parse. The jobstate.log captures the various states through which a job goes during the
workflow. There are other monitoring related files that are explained in the monitoring chapter.

11.braindump.txt

Contains information about pegasus version, dax file, dag file, dax label.

Condor DAGMan File
The Condor DAGMan file (.dag) is the input to Condor DAGMan (the workflow executor used by Pegasus) .

Pegasus generated .dag file usually contains the following information for each job:

1. The job submit file for each job in the DAG.

2. The post script that is to be invoked when a job completes. This is usually found in $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's .out file and determines the exitcode.

3. JOB RETRY - the number of times the job is to be retried in case of failure. In case of Pegasus, job postscript exits
with a non zero exitcode if it determines a failure occurred.

4. The pre script to be invoked before running a job. This is usually for the dax jobs in the DAX. The pre script is
pegasus-plan invocation for the subdax.

In the last section of the DAG file the relations between the jobs (that identify the underlying DAG structure) are
highlighted.

Sample Condor DAG File
###
PEGASUS WMS GENERATED DAG FILE
DAG blackdiamond
Index = 0, Count = 1
##

JOB create_dir_blackdiamond_0_isi_viz create_dir_blackdiamond_0_isi_viz.sub
SCRIPT POST create_dir_blackdiamond_0_isi_viz /pegasus/bin/pegasus-exitcode \
 /submit-dir/create_dir_blackdiamond_0_isi_viz.out
RETRY create_dir_blackdiamond_0_isi_viz 3

JOB create_dir_blackdiamond_0_local create_dir_blackdiamond_0_local.sub
SCRIPT POST create_dir_blackdiamond_0_local /pegasus/bin/pegasus-exitcode
 /submit-dir/create_dir_blackdiamond_0_local.out

JOB pegasus_concat_blackdiamond_0 pegasus_concat_blackdiamond_0.sub

JOB stage_in_local_isi_viz_0 stage_in_local_isi_viz_0.sub
SCRIPT POST stage_in_local_isi_viz_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/stage_in_local_isi_viz_0.out

JOB chmod_preprocess_ID000001_0 chmod_preprocess_ID000001_0.sub
SCRIPT POST chmod_preprocess_ID000001_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/chmod_preprocess_ID000001_0.out

Submit Directory Details

63

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /pegasus/bin/pegasus-exitcode \
 /submit-dir/preprocess_ID000001.out

JOB subdax_black_ID000002 subdax_black_ID000002.sub
SCRIPT PRE subdax_black_ID000002 /pegasus/bin/pegasus-plan \
 -Dpegasus.user.properties=/submit-dir/./dag_1/test_ID000002/
pegasus.3862379342822189446.properties\
 -Dpegasus.log.*=/submit-dir/subdax_black_ID000002.pre.log \
 -Dpegasus.dir.exec=app_domain/app -Dpegasus.dir.storage=duncan -Xmx1024 -Xms512\
 --dir /pegasus-features/dax-3.2/dags \
 --relative-dir user/pegasus/blackdiamond/run0005/user/pegasus/blackdiamond/run0005/./dag_1 \
 --relative-submit-dir user/pegasus/blackdiamond/run0005/./dag_1/test_ID000002\
 --basename black --sites dax_site \
 --output local --force --nocleanup \
 --verbose --verbose --verbose --verbose --verbose --verbose --verbose \
 --verbose --monitor --deferred --group pegasus --rescue 0 \
 --dax /submit-dir/./dag_1/test_ID000002/dax/blackdiamond_dax.xml

JOB stage_out_local_isi_viz_0_0 stage_out_local_isi_viz_0_0.sub
SCRIPT POST stage_out_local_isi_viz_0_0 /pegasus/bin/pegasus-exitcode /submit-dir/
stage_out_local_isi_viz_0_0.out

SUBDAG EXTERNAL subdag_black_ID000003 /Users/user/Pegasus/work/dax-3.2/black.dag DIR /duncan/test

JOB clean_up_stage_out_local_isi_viz_0_0 clean_up_stage_out_local_isi_viz_0_0.sub
SCRIPT POST clean_up_stage_out_local_isi_viz_0_0 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_stage_out_local_isi_viz_0_0.out

JOB clean_up_preprocess_ID000001 clean_up_preprocess_ID000001.sub
SCRIPT POST clean_up_preprocess_ID000001 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_preprocess_ID000001.out

PARENT create_dir_blackdiamond_0_isi_viz CHILD pegasus_concat_blackdiamond_0
PARENT create_dir_blackdiamond_0_local CHILD pegasus_concat_blackdiamond_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_stage_out_local_isi_viz_0_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_preprocess_ID000001
PARENT preprocess_ID000001 CHILD subdax_black_ID000002
PARENT preprocess_ID000001 CHILD stage_out_local_isi_viz_0_0
PARENT subdax_black_ID000002 CHILD subdag_black_ID000003
PARENT stage_in_local_isi_viz_0 CHILD chmod_preprocess_ID000001_0
PARENT stage_in_local_isi_viz_0 CHILD preprocess_ID000001
PARENT chmod_preprocess_ID000001_0 CHILD preprocess_ID000001
PARENT pegasus_concat_blackdiamond_0 CHILD stage_in_local_isi_viz_0
##
End of DAG
##

Kickstart XML Record
Kickstart is a light weight C executable that is shipped with the pegasus worker package. All jobs are launced via
Kickstart on the remote end, unless explicitly disabled at the time of running pegasus-plan.

Kickstart does not work with:

1. Condor Standard Universe Jobs

2. MPI Jobs

Pegasus automatically disables kickstart for the above jobs.

Kickstart captures useful runtime provenance information about the job launched by it on the remote note, and puts in
an XML record that it writes to its own stdout. The stdout appears in the workflow submit directory as <job>.out.00n .
The following information is captured by kickstart and logged:

1. The exitcode with which the job it launched exited.

2. The duration of the job

3. The start time for the job

4. The node on which the job ran

Submit Directory Details

64

5. The stdout and stderr of the job

6. The arguments with which it launched the job

7. The environment that was set for the job before it was launched.

8. The machine information about the node that the job ran on

Amongst the above information, the dagman.out file gives a coarser grained estimate of the job duration and start time.

Reading a Kickstart Output File
The kickstart file below has the following fields highlighted:

1. The host on which the job executed and the ipaddress of that host

2. The duration and start time of the job. The time here is in reference to the clock on the remote node where the
job is executed.

3. The exitcode with which the job executed

4. The arguments with which the job was launched.

5. The directory in which the job executed on the remote site

6. The stdout of the job

7. The stderr of the job

8. The environment of the job

<?xml version="1.0" encoding="ISO-8859-1"?>

<invocation xmlns="http://pegasus.isi.edu/schema/invocation" \
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \
 xsi:schemaLocation="http://pegasus.isi.edu/schema/invocation http://pegasus.isi.edu/schema/
iv-2.0.xsd" \
 version="2.0" start="2009-01-30T19:17:41.157-06:00" duration="0.321"
 transformation="pegasus::dirmanager"\
 derivation="pegasus::dirmanager:1.0" resource="cobalt" wf-label="scb" \
 wf-stamp="2009-01-30T17:12:55-08:00" hostaddr="141.142.30.219" hostname="co-
login.ncsa.uiuc.edu"\
 pid="27714" uid="29548" user="vahi" gid="13872" group="bvr" umask="0022">

<mainjob start="2009-01-30T19:17:41.426-06:00" duration="0.052" pid="27783">

<usage utime="0.036" stime="0.004" minflt="739" majflt="0" nswap="0" nsignals="0" nvcsw="36"
 nivcsw="3"/>

<status raw="0"><regular exitcode="0"/></status>

<statcall error="0">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/dirmanager">23212F7573722F62696E2F656E762070</
file>
<statinfo mode="0100755" size="8202" inode="85904615883" nlink="1" blksize="16384" \
 blocks="24" mtime="2008-09-22T18:52:37-05:00" atime="2009-01-30T14:54:18-06:00" \
 ctime="2009-01-13T19:09:47-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<argument-vector>
<arg nr="1">--create</arg>
<arg nr="2">--dir</arg>
<arg nr="3">/u/ac/vahi/globus-test/EXEC/vahi/pegasus/scb/run0001</arg>
</argument-vector>

</mainjob>

<cwd>/u/ac/vahi/globus-test/EXEC</cwd>

<usage utime="0.012" stime="0.208" minflt="4232" majflt="0" nswap="0" nsignals="0" nvcsw="15"
 nivcsw="74"/>
<machine page-size="16384" provider="LINUX">

Submit Directory Details

65

<stamp>2009-01-30T19:17:41.157-06:00</stamp>
<uname system="linux" nodename="co-login" release="2.6.16.54-0.2.5-default" machine="ia64">#1 SMP
 Mon Jan 21\
 13:29:51 UTC 2008</uname>
<ram total="148299268096" free="123371929600" shared="0" buffer="2801664"/>
<swap total="1179656486912" free="1179656486912"/>
<boot idle="1315786.920">2009-01-15T10:19:50.283-06:00</boot>
<cpu count="32" speed="1600" vendor=""></cpu>
<load min1="3.50" min5="3.50" min15="2.60"/>
<proc total="841" running="5" sleeping="828" stopped="5" vmsize="10025418752" rss="2524299264"/>
<task total="1125" running="6" sleeping="1114" stopped="5"/>
</machine>
<statcall error="0" id="stdin">
<!-- deferred flag: 0 -->
<file name="/dev/null"/>
<statinfo mode="020666" size="0" inode="68697" nlink="1" blksize="16384" blocks="0" \
 mtime="2007-05-04T05:54:02-05:00" atime="2007-05-04T05:54:02-05:00" \
 ctime="2009-01-15T10:21:54-06:00" uid="0" user="root" gid="0" group="root"/>
</statcall>

<statcall error="0" id="stdout">
<temporary name="/tmp/gs.out.s9rTJL" descriptor="3"/>
<statinfo mode="0100600" size="29" inode="203420686" nlink="1" blksize="16384" blocks="128" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
<data>mkdir finished successfully.
</data>
</statcall>
<statcall error="0" id="stderr">
<temporary name="/tmp/gs.err.kobn3S" descriptor="5"/>
<statinfo mode="0100600" size="0" inode="203420689" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<statcall error="0" id="gridstart">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/kickstart">7F454C46020101000000000000000000</
file>
<statinfo mode="0100755" size="255445" inode="85904615876" nlink="1" blksize="16384" blocks="504" \
 mtime="2009-01-30T18:06:28-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T18:06:28-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="logfile">
<descriptor number="1"/>
<statinfo mode="0100600" size="0" inode="53040253" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:39-06:00" atime="2009-01-30T19:17:39-06:00" \
ctime="2009-01-30T19:17:39-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="channel">
<fifo name="/tmp/gs.app.Ien1m0" descriptor="7" count="0" rsize="0" wsize="0"/>
<statinfo mode="010640" size="0" inode="203420696" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<environment>
<env key="GLOBUS_GRAM_JOB_CONTACT">https://co-login.ncsa.uiuc.edu:50001/27456/1233364659/</env>
<env key="GLOBUS_GRAM_MYJOB_CONTACT">URLx-nexus://co-login.ncsa.uiuc.edu:50002/</env>
<env key="GLOBUS_LOCATION">/usr/local/prews-gram-4.0.7-r1/</env>
....
</environment>

<resource>
<soft id="RLIMIT_CPU">unlimited</soft>
<hard id="RLIMIT_CPU">unlimited</hard>
<soft id="RLIMIT_FSIZE">unlimited</soft>
....
</resource>
</invocation>

Jobstate.Log File
The jobstate.log file logs the various states that a job goes through during workflow execution. It is created by the
pegasus-monitord daemon that is launched when a workflow is submitted to Condor DAGMan by pegasus-run.

Submit Directory Details

66

pegasus-monitord parses the dagman.out file and writes out the jobstate.log file, the format of which is more amenable
to parsing.

Note

The jobstate.log file is not created if a user uses condor_submit_dag to submit a workflow to Condor
DAGMan.

The jobstate.log file can be created after a workflow has finished executing by running pegasus-monitord on
the .dagman.out file in the workflow submit directory.

Below is a snippet from the jobstate.log for a single job executed via condorg:

1239666049 create_dir_blackdiamond_0_isi_viz SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz EXECUTE 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GLOBUS_SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GRID_SUBMIT 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_TERMINATED 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_SUCCESS 0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_STARTED - isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_TERMINATED 3758.0 isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_SUCCESS - isi_viz - 1

Each entry in jobstate.log has the following:

1. The ISO timestamp for the time at which the particular event happened.

2. The name of the job.

3. The event recorded by DAGMan for the job.

4. The condor id of the job in the queue on the submit node.

5. The pegasus site to which the job is mapped.

6. The job time requirements from the submit file.

7. The job submit sequence for this workflow.

Table 7.1. Table 1: The job lifecycle when executed as part of the workflow

STATE/EVENT DESCRIPTION

SUBMIT job is submitted by condor schedd for execution.

EXECUTE condor schedd detects that a job has started execution.

GLOBUS_SUBMIT the job has been submitted to the remote resource. It's only
written for GRAM jobs (i.e. gt2 and gt4).

GRID_SUBMIT same as GLOBUS_SUBMIT event. The
ULOG_GRID_SUBMIT event is written for all grid
universe jobs./

JOB_TERMINATED job terminated on the remote node.

JOB_SUCCESS job succeeded on the remote host, condor id will be zero
(successful exit code).

JOB_FAILURE job failed on the remote host, condor id will be the job's
exit code.

POST_SCRIPT_STARTED post script started by DAGMan on the submit host, usually
to parse the kickstart output

POST_SCRIPT_TERMINATED post script finished on the submit node.

POST_SCRIPT_SUCCESS | POST_SCRIPT_FAILURE post script succeeded or failed.

There are other monitoring related files that are explained in the monitoring chapter.

Submit Directory Details

67

Pegasus Workflow Job States and Delays
The various job states that a job goes through (as caputured in the dagman.out and jobstate.log file) during it's lifecycle
are illustrated below. The figure below highlights the various local and remote delays during job lifecycle.

Braindump File
The braindump file is created per workflow in the submit file and contains metadata about the workflow.

Table 7.2. Table 2: Information Captured in Braindump File

KEY DESCRIPTION

user the username of the user that ran pegasus-plan

grid_dn the Distinguished Name in the proxy

submit_hostname the hostname of the submit host

root_wf_uuid the workflow uuid of the root workflow

Submit Directory Details

68

wf_uuid the workflow uuid of the current workflow i.e the one
whose submit directory the braindump file is.

dax the path to the dax file

dax_label the label attribute in the adag element of the dax

dax_index the index in the dax.

dax_version the version of the DAX schema that DAX referred to.

pegasus_wf_name the workflow name constructed by pegasus when
planning

timestamp the timestamp when planning occured

basedir the base submit directory

submit_dir the full path for the submit directory

properties the full path to the properties file in the submit directory

planner the planner used to construct the executable workflow.
always pegasus

planner_version the versions of the planner

pegasus_build the build timestamp

planner_arguments the arguments with which the planner is invoked.

jsd the path to the jobstate file

rundir the rundir in the numbering scheme for the submit
directories

pegasushome the root directory of the pegasus installation

vogroup the vo group to which the user belongs to. Defaults to
pegasus

condor_log the full path to condor common log in the submit directory

notify the notify file that contains any notifications that need to
be sent for the workflow.

dag the basename of the dag file created

type the type of executable workflow. Can be dag | shell

A Sample Braindump File is displayed below:

user vahi
grid_dn null
submit_hostname obelix
root_wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
dax /data/scratch/vahi/examples/synthetic-scec/Test.dax
dax_label Stampede-Test
dax_index 0
dax_version 3.3
pegasus_wf_name Stampede-Test-0
timestamp 20110726T153746-0700
basedir /data/scratch/vahi/examples/synthetic-scec/dags
submit_dir /data/scratch/vahi/examples/synthetic-scec/dags/vahi/pegasus/Stampede-Test/run0005
properties pegasus.6923599674234553065.properties
planner /data/scratch/vahi/software/install/pegasus/default/bin/pegasus-plan
planner_version 3.1.0cvs
pegasus_build 20110726221240Z
planner_arguments "--conf ./conf/properties --dax Test.dax --sites local --output local --dir dags
 --force --submit "
jsd jobstate.log
rundir run0005
pegasushome /data/scratch/vahi/software/install/pegasus/default
vogroup pegasus
condor_log Stampede-Test-0.log
notify Stampede-Test-0.notify
dag Stampede-Test-0.dag

Submit Directory Details

69

type dag

Pegasus static.bp File
Pegasus creates a workflow.static.bp file that links jobs in the DAG with the jobs in the DAX. The contents of the file
are in netlogger format. The purpose of this file is to be able to link an invocation record of a task to the corresponding
job in the DAX

The workflow is replaced by the name of the workflow i.e. same prefix as the .dag file

In the file there are five types of events:

• task.info

This event is used to capture information about all the tasks in the DAX(abstract workflow)

• task.edge

This event is used to capture information about the edges between the tasks in the DAX (abstract workflow)

• job.info

This event is used to capture information about the jobs in the DAG (executable workflow generated by Pegasus)

• job.edge

This event is used to capture information about edges between the jobs in the DAG (executable workflow).

• wf.map.task_job

This event is used to associate the tasks in the DAX with the corresponding jobs in the DAG.

70

Chapter 8. Monitoring, Debugging and
Statistics

Pegasus comes bundled with useful tools that help users debug workflows and generate useful statistics and plots
about their workflow runs. These tools internally parse the Condor log files and have a similar interface. With the
exception of pegasus-monitord (see below), all tools take in the submit directory as an argument. Users can invoke
the tools listed in this chapter as follows:

$ pegasus-[toolname] <path to the submit directory>

All these utilities query a database (usually a sqllite in the workflow submit directory) that is populated by the
monitoring daemon pegasus-monitord .

Overview of the Stampede Database Schema.
Pegasus takes in a DAX which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that
consists of Jobs. In case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable
workflow. When DAGMan executes a job, a job instance is populated . Job instances capture information as seen by
DAGMan. In case DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan
finds a job instance has finished , an invocation is associated with job instance. In case of clustered job, multiple
invocations will be associated with a single job instance. If a Pre script or Post Script is associated with a job instance,
then invocations are populated in the database for the corresponding job instance.

The current schema version is 4.0 that is stored in the schema_info table.

Figure 8.1. Stampede Database Schema

Stampede Schema Upgrade Tool
Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pegasus-
statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema first
using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Monitoring, Debugging and Statistics

71

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Storing of Exitcode in the database
Kickstart records capture raw status in addition to the exitcode . The exitcode is derived from the raw status. Starting
with Pegasus 4.0 release, all exitcode columns (i.e invocation and job instance table columns) are stored with the raw
status by pegasus-monitord. If an exitcode is encountered while parsing the dagman log files , the value is converted
to the corresponding raw status before it is stored. All user tools, pegasus-analyzer and pegasus-statistics then convert
the raw status to exitcode when retrieving from the database.

Monitoring, Debugging and Statistics

72

Multiplier Factor

Starting with the 4.0 release, there is a multiplier factor associated with the jobs in the job_instance table. It defaults
to one, unless the user associates a Pegasus profile key named cores with the job in the DAX. The factor can be used
for getting more accurate statistics for jobs that run on multiple processors/cores or mpi jobs.

The multiplier factor is used for computing the following metrics by pegasus statistics.

• In the summary, the workflow cumulative job walltime

• In the summary, the cumulative job walltime as seen from the submit side

• In the jobs file, the multiplier factor is listed along-with the multiplied kickstart time.

• In the breakdown file, where statistics are listed per transformation the mean, min , max and average values take
into account the multiplier factor.

Workflow Status
As the number of jobs and tasks in workflows increase, the ability to track the progress and quickly debug a workflow
becomes more and more important. Pegasus comes with a series of utilities that can be used to monitor and debug
workflows both in real-time as well as after execution is already completed.

pegasus-monitord

Pegasus-monitord is used to follow workflows, parsing the output of DAGMan's dagman.out file. In addition
to generating the jobstate.log file, which contains the various states that a job goes through during the workflow
execution, pegasus-monitord can also be used to mine information from jobs' submit and output files, and either
populate a database, or write a file with NetLogger events containing this information. Pegasus-monitord can also
send notifications to users in real-time as it parses the workflow execution logs.

Pegasus-monitord is automatically invoked by pegasus-run, and tracks workflows in real-time. By default, it
produces the jobstate.log file, and a SQLite database, which contains all the information listed in the Stampede schema.
When a workflow fails, and is re-submitted with a rescue DAG, pegasus-monitord will automatically pick up from
where it left previously and continue to write the jobstate.log file and populate the database.

If, after the workflow has already finished, users need to re-create the jobstate.log file, or re-populate the database
from scratch, pegasus-monitord's --replay option should be used when running it manually.

Populating to different backend databases

In addition to SQLite, pegasus-monitord supports other types of databases, such as MySQL and Postgres.
Users will need to install the low-level database drivers, and can use the --dest command-line option, or the
pegasus.monitord.output property to select where the logs should go.

As an example, the command:

$ pegasus-monitord -r diamond-0.dag.dagman.out

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. It will also create/use a SQLite database in the workflow's run directory, with the name
of diamond-0.stampede.db. If the database already exists, it will make sure to remove any references to the current
workflow before it populates the database. In this case, pegasus-monitord will process the workflow information
from start to finish, including any restarts that may have happened.

Users can specify an alternative database for the events, as illustrated by the following examples:

$ pegasus-monitord -r -d mysql://username:userpass@hostname/database_name diamond-0.dag.dagman.out

Monitoring, Debugging and Statistics

73

$ pegasus-monitord -r -d sqlite:////tmp/diamond-0.db diamond-0.dag.dagman.out

In the first example, pegasus-monitord will send the data to the database_name database located at server hostname,
using the username and userpass provided. In the second example, pegasus-monitord will store the data in the /
tmp/diamond-0.db SQLite database.

Note

For absolute paths four slashes are required when specifying an alternative database path in SQLite.

Users should also be aware that in all cases, with the exception of SQLite, the database should exist before pegasus-
monitord is run (as it creates all needed tables but does not create the database itself).

Finally, the following example:

$ pegasus-monitord -r --dest diamond-0.bp diamond-0.dag.dagman.out

sends events to the diamond-0.bp file. (please note that in replay mode, any data on the file will be overwritten).

One important detail is that while processing a workflow, pegasus-monitord will automatically detect if/when sub-
workflows are initiated, and will automatically track those sub-workflows as well. In this case, although pegasus-
monitord will create a separate jobstate.log file in each workflow directory, the database at the top-level workflow
will contain the information from not only the main workflow, but also from all sub-workflows.

Monitoring related files in the workflow directory

Pegasus-monitord generates a number of files in each workflow directory:

• jobstate.log: contains a summary of workflow and job execution.

• monitord.log: contains any log messages generated by pegasus-monitord. It is not overwritten when it restarts.
This file is not generated in replay mode, as all log messages from pegasus-monitord are output to the console.
Also, when sub-workflows are involved, only the top-level workflow will have this log file. Starting with release
4.0 and 3.1.1, monitord.log file is rotated if it exists already.

• monitord.started: contains a timestamp indicating when pegasus-monitord was started. This file get overwritten
every time pegasus-monitord starts.

• monitord.done: contains a timestamp indicating when pegasus-monitord finished. This file is overwritten every
time pegasus-monitord starts.

• monitord.info: contains pegasus-monitord state information, which allows it to resume processing if a workflow
does not finish properly and a rescue dag is submitted. This file is erased when pegasus-monitord is executed in
replay mode.

• monitord.recover: contains pegasus-monitord state information that allows it to detect that a previous instance
of pegasus-monitord failed (or was killed) midway through parsing a workflow's execution logs. This file is only
present while pegasus-monitord is running, as it is deleted when it ends and the monitord.info file is generated.

• monitord.subwf.db: contains information that aids pegasus-monitord to track when sub-workflows fail and are
re-planned/re-tried. It is overwritten when pegasus-monitord is started in replay mode.

• monitord-notifications.log: contains the log file for notification-related messages. Normally, this file only includes
logs for failed notifications, but can be populated with all notification information when pegasus-monitord is run
in verbose mode via the -v command-line option.

pegasus-status
To monitor the execution of the workflow run the pegasus-status command as suggested by the output of the pegasus-
run command. pegasus-status shows the current status of the Condor Q as pertaining to the master workflow from

Monitoring, Debugging and Statistics

74

the workflow directory you are pointing it to. In a second section, it will show a summary of the state of all jobs in
the workflow and all of its sub-workflows.

The details of pegasus-status are described in its respective manual page. There are many options to help you
gather the most out of this tool, including a watch-mode to repeatedly draw information, various modes to add more
information, and legends if you are new to it, or need to present it.

$ pegasus-status /Workflow/dags/directory
STAT IN_STATE JOB
Run 05:08 level-3-0
Run 04:32 |-sleep_ID000005
Run 04:27 _subdax_level-2_ID000004
Run 03:51 |-sleep_ID000003
Run 03:46 _subdax_level-1_ID000002
Run 03:10 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 6 0 3 0 33.3
Summary: 3 DAGs total (Running:3)

Without the -l option, the only a summary of the workflow statistics is shown under the current queue status. However,
with the -l option, it will show each sub-workflow separately:

$ pegasus-status -l /Workflow/dags/directory
STAT IN_STATE JOB
Run 07:01 level-3-0
Run 06:25 |-sleep_ID000005
Run 06:20 _subdax_level-2_ID000004
Run 05:44 |-sleep_ID000003
Run 05:39 _subdax_level-1_ID000002
Run 05:03 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 1 0 1 0 50.0 Running level-2_ID000004/level-1_ID000002/
level-1-0.dag
 0 0 0 2 0 1 0 33.3 Running level-2_ID000004/level-2-0.dag
 0 0 0 3 0 1 0 25.0 Running *level-3-0.dag
 0 0 0 6 0 3 0 33.3 TOTALS (9 jobs)
Summary: 3 DAGs total (Running:3)

The following output shows a successful workflow of workflow summary after it has finished.

$ pegasus-status work/2011080514
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 0 0 7,137 0 100.0
Summary: 44 DAGs total (Success:44)

Warning

For large workflows with many jobs, please note that pegasus-status will take time to compile state from all
workflow files. This typically affects the initial run, and sub-sequent runs are faster due to the file system's
buffer cache. However, on a low-RAM machine, thrashing is a possibility.

The following output show a failed workflow after no more jobs from it exist. Please note how no active jobs are
shown, and the failure status of the total workflow.

$ pegasus-status work/submit
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 20 0 0 0 0 0 2 0.0
Summary: 1 DAG total (Failure:1)

pegasus-analyzer
Pegasus-analyzer is a command-line utility for parsing several files in the workflow directory and summarizing useful
information to the user. It should be used after the workflow has already finished execution. pegasus-analyzer quickly
goes through the jobstate.log file, and isolates jobs that did not complete successfully. It then parses their submit,

Monitoring, Debugging and Statistics

75

and kickstart output files, printing to the user detailed information for helping the user debug what happened to his/
her workflow.

The simplest way to invoke pegasus-analyzer is to simply give it a workflow run directory, like in the example below:

$ pegasus-analyzer /home/user/run0004
pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 26 (100.00%)
 # jobs succeeded : 25 (96.15%)
 # jobs failed : 1 (3.84%)
 # jobs unsubmitted : 0 (0.00%)

******************************Failed jobs' details******************************

============================register_viz_glidein_7_0============================

 last state: POST_SCRIPT_FAILURE
 site: local
submit file: /home/user/run0004/register_viz_glidein_7_0.sub
output file: /home/user/run0004/register_viz_glidein_7_0.out.002
 error file: /home/user/run0004/register_viz_glidein_7_0.err.002

-------------------------------Task #1 - Summary--------------------------------

site : local
executable : /lfs1/software/install/pegasus/default/bin/rc-client
arguments : -Dpegasus.user.properties=/lfs1/work/pegasus/run0004/pegasus.15181.properties \
-Dpegasus.catalog.replica.url=rlsn://smarty.isi.edu --insert register_viz_glidein_7_0.in
exitcode : 1
working dir : /lfs1/work/pegasus/run0004

---------Task #1 - pegasus::rc-client - pegasus::rc-client:1.0 - stdout---------

2009-02-20 16:25:13.467 ERROR [root] You need to specify the pegasus.catalog.replica property
2009-02-20 16:25:13.468 WARN [root] non-zero exit-code 1

In the case above, pegasus-analyzer's output contains a brief summary section, showing how many jobs have succeeded
and how many have failed. After that, pegasus-analyzer will print information about each job that failed, showing its
last known state, along with the location of its submit, output, and error files. pegasus-analyzer will also display any
stdout and stderr from the job, as recorded in its kickstart record. Please consult pegasus-analyzer's man page for more
examples and a detailed description of its various command-line options.

Note

Starting with 4.0 release, by default pegasus analyzer queries the database to debug the workflow. If you
want it to use files in the submit directory , use the --files option.

pegasus-remove
If you want to abort your workflow for any reason you can use the pegasus-remove command listed in the output of
pegasus-run invocation or by specifying the Dag directory for the workflow you want to terminate.

$ pegasus-remove /PATH/To/WORKFLOW DIRECTORY

Resubmitting failed workflows
Pegasus will remove the DAGMan and all the jobs related to the DAGMan from the condor queue. A rescue DAG
will be generated in case you want to resubmit the same workflow and continue execution from where it last stopped.
A rescue DAG only skips jobs that have completely finished. It does not continue a partially running job unless the
executable supports checkpointing.

To resubmit an aborted or failed workflow with the same submit files and rescue Dag just rerun the pegasus-run
command

$ pegasus-run /Path/To/Workflow/Directory

Monitoring, Debugging and Statistics

76

Plotting and Statistics
Pegasus plotting and statistics tools queries the Stampede database created by pegasus-monitord for generating the
output.The stampede scheme can be found here.

The statistics and plotting tools use the following terminology for defining tasks, jobs etc. Pegasus takes in a DAX
which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that consists of Jobs. In
case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable workflow. When
DAGMan executes a job, a job instance is populated . Job instances capture information as seen by DAGMan. In case
DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan finds a job instance has
finished , an invocation is associated with job instance. In case of clustered job, multiple invocations will be associated
with a single job instance. If a Pre script or Post Script is associated with a job instance, then invocations are populated
in the database for the corresponding job instance.

pegasus-statistics
Pegasus-statistics generates workflow execution statistics. To generate statistics run the command as shown below.

$ pegasus-statistics /scratch/grid-setup/run0001/ -s all

...

** SUMMARY **
...

Type Succeeded Failed Incomplete Total Retries Total Run (Retries Included)
Tasks 8 0 0 8 || 0 8
Jobs 27 0 0 27 || 0 27
Sub Workflows 2 0 0 2 || 0 2

Workflow wall time : 21 mins, 9 secs, (total 1269 seconds)

Workflow cumulative job wall time : 8 mins, 4 secs, (total 484 seconds)

Cumulative job walltime as seen from submit side : 8 mins, 0 secs, (total 480 seconds)

Workflow execution statistics : /scratch/grid-setup/run0001/statistics/workflow.txt

Job instance statistics : /scratch/grid-setup/run0001/statistics/jobs.txt

Transformation statistics : /scratch/grid-setup/run0001/statistics/breakdown.txt

Time statistics : /scratch/grid-setup/run0001/statistics/time.txt

**

By default the output gets generated to a statistics folder inside the submit directory. The output that is generated by
pegasus-statistics is based on the value set for command line option 's'(statistics_level). In the sample run the command
line option 's' is set to 'all' to generate all the statistics information for the workflow run. Please consult the pegasus-
statistics man page to find a detailed description of various command line options.

Note

In case of hierarchal workflows, the metrics that are displayed on stdout take into account all the jobs/tasks/
sub workflows that make up the workflow by recursively iterating through each sub workflow.

pegasus-statistics summary which is printed on the stdout contains the following information.

• Workflow summary - Summary of the workflow execution. In case of hierarchical workflow the calculation shows
the statistics across all the sub workflows.It shows the following statistics about tasks, jobs and sub workflows.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

Monitoring, Debugging and Statistics

77

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all
the jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total'
count and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of
total retries, succeeded and failed count.

• Workflow wall time - The walltime from the start of the workflow execution to the end as reported by the
DAGMAN.In case of rescue dag the value is the cumulative of all retries.

• Workflow cummulate job wall time - The sum of the walltime of all jobs as reported by kickstart. In case of
job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG and
SUBDAX jobs), the walltime value includes jobs from the sub workflows as well. This value is multiplied by the
multiplier_factor in the job instance table.

• Cumulative job walltime as seen from submit side - The sum of the walltime of all jobs as reported by DAGMan.
This is similar to the regular cumulative job walltime, but includes job management overhead and delays. In case
of job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG
and SUBDAX jobs), the walltime value includes jobs from the sub workflows. This value is multiplied by the
multiplier_factor in the job instance table.

pegasus-statistics generates the following statistics files based on the command line options set.

Workflow statistics file per workflow [workflow.txt]

Workflow statistics file per workflow contains the following information about each workflow run. In case of
hierarchal workflows, the file contains a table for each sub workflow. The file also contains a 'Total' table at the bottom
which is the cumulative of all the individual statistics details.

A sample table is shown below. It shows the following statistics about tasks, jobs and sub workflows.

• Workflow retries - number of times a workflow was retried.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all the
jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total' count
and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of total
retries, succeeded and failed count.

Table 8.1. Workflow Statistics

Type Succeeded Failed Incomplete Total Retries Total Run Workflow
Retries

2a6df11b-9972-4ba0-
b4ba-4fd39c357af4

 0

 Tasks 4 0 0 4 0 4

 Jobs 13 0 0 13 0 13

Monitoring, Debugging and Statistics

78

Type Succeeded Failed Incomplete Total Retries Total Run Workflow
Retries

 Sub
Workflows

0 0 0 0 0 0

Job statistics file per workflow [jobs.txt]

Job statistics file per workflow contains the following details about the job instances in each workflow. A sample
file is shown below.

• Job - the name of the job instance

• Try - the number representing the job instance run count.

• Site - the site where the job instance ran.

• Kickstart(sec.) - the actual duration of the job instance in seconds on the remote compute node.

• Mult - multiplier factor from the job instance table for the job.

• Kickstart_Mult - value of the Kickstart column multiplied by Mult.

• CPU-Time - remote CPU time computed as the stime + utime (when Kickstart is not used, this is empty).

• Post(sec.) - the postscript time as reported by DAGMan.

• CondorQTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It is an estimate
of the time spent in the condor q on the submit node .

• Resource(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job instance spent in the remote queue .

• Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . Is always >=kickstart .

• Seqexec(sec.) - the time taken for the completion of a clustered job instance .

• Seqexec-Delay(sec.) - the time difference between the time for the completion of a clustered job instance and sum
of all the individual tasks kickstart time .

Table 8.2. Job statistics

Job Try Site Kickstart MultKickstart_MultCPU-
Time

PostCondorQTimeResourceRuntimeSeqexecSeqexec-
Delay

analyze_ID00000041 local 60.002 1 60.002 59.843 5.0 0.0 - 62.0 - -

create_dir_diamond_0_local1 local 0.027 1 0.027 0.003 5.0 5.0 - 0.0 - -

findrange_ID00000021 local 60.001 10 600.01 59.921 5.0 0.0 - 60.0 - -

findrange_ID00000031 local 60.002 10 600.02 59.912 5.0 10.0 - 61.0 - -

preprocess_ID00000011 local 60.002 1 60.002 59.898 5.0 5.0 - 60.0 - -

register_local_1_01 local 0.459 1 0.459 0.432 6.0 5.0 - 0.0 - -

register_local_1_11 local 0.338 1 0.338 0.331 5.0 5.0 - 0.0 - -

register_local_2_01 local 0.348 1 0.348 0.342 5.0 5.0 - 0.0 - -

stage_in_local_local_01 local 0.39 1 0.39 0.032 5.0 5.0 - 0.0 - -

stage_out_local_local_0_01 local 0.165 1 0.165 0.108 5.0 10.0 - 0.0 - -

stage_out_local_local_1_01 local 0.147 1 0.147 0.098 7.0 5.0 - 0.0 - -

stage_out_local_local_1_11 local 0.139 1 0.139 0.089 5.0 6.0 - 0.0 - -

Monitoring, Debugging and Statistics

79

Job Try Site Kickstart MultKickstart_MultCPU-
Time

PostCondorQTimeResourceRuntimeSeqexecSeqexec-
Delay

stage_out_local_local_2_01 local 0.145 1 0.145 0.101 5.0 5.0 - 0.0 - -

Transformation statistics file per workflow [breakdown.txt]

Transformation statistics file per workflow contains information about the invocations in each workflow grouped by
transformation name. A sample file is shown below.

• Transformation - name of the transformation.

• Count - the number of times invocations with a given transformation name was executed.

• Succeeded - the count of succeeded invocations with a given logical transformation name .

• Failed - the count of failed invocations with a given logical transformation name .

• Min (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multipler_factor.

• Max (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multiplier_factor.

• Mean (sec.) - the mean of the invocation runtimes with a given logical transformation name times the
multiplier_factor.

• Total (sec.) - the cumulative of runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Table 8.3. Transformation Statistics

Transformation Count Succeeded Failed Min Max Mean Total

dagman::post 13 13 0 5.0 7.0 5.231 68.0

diamond::analyze 1 1 0 60.002 60.002 60.002 60.002

diamond::findrange 2 2 0 600.01 600.02 600.02 1200.03

diamond::preprocess 1 1 0 60.002 60.002 60.002 60.002

pegasus::dirmanager 1 1 0 0.027 0.027 0.027 0.027

pegasus::pegasus-
transfer

5 5 0 0.139 0.39 0.197 0.986

pegasus::rc-
client

3 3 0 0.338 0.459 0.382 1.145

Time statistics file [time.txt]

Time statistics file contains job instance and invocation statistics information grouped by time and host. The time
grouping can be on day/hour. The file contains the following tables Job instance statistics per day/hour, Invocation
statistics per day/hour, Job instance statistics by host per day/hour and Invocation by host per day/hour. A sample
Invocation statistics by host per day table is shown below.

• Job instance statistics per day/hour - the number of job instances run, total runtime sorted by day/hour.

• Invocation statistics per day/hour - the number of invocations , total runtime sorted by day/hour.

• Job instance statistics by host per day/hour - the number of job instances run, total runtime on each host sorted
by day/hour.

• Invocation statistics by host per day/hour - the number of invocations , total runtime on each host sorted by
day/hour.

Monitoring, Debugging and Statistics

80

Table 8.4. Invocation statistics by host per day

Date [YYYY-MM-DD] Host Count Runtime (Sec.)

2011-07-15 butterfly.isi.edu 54 625.094

pegasus-plots
Pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ pegasus-plots -p all /scratch/grid-setup/run0001/

...

** SUMMARY **

Graphs and charts generated by pegasus-plots can be viewed by opening the generated html file in the
 web browser :
/scratch/grid-setup/run0001/plots/index.html

**

By default the output gets generated to plots folder inside the submit directory. The output that is generated by pegasus-
plots is based on the value set for command line option 'p'(plotting_level).In the sample run the command line option
'p' is set to 'all' to generate all the charts and graphs for the workflow run. Please consult the pegasus-plots man page to
find a detailed description of various command line options.pegasus-plots generates an index.html file which provides
links to all the generated charts and plots. A sample index.html page is show below.

Figure 8.2. pegasus-plot index page

pegasus-plots generates the following plots and charts.

Monitoring, Debugging and Statistics

81

Dax Graph

Graph representation of the DAX file. A sample page is shown below.

Figure 8.3. DAX Graph

Dag Graph

Monitoring, Debugging and Statistics

82

Graph representation of the DAG file. A sample page is shown below.

Figure 8.4. DAG Graph

Gantt workflow execution chart

Gantt chart of the workflow execution run. A sample page is shown below.

Monitoring, Debugging and Statistics

83

Figure 8.5. Gantt Chart

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide job name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Host over time chart

Host over time chart of the workflow execution run. A sample page is shown below.

Monitoring, Debugging and Statistics

84

Figure 8.6. Host over time chart

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide host name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Time chart

Time chart shows job instance/invocation count and runtime of the workflow run over time. A sample page is shown
below.

Monitoring, Debugging and Statistics

85

Figure 8.7. Time chart

The toolbar at the top provides zoom in/out and pan left/right/top/bottom functionality. The toolbar at the bottom can
be used to switch between job instances/ invocations and day/hour filtering.

Monitoring, Debugging and Statistics

86

Breakdown chart

Breakdown chart shows invocation count and runtime of the workflow run grouped by transformation name. A sample
page is shown below.

Figure 8.8. Breakdown chart

Monitoring, Debugging and Statistics

87

The toolbar at the bottom can be used to switch between invocation count and runtime filtering. Legends can be clicked
to get more details.

88

Chapter 9. Example Workflows
These examples are included in the Pegasus distribution and can be found under share/pegasus/examples in
your Pegasus install (/usr/share/pegasus/examples for native packages)

Grid Examples
These examples assumes you have access to a cluster with Globus installed. A pre-ws gatekeeper and gridftp server is
required. You also need Globus and Pegasus installed, both on the machine you are submitting from, and the cluster.

Black Diamond

Pegasus is shipped with 3 different Black Diamond examples for the grid. This is to highlight the available DAX APIs
which are Java, Perl and Python. The examples can be found under:

share/pegasus/examples/grid-blackdiamond-java/
share/pegasus/examples/grid-blackdiamond-perl/
share/pegasus/examples/grid-blackdiamond-python/

The workflow has 4 nodes, layed out in a diamond shape, with files being passed between them (f.*):

Example Workflows

89

The binary for the nodes is a simple "mock application" name keg ("canonical example for the grid") which reads
input files designated by arguments, writes them back onto output files, and produces on STDOUT a summary of
where and when it was run. Keg ships with Pegasus in the bin directory.

This example ships with a "submit" script which will build the replica catalog, the transformation catalog, and the
site catalog. When you create your own workflows, such a submit script is not needed if you want to maintain those
catalogs manually.

Note

The use of ./submit scripts in these examples are just to make it more easy to run the examples out of the
box. For a production site, the catalogs (transformation, replica, site) may or may not be static or generated
by other tooling.

To test the examples, edit the submit script and change the cluster config to the setup and install locations for your
cluster. Then run:

Example Workflows

90

$./submit

The workflow should now be submitted and in the output you should see a work dir location for the instance. With
that directory you can monitor the workflow with:

$ pegasus-status [workdir]

Once the workflow is done, you can make sure it was sucessful with:

$ pegasus-analyzer -d [workdir]

NASA/IPAC Montage
This example can be found under

share/pegasus/examples/grid-montage/

The NASA IPAC Montage (http://montage.ipac.caltech.edu/) workflow projects/montages a set of input images
from telescopes like Hubble and end up with images like http://montage.ipac.caltech.edu/images/m104.jpg . The test
workflow is for a 1 by 1 degrees tile. It has about 45 input images which all have to be projected, background modeled
and adjusted to come out as one seamless image.

Just like the Black Diamond above, this example uses a ./submit script.

The Montage DAX is generated with a tool called mDAG shipped with Montage which generates the workflow.

Rosetta
This example can be found under

share/pegasus/examples/grid-rosetta/

Rosetta (http://www.rosettacommons.org/) is a high resolution protein prediction and design software. Highlights in
this example are:

• Using the Pegasus Java API to generate the DAX

• The DAX generator loops over the input PDBs and creates a job for each input

• The jobs all have a dependency on a flatfile database. For simplicity, each job depends on all the files in the database
directory.

• Job clustering is turned on to make each grid job run longer and better utilize the compute cluster

Just like the Black Diamond above, this example uses a ./submit script.

Condor Examples

Black Diamond - condorio
There are a set of Condor examples available, highlighting different data staging configurations.The most basic one
is condorio, and the example can be found under:

share/pegasus/examples/condor-blackdiamond-condorio/

This example is using the same abstract workflow as the Black Diamond grid example above, and can be executed
either on the submit machine (universe="local") or on a local Condor pool (universe="vanilla").

You can run this example with the ./submit script. Example:

$./submit

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/images/m104.jpg
http://www.rosettacommons.org/

Example Workflows

91

Local Shell Examples

Black Diamond
To aid in workflow development and debugging, Pegasus can now map a workflow to a local shell script. One
advantage is that you do not need a remote compute resource.

This example is using the same abstract workflow as the Black Diamond grid example above. The difference is that
a property is set in pegasusrc to force shell execution:

tell pegasus to generate shell version of
the workflow
pegasus.code.generator = Shell

You can run this example with the ./submit script.

Notifications Example
A new feature in Pegasus 3.1. is notifications. While the workflow is running, a monitoring tool is running side by
side to the workflow, and issues user defined notifications when certain events takes place, such as job completion or
failure. See notifications section for detailed information. A workflow example with notifications can be found under
examples/notifications. This workflow is based on the Black Diamond, with the changes being notifications added to
the DAX generator. For example, notifications are added at the workflow level:

Create a abstract dag
diamond = ADAG("diamond")
dax level notifications
diamond.invoke('all', os.getcwd() + "/my-notify.sh")

The DAX generator also contains job level notifications:

job level notifications - in this case for at_end events
frr.invoke('at_end', os.getcwd() + "/my-notify.sh")

These invoke lines specify that the my-notify.sh script will be invoked for events generated (all in the first case,
at_end in the second). The my-notify.sh script contains callouts sample notification tools shipped with Pegasus, one
for email and for Jabber/GTalk (commented out by default):

#!/bin/bash

Pegasus ships with a couple of basic notification tools. Below
we show how to notify via email and gtalk.

all notifications will be sent to email
change $USER to your full email addess
$PEGASUS_HOME/libexec/notification/email -t $USER

this sends notifications about failed jobs to gtalk.
note that you can also set which events to trigger on in your DAX.
set jabberid to your gmail address, and put in yout
password
uncomment to enable
if ["x$PEGASUS_STATUS" != "x" -a "$PEGASUS_STATUS" != "0"]; then
 $PEGASUS_HOME/libexec/notification/jabber --jabberid FIXME@gmail.com \
 --password FIXME \
 --host talk.google.com
fi

Workflow of Workflows

Galactic Plane
The Galactic Plane [http://en.wikipedia.org/wiki/Galactic_plane] workflow is a workflow of many Montage
workflows. The output is a set of tiles which can be used in software which takes the tiles and produces a seamless

http://en.wikipedia.org/wiki/Galactic_plane
http://en.wikipedia.org/wiki/Galactic_plane

Example Workflows

92

image which can be scrolled and zoomed into. As this is more of a production workflow than an example one, it can
be a little bit harder to get running in your environment.

Highlights of the example are:

• The subworkflow DAXes are generated as jobs in the parent workflow - this is an example on how to make more
dynamic workflows. For example, if you need a job in your workflow to determine the number of jobs in the next
level, you can have the first job create a subworkflow with the right number of jobs.

• DAGMan job categories are used to limit the number of concurrant jobs in certain places. This is used to limit the
number of concurrant connections to the data find service, as well limit the number of concurrant subworkflows
to manage disk usage on the compute cluster.

• Job priorities are used to make sure we overlap staging and computation. Pegasus sets default priorities, which for
most jobs are fine, but the priority of the data find job is set explicitly to a higher priority.

• A specific output site is defined the the site catalog and specified with the --output option of subworkflows.

The DAX API has support for sub workflows:

 remote_tile_setup = Job(namespace="gp", name="remote_tile_setup", version="1.0")
 remote_tile_setup.addArguments("%05d" % (tile_id))
 remote_tile_setup.addProfile(Profile("dagman", "CATEGORY", "remote_tile_setup"))
 remote_tile_setup.uses(params, link=Link.INPUT, register=False)
 remote_tile_setup.uses(mdagtar, link=Link.OUTPUT, register=False, transfer=True)
 uberdax.addJob(remote_tile_setup)
...
 subwf = DAX("%05d.dax" % (tile_id), "ID%05d" % (tile_id))
 subwf.addArguments("-Dpegasus.schema.dax=%s/etc/dax-2.1.xsd" %(os.environ["PEGASUS_HOME"]),
 "-Dpegasus.catalog.replica.file=%s/rc.data" % (tile_work_dir),
 "-Dpegasus.catalog.site.file=%s/sites.xml" % (work_dir),
 "-Dpegasus.transfer.links=true",
 "--sites", cluster_name,
 "--cluster", "horizontal",
 "--basename", "tile-%05d" % (tile_id),
 "--force",
 "--output", output_name)
 subwf.addProfile(Profile("dagman", "CATEGORY", "subworkflow"))
 subwf.uses(subdax_file, link=Link.INPUT, register=False)
 uberdax.addDAX(subwf)

93

Chapter 10. Reference Manual
Properties

This is the reference guide to all properties regarding the Pegasus Workflow Planner, and their respective default
values. Please refer to the user guide for a discussion when and which properties to use to configure various
components. Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site XML3
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml3

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home

Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

Reference Manual

94

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Local Directories

This section describes the GNU directory structure conventions. GNU distinguishes between architecture independent
and thus sharable directories, and directories with data specific to a platform, and thus often local. It also distinguishes
between frequently modified data and rarely changing data. These two axis form a space of four distinct directories.

pegasus.home.datadir

Systems: all

Type: directory location string

Default: ${pegasus.home}/share

The datadir directory contains broadly visiable and possilby exported configuration files that rarely change. This
directory is currently unused.

pegasus.home.sysconfdir

Systems: all

Type: directory location string

Default: ${pegasus.home}/etc

The system configuration directory contains configuration files that are specific to the machine or installation, and
that rarely change. This is the directory where the XML schema definition copies are stored, and where the base pool
configuration file is stored.

pegasus.home.sharedstatedir

Systems: all

Type: directory location string

Default: ${pegasus.home}/com

Frequently changing files that are broadly visible are stored in the shared state directory. This is currently unused.

pegasus.home.localstatedir

Systems: all

Type: directory location string

Default: ${pegasus.home}/var

Frequently changing files that are specific to a machine and/or installation are stored in the local state directory. This
directory is being used for the textual transformation catalog, and the file-based replica catalog.

pegasus.dir.submit.logs

System: Pegasus

Since: 2.4

Reference Manual

95

Type: directory location string

Default: false

By default, Pegasus points the condor logs for the workflow to /tmp directory. This is done to ensure that the logs
are created in a local directory even though the submit directory maybe on NFS. In the submit directory the symbolic
link to the appropriate log file in the /tmp exists.

However, since /tmp is automatically purged in most cases, users may want to preserve their condor logs in a directory
on the local filesystem other than /tmp

Site Directories
The site directory properties modify the behavior of remotely run jobs. In rare occasions, it may also pertain to locally
run compute jobs.

pegasus.dir.useTimestamp

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

While creating the submit directory, Pegasus employs a run numbering scheme. Users can use this property to use a
timestamp based numbering scheme instead of the runxxxx scheme.

pegasus.dir.exec

System: Pegasus

Since: 2.0

Type: remote directory location string

Default: (no default)

This property modifies the remote location work directory in which all your jobs will run. If the path is relative then
it is appended to the work directory (associated with the site), as specified in the site catalog. If the path is absolute
then it overrides the work directory specified in the site catalog.

pegasus.dir.storage

System: Pegasus

Since: 2.0

Type: remote directory location string

Default: (no default)

This property modifies the remote storage location on various pools. If the path is relative then it is appended to the
storage mount point specified in the pool.config file. If the path is absolute then it overrides the storage mount point
specified in the pool config file.

pegasus.dir.storage.deep

System: Pegasus

Reference Manual

96

Since: 2.1

Type: Boolean

Default: false

See Also: pegasus.dir.storage

See Also: pegasus.dir.useTimestamp

This property results in the creation of a deep directory structure on the output site, while populating the results. The
base directory on the remote end is determined from the site catalog and the property pegasus.dir.storage.

To this base directory, the relative submit directory structure ($user/$vogroup/$label/runxxxx) is appended.

$storage = $base + $relative_submit_directory

Depending on the number of files being staged to the remote site a Hashed File Structure is created that ensures that
only 256 files reside in one directory.

To create this directory structure on the storage site, Pegasus relies on the directory creation feature of the Grid FTP
server, which appeared in globus 4.0.x

pegasus.dir.create.strategy

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: HourGlass

Value[1]: Tentacles

Default: Tentacles

If the

--randomdir

option is given to the Planner at runtime, the Pegasus planner adds nodes that create the random directories at the
remote pool sites, before any jobs are actually run. The two modes determine the placement of these nodes and their
dependencies to the rest of the graph.

HourGlass It adds a make directory node at the top level of the graph, and all these concat to a single dummy job
before branching out to the root nodes of the original/ concrete dag so far. So we introduce a classic
X shape at the top of the graph. Hence the name HourGlass.

Tentacles This option places the jobs creating directories at the top of the graph. However instead of constricting
it to an hour glass shape, this mode links the top node to all the relevant nodes for which the create
dir job is necessary. It looks as if the node spreads its tentacleas all around. This puts more load on
the DAGMan because of the added dependencies but removes the restriction of the plan progressing
only when all the create directory jobs have progressed on the remote pools, as is the case in the
HourGlass model.

pegasus.dir.create.impl

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: DefaultImplementation

Value[1]: S3

Reference Manual

97

Default: DefaultImpelmentation

This property is used to select the executable that is used to create the working directory on the compute sites.

DefaultImplementation The default executable that is used to create a directory is the dirmanager executable
shipped with Pegasus. It is found at $PEGASUS_HOME/bin/dirmanager in the
pegasus distribution. An entry for transformation pegasus::dirmanager needs to
exist in the Transformation Catalog or the PEGASUS_HOME environment variable
should be specified in the site catalog for the sites for this mode to work.

S3 This option is used to create buckets in S3 instead of a directory. This should
be set when running workflows on Amazon EC2. This implementation relies on
s3cmd command line client to create the bucket. An entry for transformation
amazon::s3cmd needs to exist in the Transformation Catalog for this to work.

Schema File Location Properties
This section defines the location of XML schema files that are used to parse the various XML document instances in
the PEGASUS. The schema backups in the installed file-system permit PEGASUS operations without being online.

pegasus.schema.dax

Systems: Pegasus

Since: 2.0

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/dax-3.2.xsd

Default: ${pegasus.home.sysconfdir}/dax-3.2.xsd

This file is a copy of the XML schema that describes abstract DAG files that are the result of the abstract planning
process, and input into any concrete planning. Providing a copy of the schema enables the parser to use the local copy
instead of reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.sc

Systems: Pegasus

Since: 2.0

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/sc-3.0.xsd

Default: ${pegasus.home.sysconfdir}/sc-3.0.xsd

This file is a copy of the XML schema that describes the xml description of the site catalog, that is generated as a result
of using genpoolconfig command. Providing a copy of the schema enables the parser to use the local copy instead of
reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.ivr

Systems: all

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/iv-2.0.xsd

Default: ${pegasus.home.sysconfdir}/iv-2.0.xsd

Reference Manual

98

This file is a copy of the XML schema that describes invocation record files that are the result of the a grid launch in
a remote or local site. Providing a copy of the schema enables the parser to use the local copy instead of reaching out
to the internet, and obtaining the latest version from the GriPhyN website dynamically.

Database Drivers For All Relational Catalogs

pegasus.catalog.*.db.driver

System: Pegasus

Type: Java class name

Value[0]: Postgres

Value[1]: MySQL

Value[2]: SQLServer2000 (not yet implemented!)

Value[3]: Oracle (not yet implemented!)

Default: (no default)

See also: pegasus.catalog.provenance

The database driver class is dynamically loaded, as required by the schema. Currently, only PostGreSQL 7.3 and
MySQL 4.0 are supported. Their respective JDBC3 driver is provided as part and parcel of the PEGASUS.

A user may provide their own implementation, derived from org.griphyn.vdl.dbdriver.DatabaseDriver, to talk to a
database of their choice.

For each schema in PTC, a driver is instantiated separately, which has the same prefix as the schema. This may result
in multiple connections to the database backend. As fallback, the schema "*" driver is attempted.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.url

System: PTC, ...

Type: JDBC database URI string

Default: (no default)

Example: jdbc:postgresql:${user.name}

Each database has its own string to contact the database on a given host, port, and database. Although most driver URLs
allow to pass arbitrary arguments, please use the pegasus.catalog.[catalog-name].db.* keys or pegasus.catalog.*.db.*
to preload these arguments. THE URL IS A MANDATORY PROPERTY FOR ANY DBMS BACKEND.

Postgres : jdbc:postgresql:[//hostname[:port]/]database
MySQL : jdbc:mysql://hostname[:port]]/database
SQLServer: jdbc:microsoft:sqlserver://hostname:port
Oracle : jdbc:oracle:thin:[user/password]@//host[:port]/service

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

Reference Manual

99

pegasus.catalog.*.db.user

System: PTC, ...

Type: string

Default: (no default)

Example: ${user.name}

In order to access a database, you must provide the name of your account on the DBMS. This property is database-
independent. THIS IS A MANDATORY PROPERTY FOR MANY DBMS BACKENDS.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.password

System: PTC, ...

Type: string

Default: (no default)

Example: ${user.name}

In order to access a database, you must provide an optional password of your account on the DBMS. This property
is database-independent. THIS IS A MANDATORY PROPERTY, IF YOUR DBMS BACKEND ACCOUNT
REQUIRES A PASSWORD.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.*

System: PTC, RC

Each database has a multitude of options to control in fine detail the further behaviour. You may want to check the
JDBC3 documentation of the JDBC driver for your database for details. The keys will be passed as part of the connect
properties by stripping the "pegasus.catalog.[catalog-name].db." prefix from them. The catalog-name can be replaced
by the following values provenance for Provenance Catalog (PTC), replica for Replica Catalog (RC)

Postgres 7.3 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.PGHOST
pegasus.catalog.*.db.PGPORT
pegasus.catalog.*.db.charSet
pegasus.catalog.*.db.compatible

MySQL 4.0 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.databaseName

Reference Manual

100

pegasus.catalog.*.db.serverName
pegasus.catalog.*.db.portNumber
pegasus.catalog.*.db.socketFactory
pegasus.catalog.*.db.strictUpdates
pegasus.catalog.*.db.ignoreNonTxTables
pegasus.catalog.*.db.secondsBeforeRetryMaster
pegasus.catalog.*.db.queriesBeforeRetryMaster
pegasus.catalog.*.db.allowLoadLocalInfile
pegasus.catalog.*.db.continueBatchOnError
pegasus.catalog.*.db.pedantic
pegasus.catalog.*.db.useStreamLengthsInPrepStmts
pegasus.catalog.*.db.useTimezone
pegasus.catalog.*.db.relaxAutoCommit
pegasus.catalog.*.db.paranoid
pegasus.catalog.*.db.autoReconnect
pegasus.catalog.*.db.capitalizeTypeNames
pegasus.catalog.*.db.ultraDevHack
pegasus.catalog.*.db.strictFloatingPoint
pegasus.catalog.*.db.useSSL
pegasus.catalog.*.db.useCompression
pegasus.catalog.*.db.socketTimeout
pegasus.catalog.*.db.maxReconnects
pegasus.catalog.*.db.initialTimeout
pegasus.catalog.*.db.maxRows
pegasus.catalog.*.db.useHostsInPrivileges
pegasus.catalog.*.db.interactiveClient
pegasus.catalog.*.db.useUnicode
pegasus.catalog.*.db.characterEncoding

MS SQL Server 2000 support the following properties (keys are case-insensitive, e.g. both "user" and "User" are valid):

pegasus.catalog.*.db.User
pegasus.catalog.*.db.Password
pegasus.catalog.*.db.DatabaseName
pegasus.catalog.*.db.ServerName
pegasus.catalog.*.db.HostProcess
pegasus.catalog.*.db.NetAddress
pegasus.catalog.*.db.PortNumber
pegasus.catalog.*.db.ProgramName
pegasus.catalog.*.db.SendStringParametersAsUnicode
pegasus.catalog.*.db.SelectMethod

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: RLS

Value[1]: LRC

Value[2]: JDBCRC

Value[3]: File

Value[4]: MRC

Reference Manual

101

Default: RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. There is an index
service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC) report. Each
LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central RLI to discover in
which LRC's the mappings for a LFN reside. It then queries the individual LRC's for the PFN's. To use
RLS, the user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the
RLI to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

LRC If the user does not want to query the RLI, but directly a single Local Replica Catalog. To use LRC, the
user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the LRC to
query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

JDBCRC In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. The sql schema's
for this catalog can be found at $PEGASUS_HOME/sql directory. To use JDBCRC, the user additionally
needs to set the following properties

1. pegasus.catalog.replica.db.url

2. pegasus.catalog.replica.db.user

3. pegasus.catalog.replica.db.password

File In this mode, Pegasus queries a file based replica catalog. It is neither transactionally safe, nor advised to
use for production purposes in any way. Multiple concurrent instances will clobber each other!. The site
attribute should be specified whenever possible. The attribute key for the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality sign,
it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be in quoted. The LFN sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to specify pegasus.catalog.replica.file property to specify the path
to the file based RC.

MRC In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any
legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies
the following properties.

pegasus.catalog.replica.mrc.[value] specifies the type of replica catalog.
pegasus.catalog.replica.mrc.[value].key specifies a property name key for a
particular catalog

For example, if a user wants to query two lrc's at the same time he/she can specify as follows

pegasus.catalog.replica.mrc.lrc1 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://sukhna
pegasus.catalog.replica.mrc.lrc2 LRC

Reference Manual

102

pegasus.catalog.replica.mrc.lrc2.url rls://smarty

In the above example, lrc1, lrc2 are any valid identifier names and url is the property key that needed to
be specified.

pegasus.catalog.replica.url

System: Pegasus

Since: 2.0

Type: URI string

Default: (no default)

When using the modern RLS replica catalog, the URI to the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

pegasus.catalog.replica.chunk.size

System: Pegasus, rc-client

Since: 2.0

Type: Integer

Default: 1000

The rc-client takes in an input file containing the mappings upon which to work. This property determines, the number
of lines that are read in at a time, and worked upon at together. This allows the various operations like insert, delete
happen in bulk if the underlying replica implementation supports it.

pegasus.catalog.replica.lrc.ignore

System: Replica Catalog - RLS

Since: 2.0

Type: comma separated list of LRC urls

Default: (no default)

See also: pegasus.catalog.replica.lrc.restrict

Certain users may like to skip some LRCs while querying for the physical locations of a file. If some LRCs need to
be skipped from those found in the rli then use this property. You can define either the full URL or partial domain
names that need to be skipped. E.g. If a user wants rls://smarty.isi.edu and all LRCs on usc.edu to be skipped then the
property will be set as pegasus.rls.lrc.ignore=rls://smarty.isi.edu,usc.edu

pegasus.catalog.replica.lrc.restrict

System: Replica Catalog - RLS

Since: 1.3.9

Type: comma separated list of LRC urls

Default: (no default)

See also: pegasus.catalog.replica.lrc.ignore

This property applies a tighter restriction on the results returned from the LRCs specified. Only those PFNs are
returned that have a pool attribute associated with them. The property "pegasus.rc.lrc.ignore" has a higher priority
than "pegasus.rc.lrc.restrict". For example, in case a LRC is specified in both properties, the LRC would be ignored
(i.e. not queried at all instead of applying a tighter restriction on the results returned).

Reference Manual

103

pegasus.catalog.replica.lrc.site.[site-name]

System: Replica Catalog - RLS

Since: 2.3.0

Type: LRC url

Default: (no default)

This property allows for the LRC url to be associated with site handles. Usually, a pool attribute is required to be
associated with the PFN for Pegasus to figure out the site on which PFN resides. However, in the case where an LRC
is responsible for only a single site's mappings, Pegasus can safely associate LRC url with the site. This association
can be used to determine the pool attribute for all mappings returned from the LRC, if the mapping does not have a
pool attribute associated with it.

The site_name in the property should be replaced by the name of the site. For example

pegasus.catalog.replica.lrc.site.isi rls://lrc.isi.edu

tells Pegasus that all PFNs returned from LRC rls://lrc.isi.edu are associated with site isi.

The [site_name] should be the same as the site handle specified in the site catalog.

pegasus.catalog.replica.cache.asrc

System: Pegasus

Since: 2.0

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

See also: pegasus.catalog.replica

This property determines whether to treat the cache file specified as a supplemental replica catalog or not. User can
specify on the command line to pegasus-plan a comma separated list of cache files using the --cache option. By default,
the LFN->PFN mappings contained in the cache file are treated as cache, i.e if an entry is found in a cache file the
replica catalog is not queried. This results in only the entry specified in the cache file to be available for replica
selection.

Setting this property to true, results in the cache files to be treated as supplemental replica catalogs. This results in
the mappings found in the replica catalog (as specified by pegasus.catalog.replica) to be merged with the ones found
in the cache files. Thus, mappings for a particular LFN found in both the cache and the replica catalog are available
for replica selection.

Site Catalog

pegasus.catalog.site

System: Site Catalog

Since: 2.0

Type: enumeration

Value[0]: XML3

Value[1]: XML

Reference Manual

104

Default: XML3

The site catalog file is available in three major flavors: The Text and and XML formats for the site catalog are
deprecated. Users can use pegasus-sc-converter client to convert their site catalog to the newer XML3 format.

1. THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-sc-converter
to convert XML format to XML3 Format. The "XML" format is an XML-based file. The XML format reads site
catalog conforming to the old site catalog schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-2.0/
sc-2.0.xsd

2. The "XML3" format is an XML-based file. The XML format reads site catalog conforming to the old site catalog
schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.xsd

pegasus.catalog.site.file

System: Site Catalog

Since: 2.0

Type: file location string

Default: ${pegasus.home.sysconfdir}/sites.xml3 |
${pegasus.home.sysconfdir}/sites.xml

See also: pegasus.catalog.site

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected. The default value
is dependant on the value specified for the property pegasus.catalog.site . If type of SiteCatalog used is XML3, then
sites.xml3 is picked up from sysconfdir else sites.xml

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 2.0

Type: enumeration

Value[0]: Text

Value[1]: File

Default: Text

See also: pegasus.catalog.transformation.file

Text In this mode, a multiline file based format is understood. The file is read and cached in memory. Any
modifications, as adding or deleting, causes an update of the memory and hence to the file underneath. All
queries are done against the memory representation.

The file sample.tc.text in the etc directory contains an example

Here is a sample textual format for transfomation catalog containing one transformation on two sites

tr example::keg:1.0 {
#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {

Reference Manual

105

profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1. The resource ID is represented in the first column.

2. The logical transformation uses the colonized format ns::name:vs.

3. The path to the application on the system

4. The installation type is identified by one of the following keywords - all upper case: INSTALLED,
STAGEABLE. If not specified, or NULL is used, the type defaults to INSTALLED.

5. The system is of the format ARCH::OS[:VER:GLIBC]. The following arch types are understood:
"INTEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaults to INTEL32::LINUX.

6. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY3=VALUE3 Multiple
key-values for same namespace are seperated by a comma "," and multiple namespaces are seperated by a
semicolon ";". If any of your profile values contains a comma you must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems: Transformation Catalog

Type: file location string

Default: ${pegasus.home.sysconfdir}/tc.text |
${pegasus.home.sysconfdir}/tc.data

See also: pegasus.catalog.transformation

This property is used to set the path to the textual transformation catalogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

Provenance Catalog

pegasus.catalog.provenance

System: Provenance Tracking Catalog (PTC)

Since: 2.0

Type: Java class name

Reference Manual

106

Value[0]: InvocationSchema

Value[1]: NXDInvSchema

Default: (no default)

See also: pegasus.catalog.*.db.driver

This property denotes the schema that is being used to access a PTC. The PTC is usually not a standard installation.
If you use a database backend, you most likely have a schema that supports PTCs. By default, no PTC will be used.

Currently only the InvocationSchema is available for storing the provenance tracking records. Beware, this can become
a lot of data. The values are names of Java classes. If no absolute Java classname is given, "org.griphyn.vdl.dbschema."
is prepended. Thus, by deriving from the DatabaseSchema API, and implementing the PTC interface, users can provide
their own classes here.

Alternatively, if you use a native XML database like eXist, you can store data using the NXDInvSchema. This will
avoid using any of the other database driver properties.

pegasus.catalog.provenance.refinement

System: PASOA Provenance Store

Since: 2.0.1

Type: Java class name

Value[0]: Pasoa

Value[1]: InMemory

Default: InMemory

See also: pegasus.catalog.*.db.driver

This property turns on the logging of the refinement process that happens inside Pegasus to the PASOA store. Not all
actions are currently captured. It is still an experimental feature.

The PASOA store needs to run on localhost on port 8080 https://localhost:8080/prserv-1.0

Replica Selection Properties

pegasus.selector.replica

System: Replica Selection

Since: 2.0

Type: URI string

Default: default

See also: pegasus.replica.*.ignore.stagein.sites

See also: pegasus.replica.*.prefer.stagein.sites

Each job in the DAX maybe associated with input LFN's denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus queries the replica catalog to get all the PFN's (replicas)
associated with a LFN. Pegasus then calls out to a replica selector to select a replica amongst the various replicas
returned. This property determines the replica selector to use for selecting the replicas.

Default If a PFN that is a file URL (starting with file:///) and has a pool attribute matching to the site handle
of the site where the compute is to be run is found, then that is returned. Else,a random PFN is
selected amongst all the PFN's that have a pool attribute matching to the site handle of the site where
a compute job is to be run. Else, a random pfn is selected amongst all the PFN's.

Reference Manual

107

Restricted This replica selector, allows the user to specify good sites and bad sites for staging in data to a
particular compute site. A good site for a compute site X, is a preferred site from which replicas
should be staged to site X. If there are more than one good sites having a particular replica, then a
random site is selected amongst these preferred sites.

A bad site for a compute site X, is a site from which replica's should not be staged. The reason
of not accessing replica from a bad site can vary from the link being down, to the user not having
permissions on that site's data.

The good | bad sites are specified by the properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is
taken to mean all sites.

The pegasus.replica.*.prefer.stagein.sites property takes precedence over
pegasus.replica.*.ignore.stagein.sites property i.e. if for a site X, a site Y is specified both in the
ignored and the preferred set, then site Y is taken to mean as only a preferred site for a site X.

Regex This replica selector allows the user allows the user to specific regex expressions that can be used
to rank various PFN's returned from the Replica Catalog for a particular LFN. This replica selector
selects the highest ranked PFN i.e the replica with the lowest rank value.

The regular expressions are assigned different rank, that determine the order in which the expressions
are employed. The rank values for the regex can expressed in user properties using the property.

pegasus.selector.replica.regex.rank.[value] regex-expression

The value is an integer value that denotes the rank of an expression with a rank value of 1 being
the highest rank.

Please note that before applying any regular expressions on the PFN's, the file URL's that dont match
the preferred site are explicitly filtered out.

Local This replica selector prefers replicas from the local host and that start with a file: URL scheme. It
is useful, when users want to stagin files to a remote site from your submit host using the Condor
file transfer mechanism.

pegasus.selector.replica.*.ignore.stagein.sites

System: Replica Selection

Type: comma separated list of sites

Since: 2.0

Default: no default

See also: pegasus.selector.replica

See also: pegasus.selector.replica.*.prefer.stagein.sites

A comma separated list of storage sites from which to never stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in the property name is expanded.

The * in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica.*.ignore.stagein.sites to usc means that ignore all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.ignore.stagein.sites to usc means that ignore all replicas
from site usc for staging in data to site isi.

Reference Manual

108

pegasus.selector.replica.*.prefer.stagein.sites

System: Replica Selection

Type: comma separated list of sites

Since: 2.0

Default: no default

See also: pegasus.selector.replica

See also: pegasus.selector.replica.*.ignore.stagein.sites

A comma separated list of preferred storage sites from which to stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in the property name is expanded.

The * in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica.*.prefer.stagein.sites to usc means that prefer all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.prefer.stagein.sites to usc means that prefer all replicas from
site usc for staging in data to site isi.

pegasus.selector.replica.regex.rank.[value]

System: Replica Selection

Type: Regex Expression

Since: 2.3.0

Default: no default

See also: pegasus.selector.replica

Specifies the regex expressions to be applied on the PFNs returned for a particular LFN. Refer to

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

on information of how to construct a regex expression.

The [value] in the property key is to be replaced by an int value that designates the rank value for the regex expression
to be applied in the Regex replica selector.

The example below indicates preference for file URL's over URL's referring to gridftp server at example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://example\.isi\.edu.*

Site Selection Properties

pegasus.selector.site

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: Random

Value[1]: RoundRobin

Value[2]: NonJavaCallout

Value[3]: Group

Reference Manual

109

Value[4]: Heft

Default: Random

See also: pegasus.selector.site.path

See also: pegasus.selector.site.timeout

See also: pegasus.selector.site.keep.tmp

See also: pegasus.selector.site.env.*

The site selection in Pegasus can be on basis of any of the following strategies.

Random In this mode, the jobs will be randomly distributed among the sites that can execute them.

RoundRobin In this mode. the jobs will be assigned in a round robin manner amongst the sites that can
execute them. Since each site cannot execute everytype of job, the round robin scheduling is
done per level on a sorted list. The sorting is on the basis of the number of jobs a particular
site has been assigned in that level so far. If a job cannot be run on the first site in the queue
(due to no matching entry in the transformation catalog for the transformation referred to by
the job), it goes to the next one and so on. This implementation defaults to classic round robin
in the case where all the jobs in the workflow can run on all the sites.

NonJavaCallout In this mode, Pegasus will callout to an external site selector.In this mode a temporary
file is prepared containing the job information that is passed to the site selector as an
argument while invoking it. The path to the site selector is specified by setting the property
pegasus.site.selector.path. The environment variables that need to be set to run the site selector
can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary
file contains information about the job that needs to be scheduled. It contains key value pairs
with each key value pair being on a new line and separated by a =.

The following pairs are currently generated for the site selector temporary file that is generated
in the NonJavaCallout.

version is the version of the site selector
api,currently 2.0.

transformation is the fully-qualified definition
identifier for the transformation (TR)
namespace::name:version.

derivation is teh fully qualified definition
identifier for the derivation (DV),
namespace::name:version.

job.level is the job's depth in the tree of the workflow
DAG.

job.id is the job's ID, as used in the DAX file.

resource.id is a pool handle, followed by whitespace,
followed by a gridftp server. Typically, each
gridftp server is enumerated once, so you
may have multiple occurances of the same
site. There can be multiple occurances of this
key.

input.lfn is an input LFN, optionally followed by
a whitespace and file size. There can be
multiple occurances of this key,one for each
input LFN required by the job.

wf.name label of the dax, as found in the DAX's root
element. wf.index is the DAX index, that
is incremented for each partition in case of
deferred planning.

Reference Manual

110

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being
used .e.g condor

vo.name is the name of the virtual organization that is
running this workflow. It is currently set to
NONE

vo.group unused at present and is set to NONE.

Group In this mode, a group of jobs will be assigned to the same site that can execute them. The use
of the PEGASUS profile key group in the dax, associates a job with a particular group. The
jobs that do not have the profile key associated with them, will be put in the default group. The
jobs in the default group are handed over to the "Random" Site Selector for scheduling.

Heft In this mode, a version of the HEFT processor scheduling algorithm is used to schedule jobs in
the workflow to multiple grid sites. The implementation assumes default data communication
costs when jobs are not scheduled on to the same site. Later on this may be made more
configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus
profile key runtime with the entries.

The number of processors in a site is picked up from the attribute idle-nodes associated with
the vanilla jobmanager of the site in the site catalog.

pegasus.selector.site.path

System: Site Selector

Since: 2.0

Type: String

If one calls out to an external site selector using the NonJavaCallout mode, this refers to the path where the site selector
is installed. In case other strategies are used it does not need to be set.

pegasus.site.selector.env.*

System: Pegasus

Since: 1.2.3

Type: String

The environment variables that need to be set while callout to the site selector. These are the variables that the user
would set if running the site selector on the command line. The name of the environment variable is got by stripping
the keys of the prefix "pegasus.site.selector.env." prefix from them. The value of the environment variable is the value
of the property.

e.g pegasus.site.selector.path.LD_LIBRARY_PATH /globus/lib would lead to the site selector being called with the
LD_LIBRARY_PATH set to /globus/lib.

pegasus.selector.site.timeout

System: Site Selector

Since: 2.0

Type: non negative integer

Reference Manual

111

Default: 60

It sets the number of seconds Pegasus waits to hear back from an external site selector using the NonJavaCallout
interface before timing out.

pegasus.selector.site.keep.tmp

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: onerror

Value[1]: always

Value[2]: never

Default: onerror

It determines whether Pegasus deletes the temporary input files that are generated in the temp directory or not. These
temporary input files are passed as input to the external site selectors.

A temporary input file is created for each that needs to be scheduled.

Data Staging Configuration

pegasus.data.configuration

System: Pegasus

Since: 3.1

Type: enumeration

Value[0]: sharedfs

Value[1]: nonsharedfs

Value[2]: condorio

Default: sharedfs

This property sets up Pegasus to run in different environments.

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share a filesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory.The compute jobs in the executable workflow are launched in the directory on the shared
filesystem. Internally, if this is set the following properties are set.

pegasus.execute.*.filesystem.local false

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File IO.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this

Reference Manual

112

directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file IO. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem across the VM's may be tricky. On loading this property, internally the following
properies are set

pegasus.transfer.sls.*.impl Condor
pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. You can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to
this directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only a few sites have large amounts of data storage exposed that can be used to place data during a
workflow run. This setup is also helpful when running workflows in the cloud environment where
setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

Transfer Configuration Properties

pegasus.transfer.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: GUC

Default: Transfer

See also: pegasus.transfer.refiner

Since: 2.0

Each compute job usually has data products that are required to be staged in to the execution site, materialized data
products staged out to a final resting place, or staged to another job running at a different site. This property determines
the underlying grid transfer tool that is used to manage the transfers.

The * in the property name can be replaced to achieve finer grained control to dictate what type of transfer jobs need
to be managed with which grid transfer tool.

Usually,the arguments with which the client is invoked can be specified by

- the property pegasus.transfer.arguments
- associating the PEGASUS profile key transfer.arguments

Reference Manual

113

The table below illustrates all the possible variations of the property.

Property Name Applies to

pegasus.transfer.stagein.impl the stage in transfer jobs

pegasus.transfer.stageout.impl the stage out transfer jobs

pegasus.transfer.inter.impl the inter pool transfer jobs

pegasus.transfer.setup.impl the setup transfer job

pegasus.transfer.*.impl apply to types of transfer jobs

Note: Since version 2.2.0 the worker package is staged automatically during staging of executables to the remote site.
This is achieved by adding a setup transfer job to the workflow. The setup transfer job by default uses GUC to stage
the data. The implementation to use can be configured by setting the property

pegasus.transfer.setup.impl

property. However, if you have pegasus.transfer.*.impl set in your properties file, then you need to set
pegasus.transfer.setup.impl to GUC

The various grid transfer tools that can be used to manage data transfers are explained below

Transfer This results in pegasus-transfer to be used for transferring of files. It is a python based wrapper around
various transfer clients like globus-url-copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS_HOME env profile specified in the site catalog. To specify a different path to the pegasus-
transfer client , users can add an entry into the transformation catalog with fully qualified logical name
as pegasus::pegasus-transfer

GUC This refers to the new guc client that does multiple file transfers per invocation. The globus-url-copy
client distributed with Globus 4.x is compatible with this mode.

pegasus.transfer.refiner

System: Pegasus

Type: enumeration

Value[0]: Bundle

Value[1]: Chain

Value[2]: Condor

Value[3]: Cluster

Default: Bundle

Since: 2.0

See also: pegasus.transfer.*.impl

This property determines how the transfer nodes are added to the workflow. The various refiners differ in the how
they link the various transfer jobs, and the number of transfer jobs that are created per compute jobs.

Bundle This is default refinement strategy in Pegasus. In this refinement strategy, the number of stage in transfer
nodes that are constructed per execution site can vary. The number of transfer nodes can be specified, by
associating the pegasus profile "bundle.stagein". The profile can either be associated with the execution
site in the site catalog or with the "transfer" executable in the transformation catalog. The value in the
transformation catalog overrides the one in the site catalog. This refinement strategy extends from the
Default refiner, and thus takes care of file clobbering while staging in data.

Reference Manual

114

Chain In this refinement strategy, chains of stagein transfer nodes are constructed. A chain means that the jobs
are sequentially dependant upon each other i.e. at any moment, only one stage in transfer job will run
per chain. The number of chains can be specified by associating the pegasus profile "chain.stagein". The
profile can either be associated with the execution site in the site catalog or with the "transfer" executable
in the transformation catalog. The value in the transformation catalog overrides the one in the site catalog.
This refinement strategy extends from the Default refiner, and thus takes care of file clobbering while
staging in data.

Condor In this refinement strategy, no additional staging transfer jobs are added to the workflow. Instead the
compute jobs are modified to have the transfer_input_files and transfer_output_files set to pull the input
data. To stage-out the data a separate stage-out is added. The stage-out job is a /bin/true job that uses the
transfer_input_file and transfer_output_files to stage the data back to the submit host. This refinement
strategy is used workflows are being executed on a Condor pool, and the submit node itself is a part of
the Condor pool.

Cluster In this refinement strategy, clusters of stage-in and stageout jobs are created per level of the workflow.
It builds upon the Bundle refiner. The differences between the Bundle and Cluster refiner are as follows.

- stagein is also clustered/bundled per level. In Bundle it was
for the whole workflow.
- keys that control the clustering (old name bundling are)
cluster.stagein and cluster.stageout

This refinement strategy also adds dependencies between the stagein transfer jobs on different levels of
the workflow to ensure that stagein for the top level happens first and so on.

An image of the workflow with this refinement strategy can be found at

http://vtcpc.isi.edu/pegasus/index.php/ChangeLog#Added_a_Cluster_Transfer_Refiner

pegasus.transfer.sls.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: Condor

Default: Transfer

Since: 2.2.0

See also: pegasus.data.configuration

See also: pegasus.execute.*.filesystem.local

This property specifies the transfer tool to be used for Second Level Staging (SLS) of input and output data between
the head node and worker node filesystems.

Currently, the * in the property name CANNOT be replaced to achieve finer grained control to dictate what type of
SLS transfers need to be managed with which grid transfer tool.

The various grid transfer tools that can be used to manage SLS data transfers are explained below

Transfer This results in pegasus-transfer to be used for transferring of files. It is a python based wrapper around
various transfer clients like globus-url-copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS_HOME env profile specified in the site catalog. To specify a different path to the pegasus-
transfer client , users can add an entry into the transformation catalog with fully qualified logical name
as pegasus::pegasus-transfer

Reference Manual

115

Condor This results in Condor file transfer mechanism to be used to transfer the input data files from the submit
host directly to the worker node directories. This is used when running in pure Condor mode or in a
Condor pool that does not have a shared filesystem between the nodes.

When setting the SLS transfers to Condor make sure that the following properties are also set

pegasus.gridstart PegasusLite
pegasus.execute.*.filesystem.local true

Alternatively, you can set

pegasus.data.configuration condorio

in lieu of the above 3 properties.

Also make sure that pegasus.gridstart is not set.

Please refer to the section on "Condor Pool Without a Shared Filesystem" in the chapter on Planning
and Submitting.

pegasus.transfer.arguments

System: Pegasus

Since: 2.0

Type: String

Default: (no default)

See also: pegasus.transfer.sls.arguments

This determines the extra arguments with which the transfer implementation is invoked. The transfer executable that is
invoked is dependant upon the transfer mode that has been selected. The property can be overloaded by associated the
pegasus profile key transfer.arguments either with the site in the site catalog or the corresponding transfer executable
in the transformation catalog.

pegasus.transfer.sls.arguments

System: Pegasus

Since: 2.4

Type: String

Default: (no default)

See also: pegasus.transfer.arguments

See also: pegasus.transfer.sls.*.impl

This determines the extra arguments with which the SLS transfer implementation is invoked. The transfer executable
that is invoked is dependant upon the SLS transfer implementation that has been selected.

pegasus.transfer.stage.sls.file

System: Pegasus

Since: 3.0

Type: Boolean

Default: (no default)

See also: pegasus.gridstart

Reference Manual

116

See also: pegasus.execute.*.filesystem.local

For executing jobs on the local filesystem, Pegasus creates sls files for each compute jobs. These sls files list the files
that need to be staged to the worker node and the output files that need to be pushed out from the worker node after
completion of the job. By default, pegasus will stage these SLS files to the shared filesystem on the head node as part
of first level data stagein jobs. However, in the case where there is no shared filesystem between head nodes and the
worker nodes, the user can set this property to false. This will result in the sls files to be transferred using the Condor
File Transfer from the submit host.

pegasus.transfer.worker.package

System: Pegasus

Type: boolean

Default: false

Since: 3.0

See also: pegasus.data.configuration

By default, Pegasus relies on the worker package to be installed in a directory accessible to the worker nodes on the
remote sites . Pegasus uses the value of PEGASUS_HOME environment profile in the site catalog for the remote sites,
to then construct paths to pegasus auxillary executables like kickstart, pegasus-transfer, seqexec etc.

If the Pegasus worker package is not installed on the remote sites users can set this property to true to get Pegasus
to deploy worker package on the nodes.

In the case of sharedfs setup, the worker package is deployed on the shared scratch directory for the workflow , that
is accessible to all the compute nodes of the remote sites.

When running in nonsharefs environments, the worker package is first brought to the submit directory and then
transferred to the worker node filesystem using Condor file IO.

pegasus.transfer.links

System: Pegasus

Type: boolean

Default: false

Since: 2.0

See also: pegasus.transfer

See also: pegasus.transfer.force

If this is set, and the transfer implementation is set to Transfer i.e. using the transfer executable distributed with the
PEGASUS. On setting this property, if Pegasus while fetching data from the Replica Catalog sees a pool attribute
associated with the PFN that matches the execution pool on which the data has to be transferred to, Pegasus instead
of the URL returned by the Replica Catalog replaces it with a file based URL. This is based on the assumption that
the if the pools match the filesystems are visible to the remote execution directory where input data resides. On seeing
both the source and destination urls as file based URLs the transfer executable spawns a job that creates a symbolic
link by calling ln -s on the remote pool.

pegasus.transfer.*.remote.sites

System: Pegasus

Type: comma separated list of sites

Default: no default

Reference Manual

117

Since: 2.0

By default Pegasus looks at the source and destination URL's for to determine whether the associated transfer job runs
on the submit host or the head node of a remote site, with preference set to run a transfer job to run on submit host.

Pegasus will run transfer jobs on the remote sites

- if the file server for the compute site is a file server i.e url prefix file://
- symlink jobs need to be added that require the symlink transfer jobs to
be run remotely.

This property can be used to change the default behaviour of Pegasus and force pegasus to run different types of
transfer jobs for the sites specified on the remote site.

The table below illustrates all the possible variations of the property.

Property Name Applies to

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

pegasus.transfer.stageout.remote.sites the stage out transfer jobs

pegasus.transfer.inter.remote.sites the inter pool transfer jobs

pegasus.transfer.*.remote.sites apply to types of transfer jobs

In addition * can be specified as a property value, to designate that it applies to all sites.

pegasus.transfer.staging.delimiter

System: Pegasus

Since: 2.0

Type: String

Default: :

See also: pegasus.transformation.selector

Pegasus supports executable staging as part of the workflow. Currently staging of statically linked executables is
supported only. An executable is normally staged to the work directory for the workflow/partition on the remote site.
The basename of the staged executable is derived from the namespace,name and version of the transformation in the
transformation catalog. This property sets the delimiter that is used for the construction of the name of the staged
executable.

pegasus.transfer.disable.chmod.sites

System: Pegasus

Since: 2.0

Type: comma separated list of sites

Default: no default

During staging of executables to remote sites, chmod jobs are added to the workflow. These jobs run on the remote
sites and do a chmod on the staged executable. For some sites, this maynot be required. The permissions might be
preserved, or there maybe an automatic mechanism that does it.

This property allows you to specify the list of sites, where you do not want the chmod jobs to be executed. For those
sites, the chmod jobs are replaced by NoOP jobs. The NoOP jobs are executed by Condor, and instead will immediately
have a terminate event written to the job log file and removed from the queue.

Reference Manual

118

pegasus.transfer.setup.source.base.url

System: Pegasus

Type: URL

Default: no default

Since: 2.3

This property specifies the base URL to the directory containing the Pegasus worker package builds. During Staging
of Executable, the Pegasus Worker Package is also staged to the remote site. The worker packages are by default
pulled from the http server at pegasus.isi.edu. This property can be used to override the location from where the worker
package are staged. This maybe required if the remote computes sites don't allows files transfers from a http server.

Gridstart And Exitcode Properties

pegasus.gridstart

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: Kickstart

Value[1]: None

Value[2]: PegasusLite

Default: Kickstart

See also: pegasus.execute.*.filesystem.local

Jobs that are launched on the grid maybe wrapped in a wrapper executable/script that enables information about about
the execution, resource consumption, and - most importantly - the exitcode of the remote application. At present, a
job scheduled on a remote site is launched with a gridstart if site catalog has the corresponding gridlaunch attribute
set and the job being launched is not MPI.

Users can explicitly decide what gridstart to use for a job, by associating the pegasus profile key named gridstart
with the job.

Kickstart In this mode, all the jobs are lauched via kickstart. The kickstart executable is a light-weight
program which connects the stdin,stdout and stderr filehandles for PEGASUS jobs on the remote
site. Kickstart is an executable distributed with PEGASUS that can generally be found at
${pegasus.home.bin}/kickstart.

None In this mode, all the jobs are launched directly on the remote site. Each job's stdin,stdout and stderr
are connected to condor commands in a manner to ensure that they are sent back to the submit host.

PegasusLite In this mode, the compute jobs are wrapped by PegasusLite instances. PegasusLite instance is a
bash script, that is launced on the compute node. It determins at runtime the directory a job needs
to execute in, pulls in data from the staging site , launches the job, pushes out the data and cleans
up the directory after execution.

pegasus.gridstart.kickstart.set.xbit

System: Pegasus

Since: 2.4

Type: Boolean

Reference Manual

119

Default: false

See also: pegasus.transfer.disable.chmod.sites

Kickstart has an option to set the X bit on an executable before it launches it on the remote site. In case of staging of
executables, by default chmod jobs are launched that set the x bit of the user executables staged to a remote site.

On setting this property to true, kickstart gridstart module adds a -X option to kickstart arguments. The -X arguments
tells kickstart to set the x bit of the executable before launching it.

User should usually disable the chmod jobs by setting the property pegasus.transfer.disable.chmod.sites , if they set
this property to true.

pegasus.gridstart.kickstart.stat

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

See also: pegasus.gridstart.generate.lof

Kickstart has an option to stat the input files and the output files. The stat information is collected in the XML record
generated by kickstart. Since stat is an expensive operation, it is not turned on by on. Set this property to true if you
want to see stat information for the input files and output files of a job in it's kickstart output.

pegasus.gridstart.generate.lof

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

See also: pegasus.gridstart.kickstart.stat

For the stat option for kickstart, we generate 2 lof (list of filenames) files for each job. One lof file containing the
input lfn's for the job, and the other containing output lfn's for the job. In some cases, it maybe beneficial to have
these lof files generated but not do the actual stat. This property allows you to generate the lof files without triggering
the stat in kickstart invocations.

pegasus.gridstart.invoke.always

System: Pegasus

Since: 2.0

Type: Boolean

Default: false

See also: pegasus.gridstart.invoke.length

Condor has a limit in it, that restricts the length of arguments to an executable to 4K. To get around this limit, you can
trigger Kickstart to be invoked with the -I option. In this case, an arguments file is prepared per job that is transferred
to the remote end via the Condor file transfer mechanism. This way the arguments to the executable are not specified
in the condor submit file for the job. This property specifies whether you want to use the invoke option always for all
jobs, or want it to be triggered only when the argument string is determined to be greater than a certain limit.

Reference Manual

120

pegasus.gridstart.invoke.length

System: Pegasus

Since: 2.0

Type: Long

Default: 4000

See also: pegasus.gridstart.invoke.always

Gridstart is automatically invoked with the -I option, if it is determined that the length of the arguments to be specified
is going to be greater than a certain limit. By default this limit is set to 4K. However, it can overriden by specifying
this property.

Interface To Condor And Condor Dagman
The Condor DAGMan facility is usually activate using the condor_submit_dag command. However, many shapes of
workflows have the ability to either overburden the submit host, or overflow remote gatekeeper hosts. While DAGMan
provides throttles, unfortunately these can only be supplied on the command-line. Thus,PEGASUS provides a versatile
wrapper to invoke DAGMan, called pegasus-submit-dag. It can be configured from the command-line, from user- and
system properties, and by defaults.

pegasus.condor.logs.symlink

System: Condor

Type: Boolean

Default: true

Since: 3.0

By default pegasus has the Condor common log [dagname]-0.log in the submit file as a symlink to a location in /tmp .
This is to ensure that condor common log does not get written to a shared filesystem. If the user knows for sure that
the workflow submit directory is not on the shared filesystem, then they can opt to turn of the symlinking of condor
common log file by setting this property to false.

pegasus.condor.arguments.quote

System: Condor

Type: Boolean

Default: true

Since: 2.0

Old Name: pegasus.condor.arguments.quote

This property determines whether to apply the new Condor quoting rules for quoting the argument string. The new
argument quoting rules appeared in Condor 6.7.xx series. We have verified it for 6.7.19 version. If you are using an
old condor at the submit host, set this property to false.

pegasus.dagman.nofity

System: DAGman wrapper

Type: Case-insensitive enumeration

Value[0]: Complete

Reference Manual

121

Value[1]: Error

Value[2]: Never

Default: Error

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit_dag.html

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit.html

The pegasus-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argument sets
the e-mail notification for DAGMan itself. This information will be used within the Condor submit description file
for DAGMan. This file is produced by the the condor_submit_dag. See notification within the section of submit
description file commands in the condor_submit manual page for specification of value. Many users prefer the value
NEVER.

pegasus.dagman.verbose

System: DAGman wrapper

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit_dag.html

The pegasus-submit-dag wrapper processes properties to set DAGMan commandline arguments. If set and true, the
argument activates verbose output in case of DAGMan errors.

pegasus.dagman.[category].maxjobs

System: DAGman wrapper

Type: Integer

Since: 2.2

Default: no default

Document: http://vtcpc.isi.edu/pegasus/index.php/ChangeLog
\#Support_for_DAGMan_node_categories

DAGMan now allows for the nodes in the DAG to be grouped in category. The tuning parameters like maxjobs then
can be applied per category instead of being applied to the whole workflow. To use this facility users need to associate
the dagman profile key named category with their jobs. The value of the key is the category to which the job belongs to.

You can then use this property to specify the value for a category. For the above example you will set
pegasus.dagman.short-running.maxjobs

Monitoring Properties

pegasus.monitord.events

System: Pegasus-monitord

Type: Boolean

Reference Manual

122

Default: true

Since: 3.0.2

See Also: pegasus.monitord.output

This property determines whether pegasus-monitord generates log events. If log events are disabled using this property,
no bp file, or database will be created, even if the pegasus.monitord.output property is specified.

pegasus.monitord.output

System: Pegasus-monitord

Type: String

Since: 3.0.2

See Also: pegasus.monitord.events

This property specifies the destination for generated log events in pegasus-monitord. By default, events are stored in
a sqlite database in the workflow directory, which will be created with the workflow's name, and a ".stampede.db"
extension. Users can specify an alternative database by using a SQLAlchemy connection string. Details are available
at:

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html

It is important to note that users will need to have the appropriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQLAlchemy and the SQLite Python driver. As a final note, it is important to
mention that unlike when using SQLite databases, using SQLAlchemy with other database servers, e.g. MySQL or
Postgres , the target database needs to exist. Users can also specify a file name using this property in order to create
a file with the log events.

Example values for the SQLAlchemy connection string for various end points are listed below

SQL Alchemy End Point Example Value

Netlogger BP File file:///submit/dir/myworkflow.bp

SQL Lite Database sqlite:///submit/dir/myworkflow.db

MySQL Database mysql://user:password@host:port/databasename

pegasus.monitord.notifications

System: Pegasus-monitord

Type: Boolean

Default: true

Since: 3.1

See Also: pegasus.monitord.notifications.max

See Also: pegasus.monitord.notifications.timeout

This property determines whether pegasus-monitord processes notifications. When notifications are enabled, pegasus-
monitord will parse the .notify file generated by pegasus-plan and will invoke notification scripts whenever conditions
matches one of the notifications.

pegasus.monitord.notifications.max

System: Pegasus-monitord

Reference Manual

123

Type: Integer

Default: 10

Since: 3.1

See Also: pegasus.monitord.notifications

See Also: pegasus.monitord.notifications.timeout

This property determines how many notification scripts pegasus-monitord will call concurrently. Upon reaching this
limit, pegasus-monitord will wait for one notification script to finish before issuing another one. This is a way to
keep the number of processes under control at the submit host. Setting this property to 0 will disable notifications
completely.

pegasus.monitord.notifications.timeout

System: Pegasus-monitord

Type: Integer

Default: 0

Since: 3.1

See Also: pegasus.monitord.notifications

See Also: pegasus.monitord.notifications.max

This property determines how long will pegasus-monitord let notification scripts run before terminating them. When
this property is set to 0 (default), pegasus-monitord will not terminate any notification scripts, letting them run
indefinitely. If some notification scripts missbehave, this has the potential problem of starving pegasus-monitord's
notification slots (see the pegasus.monitord.notifications.max property), and block further notifications. In addition,
users should be aware that pegasus-monitord will not exit until all notification scripts are finished.

pegasus.monitord.stdout.disable.parsing

System: Pegasus-monitord

Type: Boolean

Default: False

Since: 3.1.1

By default, pegasus-monitord parses the stdout/stderr section of the kickstart to populate the applications captured
stdout and stderr in the job instance table for the stampede schema. For large workflows, this may slow down monitord
especially if the application is generating a lot of output to it's stdout and stderr. This property, can be used to turn
of the database population.

Job Clustering Properties

pegasus.clusterer.job.aggregator

System: Job Clustering

Since: 2.0

Type: String

Value[0]: seqexec

Value[1]: mpiexec

Default: seqexec

Reference Manual

124

A large number of workflows executed through the Virtual Data System, are composed of several jobs that run for
only a few seconds or so. The overhead of running any job on the grid is usually 60 seconds or more. Hence, it makes
sense to collapse small independent jobs into a larger job. This property determines, the executable that will be used
for running the larger job on the remote site.

seqexec In this mode, the executable used to run the merged job is seqexec that runs each of the smaller jobs
sequentially on the same node. The executable "seqexec" is a PEGASUS tool distributed in the PEGASUS
worker package, and can be usually found at {pegasus.home}/bin/seqexec.

mpiexec In this mode, the executable used to run the merged job is mpiexec that runs the smaller jobs via mpi on n
nodes where n is the nodecount associated with the merged job. The executable "mpiexec" is a PEGASUS
tool distributed in the PEGASUS worker package, and can be usually found at {pegasus.home}/bin/
mpiexec.

pegasus.clusterer.job.aggregator.seqexec.log

System: Job Clustering

Type: Boolean

Default: false

Since: 2.3

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.seqexec.log.global

Seqexec logs the progress of the jobs that are being run by it in a progress file on the remote cluster where it is executed.

This property sets the Boolean flag, that indicates whether to turn on the logging or not.

pegasus.clusterer.job.aggregator.seqexec.log.global

System: Job Clustering

Type: Boolean

Default: true

Since: 2.3

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.seqexec.log

Old Name: pegasus.clusterer.job.aggregator.seqexec.hasgloballog

Seqexec logs the progress of the jobs that are being run by it in a progress file on the remote cluster where it is
executed. The progress log is useful for you to track the progress of your computations and remote grid debugging.
The progress log file can be shared by multiple seqexec jobs that are running on a particular cluster as part of the
same workflow. Or it can be per job.

This property sets the Boolean flag, that indicates whether to have a single global log for all the seqexec jobs on a
particular cluster or progress log per job.

pegasus.clusterer.job.aggregator.seqexec.firstjobfail

System: Job Clustering

Type: Boolean

Default: true

Since: 2.2

Reference Manual

125

See also: pegasus.clusterer.job.aggregator

By default seqexec does not stop execution even if one of the clustered jobs it is executing fails. This is because
seqexec tries to get as much work done as possible.

This property sets the Boolean flag, that indicates whether to make seqexec stop on the first job failure it detects.

pegasus.clusterer.label.key

System: Job Clustering

Type: String

Default: label

Since: 2.0

See also: pegasus.partitioner.label.key

While clustering jobs in the workflow into larger jobs, you can optionally label your graph to control which jobs are
clustered and to which clustered job they belong. This done using a label based clustering scheme and is done by
associating a profile/label key in the PEGASUS namespace with the jobs in the DAX. Each job that has the same
value/label value for this profile key, is put in the same clustered job.

This property allows you to specify the PEGASUS profile key that you want to use for label based clustering.

Logging Properties

pegasus.log.manager

System: Pegasus

Since: 2.2.0

Type: Enumeration

Value[0]: Default

Value[1]: Log4j

Default: Default

See also: pegasus.log.manager.formatter

This property sets the logging implementation to use for logging.

Default This implementation refers to the legacy Pegasus logger, that logs directly to stdout and stderr. It however,
does have the concept of levels similar to log4j or syslog.

Log4j This implementation, uses Log4j to log messages. The log4j properties can be specified in a properties
file, the location of which is specified by the property

pegasus.log.manager.log4j.conf

pegasus.log.manager.formatter

System: Pegasus

Since: 2.2.0

Type: Enumeration

Value[0]: Simple

Reference Manual

126

Value[1]: Netlogger

Default: Simple

See also: pegasus.log.manager.formatter

This property sets the formatter to use for formatting the log messages while logging.

Simple This formats the messages in a simple format. The messages are logged as is with minimal formatting.
Below are sample log messages in this format while ranking a dax according to performance.

event.pegasus.ranking dax.id se18-gda.dax - STARTED
event.pegasus.parsing.dax dax.id se18-gda-nested.dax - STARTED
event.pegasus.parsing.dax dax.id se18-gda-nested.dax - FINISHED
job.id jobGDA
job.id jobGDA query.name getpredicted performace time 10.00
event.pegasus.ranking dax.id se18-gda.dax - FINISHED

Netlogger This formats the messages in the Netlogger format , that is based on key value pairs. The netlogger
format is useful for loading the logs into a database to do some meaningful analysis. Below are sample
log messages in this format while ranking a dax according to performance.

ts=2008-09-06T12:26:20.100502Z event=event.pegasus.ranking.start \
msgid=6bc49c1f-112e-4cdb-af54-3e0afb5d593c \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
dax.id=se18-gda.dax prog=Pegasus
ts=2008-09-06T12:26:20.100750Z event=event.pegasus.parsing.dax.start \
msgid=fed3ebdf-68e6-4711-8224-a16bb1ad2969 \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-b11c-b49def0c5232\
dax.id=se18-gda-nested.dax prog=Pegasus
ts=2008-09-06T12:26:20.100894Z event=event.pegasus.parsing.dax.end \
msgid=a81e92ba-27df-451f-bb2b-b60d232ed1ad \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-b11c-b49def0c5232
ts=2008-09-06T12:26:20.100395Z event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
job.id="jobGDA"
ts=2008-09-06T12:26:20.100395Z event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
job.id="jobGDA" query.name="getpredicted performace" time="10.00"
ts=2008-09-06T12:26:20.102003Z event=event.pegasus.ranking.end \
msgid=31f50f39-efe2-47fc-9f4c-07121280cd64 \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5

pegasus.log.*

System: Pegasus

Since: 2.0

Type: String

Default: No default

This property sets the path to the file where all the logging for Pegasus can be redirected to. Both stdout and stderr
are logged to the file specified.

pegasus.log.metrics

System: Pegasus

Since: 2.1.0

Type: Boolean

Default: true

Reference Manual

127

See also: pegasus.log.metrics.file

This property enables the logging of certain planning and workflow metrics to a global log file. By default the file to
which the metrics are logged is ${pegasus.home}/var/pegasus.log.

pegasus.log.metrics.file

System: Pegasus

Since: 2.1.0

Type: Boolean

Default: ${pegasus.home}/var/pegasus.log

See also: pegasus.log.metrics

This property determines the file to which the workflow and planning metrics are logged if enabled.

Miscellaneous Properties

pegasus.code.generator

System: Pegasus

Since: 3.0

Type: enumeration

Value[0]: Condor

Value[1]: Shell

Default: Condor

This property is used to load the appropriate Code Generator to use for writing out the executable workflow.

Condor This is the default code generator for Pegasus . This generator generates the executable workflow as a
Condor DAG file and associated job submit files. The Condor DAG file is passed as input to Condor
DAGMan for job execution.

Shell This Code Generator generates the executable workflow as a shell script that can be executed on the submit
host. While using this code generator, all the jobs should be mapped to site local i.e specify --sites local
to pegasus-plan.

pegasus.job.priority.assign

System: Pegasus

Since: 3.0.3

Type: Boolean

Default: true

This property can be used to turn of the default level based condor priorities that are assigned to jobs in the executable
workflow.

pegasus.file.cleanup.strategy

System: Pegasus

Reference Manual

128

Since: 2.2

Type: enumeration

Value[0]: InPlace

Default: InPlace

This property is used to select the strategy of how the the cleanup nodes are added to the executable workflow.

InPlace This is the only mode available .

pegasus.file.cleanup.impl

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: Cleanup

Value[1]: RM

Value[2]: S3

Default: Cleanup

This property is used to select the executable that is used to create the working directory on the compute sites.

Cleanup The default executable that is used to delete files is the dirmanager executable shipped with Pegasus. It
is found at $PEGASUS_HOME/bin/dirmanager in the pegasus distribution. An entry for transformation
pegasus::dirmanager needs to exist in the Transformation Catalog or the PEGASUS_HOME environment
variable should be specified in the site catalog for the sites for this mode to work.

RM This mode results in the rm executable to be used to delete files from remote directories. The rm
executable is standard on *nix systems and is usually found at /bin/rm location.

S3 This mode is used to delete files/objects from the buckets in S3 instead of a directory. This should be set
when running workflows on Amazon EC2. This implementation relies on s3cmd command line client
to create the bucket. An entry for transformation amazon::s3cmd needs to exist in the Transformation
Catalog for this to work.

pegasus.file.cleanup.scope

System: Pegasus

Since: 2.3.0

Type: enumeration

Value[0]: fullahead

Value[1]: deferred

Default: fullahead

By default in case of deferred planning InPlace file cleanup is turned OFF. This is because the cleanup algorithm does
not work across partitions. This property can be used to turn on the cleanup in case of deferred planning.

fullahead This is the default scope. The pegasus cleanup algorithm does not work across partitions in deferred
planning. Hence the cleanup is always turned OFF , when deferred planning occurs and cleanup scope
is set to full ahead.

deferred If the scope is set to deferred, then Pegasus will not disable file cleanup in case of deferred planning.
This is useful for scenarios where the partitions themselves are independant (i.e. dont share files).

Reference Manual

129

Even if the scope is set to deferred, users can turn off cleanup by specifying --nocleanup option to
pegasus-plan.

pegasus.catalog.transformation.mapper

System: Staging of Executables

Since: 2.0

Type: enumeration

Value[0]: All

Value[1]: Installed

Value[2]: Staged

Value[3]: Submit

Default: All

See also: pegasus.transformation.selector

Pegasus now supports transfer of statically linked executables as part of the concrete workflow. At present, there
is only support for staging of executables referred to by the compute jobs specified in the DAX file. Pegasus
determines the source locations of the binaries from the transformation catalog, where it searches for entries of type
STATIC_BINARY for a particular architecture type. The PFN for these entries should refer to a globus-url-copy valid
and accessible remote URL. For transfer of executables, Pegasus constructs a soft state map that resides on top of
the transformation catalog, that helps in determining the locations from where an executable can be staged to the
remote site.

This property determines, how that map is created.

All In this mode, all sources with entries of type STATIC_BINARY for a particular transformation are
considered valid sources for the transfer of executables. This the most general mode, and results in
the constructing the map as a result of the cartesian product of the matches.

Installed In this mode, only entries that are of type INSTALLED are used while constructing the soft state map.
This results in Pegasus never doing any transfer of executables as part of the workflow. It always
prefers the installed executables at the remote sites.

Staged In this mode, only entries that are of type STATIC_BINARY are used while constructing the soft state
map. This results in the concrete workflow referring only to the staged executables, irrespective of the
fact that the executables are already installed at the remote end.

Submit In this mode, only entries that are of type STATIC_BINARY and reside at the submit host (pool local),
are used while constructing the soft state map. This is especially helpful, when the user wants to use
the latest compute code for his computations on the grid and that relies on his submit host.

pegasus.selector.transformation

System: Staging of Executables

Since: 2.0

Type: enumeration

Value[0]: Random

Value[1]: Installed

Value[2]: Staged

Value[3]: Submit

Default: Random

See also: pegasus.catalog.transformation

Reference Manual

130

In case of transfer of executables, Pegasus could have various transformations to select from when it schedules to run
a particular compute job at a remote site. For e.g it can have the choice of staging an executable from a particular
remote pool, from the local (submit host) only, use the one that is installed on the remote site only.

This property determines, how a transformation amongst the various candidate transformations is selected, and
is applied after the property pegasus.tc has been applied. For e.g specifying pegasus.tc as Staged and then
pegasus.transformation.selector as INSTALLED does not work, as by the time this property is applied, the soft state
map only has entries of type STAGED.

Random In this mode, a random matching candidate transformation is selected to be staged to the remote
execution pool.

Installed In this mode, only entries that are of type INSTALLED are selected. This means that the concrete
workflow only refers to the transformations already pre installed on the remote pools.

Staged In this mode, only entries that are of type STATIC_BINARY are selected, ignoring the ones that are
installed at the remote site.

Submit In this mode, only entries that are of type STATIC_BINARY and reside at the submit host (pool local),
are selected as sources for staging the executables to the remote execution pools.

pegasus.execute.*.filesystem.local

System: Pegasus

Type: Boolean

Default: false

Since: 2.1.0

See also: pegasus.data.configuration

Normally, Pegasus transfers the data to and from a directory on the shared filesystem on the head node of a compute
site. The directory needs to be visible to both the head node and the worker nodes for the compute jobs to execute
correctly.

By setting this property to true, you can get Pegasus to execute jobs on the worker node filesystem. In this case, when
the jobs are launched on the worker nodes, the jobs grab the input data from the workflow specific execution directory
on the compute site and push the output data to the same directory after completion. The transfer of data to and from
the worker node directory is referred to as Second Level Staging (SLS).

pegasus.parser.dax.preserver.linebreaks

System: Pegasus

Type: Boolean

Default: false

Since: 2.2.0

The DAX Parser normally does not preserve line breaks while parsing the CDATA section that appears in the
arguments section of the job element in the DAX. On setting this to true, the DAX Parser preserves any line line
breaks that appear in the CDATA section.

Profiles
The Pegasus Workflow Mapper uses the concept of profiles to encapsulate configurations for various aspects of dealing
with the Grid infrastructure. Profiles provide an abstract yet uniform interface to specify configuration options for

Reference Manual

131

various layers from planner/mapper behavior to remote environment settings. At various stages during the mapping
process, profiles may be added associated with the job.

This document describes various types of profiles, levels of priorities for intersecting profiles, and how to specify
profiles in different contexts.

Profile Structure Heading

All profiles are triples comprised of a namespace, a name or key, and a value. The namespace is a simple identifier.
The key has only meaning within its namespace, and it’s yet another identifier. There are no constraints on
the contents of a value

Profiles may be represented with different syntaxes in different context. However, each syntax will describe the
underlying triple.

Profile Namespaces

Each namespace refers to a different aspect of a job’s runtime settings. A profile’s representation in
the concrete plan (e.g. the Condor submit files) depends its namespace. Pegasus supports the following Namespaces
for profiles:

• env permits remote environment variables to be set.

• globus sets Globus RSL parameters.

• condor sets Condor configuration parameters for the submit file.

• dagman introduces Condor DAGMan configuration parameters.

• pegasus configures the behaviour of various planner/mapper components.

The env Profile Namespace

The env namespace allows users to specify environment variables of remote jobs. Globus transports the environment
variables, and ensure that they are set before the job starts.

The key used in conjunction with an env profile denotes the name of the environment variable. The value of the profile
becomes the value of the remote environment variable.

Grid jobs usually only set a minimum of environment variables by virtue of Globus. You cannot compare the
environment variables visible from an interactive login with those visible to a grid job. Thus, it often becomes necessary
to set environment variables like LD_LIBRARY_PATH for remote jobs.

If you use any of the Pegasus worker package tools like transfer or the rc-client, it becomes necessary to set
PEGASUS_HOME and GLOBUS_LOCATION even for jobs that run locally

Table 10.1. Table 1: Useful Environment Settings

Environment Variable Description

PEGASUS_HOME Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

GLOBUS_LOCATION Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

LD_LIBRARY_PATH Point this to $GLOBUS_LOCATION/lib, except you
cannot use the dollar variable. You must use the full path.

Reference Manual

132

Applies to both, local and remote jobs that use Globus
components and should be usually set in the site catalog
for the sites

Even though Condor and Globus both permit environment variable settings through their profiles, all remote
environment variables must be set through the means of env profiles.

The Globus Profile Namespace

The globus profile namespace encapsulates Globus resource specification language (RSL) instructions. The RSL
configures settings and behavior of the remote scheduling system. Some systems require queue name to schedule
jobs, a project name for accounting purposes, or a run-time estimate to schedule jobs. The Globus RSL addresses
all these issues.

A key in the globus namespace denotes the command name of an RLS instruction. The profile value becomes the
RSL value. Even though Globus RSL is typically shown using parentheses around the instruction, the out pair of
parentheses is not necessary in globus profile specifications

Table 2 shows some commonly used RSL instructions. For an authoritative list of all possible RSL instructions refer
to the Globus RSL specification.

Table 10.2. Table 2: Useful Globus RSL Instructions

Key Description

count the number of times an executable is started.

jobtype specifies how the job manager should start the remote job.
While Pegasus defaults to single, use mpi when running
MPI jobs.

maxcputime the max cpu time for a single execution of a job.

maxmemory the maximum memory in MB required for the job

maxtime the maximum time or walltime for a single execution of
a job.

maxwalltime the maximum walltime for a single execution of a job.

minmemory the minumum amount of memory required for this job

project associates an account with a job at the remote end.

queue the remote queue in which the job should be run. Used
when remote scheduler is PBS that supports queues.

Pegasus prevents the user from specifying certain RSL instructions as globus profiles, because they are either
automatically generated or can be overridden through some different means. For instance, if you need to specify remote
environment settings, do not use the environment key in the globus profiles. Use one or more env profiles instead.

Table 10.3. Table 3: RSL Instructions that are not permissible

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
in the DAX

directory the site catalog and properties determine which directory
a job will run in.

environment use multiple env profiles instead

executable the physical executable to be used is specified in the
transformation catalog and is also dependant on the
gridstart module being used. If you are launching jobs
via kickstart then the executable created is the path to

Reference Manual

133

kickstart and the application executable path appears in
the arguments for kickstart

stdin you specify in the DAX for the job

stdout you specify in the DAX for the job

stderr you specify in the DAX for the job

The Condor Profile Namespace

The Condor submit file controls every detail how and where a job is run. The condor profiles permit to add or overwrite
instructions in the Condor submit file.

The condor namespace directly sets commands in the Condor submit file for a job the profile applies to. Keys in
the condor profile namespace denote the name of the Condor command. The profile value becomes the command's
argument. All condor profiles are translated into key=value lines in the Condor submit file

Some of the common condor commands that a user may need to specify are listed below. For an authoritative list
refer to the online condor documentation. Note: Pegasus Workflow Planner/Mapper by default specify a lot of condor
commands in the submit files depending upon the job, and where it is being run.

Table 10.4. Table 4: Useful Condor Commands

Key Description

universe Pegasus defaults to either globus or scheduler universes.
Set to standard for compute jobs that require standard
universe. Set to vanilla to run natively in a condor pool,
or to run on resources grabbed via condor glidein.

periodic_release is the number of times job is released back to the queue
if it goes to HOLD, e.g. due to Globus errors. Pegasus
defaults to 3.

periodic_remove is the number of times a job is allowed to get into HOLD
state before being removed from the queue. Pegasus
defaults to 3.

filesystemdomain Useful for Condor glide-ins to pin a job to a remote site.

stream_error boolean to turn on the streaming of the stderr of the remote
job back to submit host.

stream_output boolean to turn on the streaming of the stdout of the
remote job back to submit host.

priority integer value to assign the priority of a job. Higher value
means higher priority. The priorities are only applied for
vanilla / standard/ local universe jobs. Determines the
order in which a users own jobs are executed.

Other useful condor keys, that advanced users may find useful and can be set by profiles are

1. should_transfer_files

2. transfer_output

3. transfer_error

4. whentotransferoutput

5. requirements

6. rank

Reference Manual

134

Pegasus prevents the user from specifying certain Condor commands in condor profiles, because they are automatically
generated or can be overridden through some different means. Table 5 shows prohibited Condor commands.

Table 10.5. Table 5: Condor commands prohibited in condor profiles

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
in the DAX

environment use multiple env profiles instead

executable the physical executable to be used is specified in the
transformation catalog and is also dependant on the
gridstart module being used. If you are launching jobs
via kickstart then the executable created is the path to
kickstart and the application executable path appears in
the arguments for kickstart

The Dagman Profile Namespace

DAGMan is Condor's workflow manager. While planners generate most of DAGMan's configuration, it is possible to
tweak certain job-related characteristics using dagman profiles. A dagman profile can be used to specify a DAGMan
pre- or post-script.

Pre- and post-scripts execute on the submit machine. Both inherit the environment settings from the submit host when
pegasus-submit-dag or pegasus-run is invoked.

By default, kickstart launches all jobs except standard universe and MPI jobs. Kickstart tracks the execution of the job,
and returns usage statistics for the job. A DAGMan post-script starts the Pegasus application exitcode to determine,
if the job succeeded. DAGMan receives the success indication as exit status from exitcode.

If you need to run your own post-script, you have to take over the job success parsing. The planner is set up to pass
the file name of the remote job's stdout, usually the output from kickstart, as sole argument to the post-script.

Table 6 shows the keys in the dagman profile domain that are understood by Pegasus and can be associated at a per
job basis.

Table 10.6. Table 6: Useful dagman Commands that can be associated at a per job basis

Key Description

PRE is the path to the pre-script. DAGMan executes the pre-
script before it runs the job.

PRE.ARGUMENTS are command-line arguments for the pre-script, if any.

POST is the postscript type/mode that a user wants to associate
with a job.

1. pegasus-exitcode - pegasus will by default associate
this postscript with all jobs launched via kickstart, as
long the POST.SCOPE value is not set to NONE.

2. none -means that no postscript is generated for the
jobs. This is useful for MPI jobs that are not launched
via kickstart currently.

3. any legal identifier - Any other identifier of the
form ([_A-Za-z][_A-Za-z0-9]*), than one of the 2
reserved keywords above, signifies a user postscript.
This allows the user to specify their own postscript for
the jobs in the workflow. The path to the postscript
can be specified by the dagman profile POST.PATH.

Reference Manual

135

[value] where [value] is this legal identifier specified.
The user postscript is passed the name of the .out file
of the job as the last argument on the command line.

For e.g. if the following dagman profiles were
associated with a job X

a. POST with value user_script /bin/user_postscript

b. POST.PATH.user_script with value /path/to/user/
script

c. POST.ARGUMENTS with value -verbose

then the following postscript will be associated with
the job X in the .dag file

/path/to/user/script -verbose X.out where X.out
contains the stdout of the job X

POST.PATH.* (where * is replaced by the value of the
POST Profile)

the path to the post script on the submit host.

POST.ARGUMENTS are the command line arguments for the post script, if any.

RETRY is the number of times DAGMan retries the full job
cycle from pre-script through post-script, if failure was
detected.

CATEGORY the DAGMan category the job belongs to.

PRIORITY the priority to apply to a job. DAGMan uses this to select
what jobs to release when MAXJOBS is enforced for the
DAG.

Table 7 shows the keys in the dagman profile domain that are understood by Pegasus and can be used to apply to the
whole workflow. These are used to control DAGMan's behavior at the workflow level, and are recommended to be
specified in the properties file.

Table 10.7. Table 7: Useful dagman Commands that can be specified in the properties file.

Key Description

MAXPRE sets the maximum number of PRE scripts within the DAG
that may be running at one time

MAXPOST sets the maximum number of PRE scripts within the DAG
that may be running at one time

MAXJOBS sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

MAXIDLE sets the maximum number of idle jobs within the DAG
that will be submitted to Condor at one time.

[CATEGORY-NAME].MAXJOBS is the value of maxjobs for a particular category. Users can
associate different categories to the jobs at a per job basis.
However, the value of a dagman knob for a category can
only be specified at a per workflow basis in the properties.

POST.SCOPE scope for the postscripts.

1. If set to all , means each job in the workflow will have
a postscript associated with it.

2. If set to none , means no job has postscript associated
with it. None mode should be used if you are running

Reference Manual

136

vanilla / standard/ local universe jobs, as in those
cases Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job is the replica registration job.

The Pegasus Profile Namespace

The pegasus profiles allow users to configure extra options to the Pegasus Workflow Planner that can be applied
selectively to a job or a group of jobs. Site selectors may use a sub-set of pegasus profiles for their decision-making.

Table 8 shows some of the useful configuration option Pegasus understands.

Table 10.8. Table 8: Useful pegasus Profiles.

Key Description

workdir Sets the remote initial dir for a Condor-G job. Overrides
the work directory algorithm that uses the site catalog and
properties.

clusters.num Please refer to the Pegasus Clustering Guide for detailed
description. This option determines the total number of
clusters per level. Jobs are evenly spread across clusters.

clusters.size Please refer to the Pegasus Clustering Guide for detailed
description. This profile determines the number of jobs in
each cluster. The number of clusters depends on the total
number of jobs on the level.

cores The number of cores, associated with the job. This
is solely used for accounting purposes in the database
while generating statistics. It corresponds to the
multiplier_factor in the job_instance table described here.

job.runtime Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the expected runtime of
a job.

clusters.maxruntime Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the maximum runtime
of a job.

collapser Indicates the clustering executable that is used to run the
clustered job on the remote site.

gridstart Determines the executable for launching a job. Possible
values are Kickstart | NoGridStart at the moment.

gridstart.path Sets the path to the gridstart . This profile is best set in the
Site Catalog.

gridstart.arguments Sets the arguments with which GridStart is used to launch
a job on the remote site.

stagein.clusters This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, which is the Default Refiner used in
Pegasus. This profile is best set in the Site Catalog or in
the Properties file

stagein.local.clusters This key provides finer grained control in determining
the number of stage-in jobs that are executed locally and
are responsible for staging data to a particular remote

Reference Manual

137

site. This profile is best set in the Site Catalog or in the
Properties file

stagein.remote.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it. This
profile is best set in the Site Catalog or in the Properties
file

stageout.clusters This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, , which is the Default Refiner used in
Pegasus.

stageout.local.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and
are responsible for staging data from a particular remote
site. This profile is best set in the Site Catalog or in the
Properties file

stageout.remote.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on
the remote site and are responsible for staging data from
it. This profile is best set in the Site Catalog or in the
Properties file

group Tags a job with an arbitrary group identifier. The group
site selector makes use of the tag.

change.dir If true, tells kickstart to change into the remote working
directory. Kickstart itself is executed in whichever
directory the remote scheduling system chose for the job.

create.dir If true, tells kickstart to create the the remote working
directory before changing into the remote working
directory. Kickstart itself is executed in whichever
directory the remote scheduling system chose for the job.

transfer.proxy If true, tells Pegasus to explicitly transfer the proxy for
transfer jobs to the remote site. This is useful, when you
want to use a full proxy at the remote end, instead of the
limited proxy that is transferred by CondorG.

transfer.arguments Allows the user to specify the arguments with which the
transfer executable is invoked. However certain options
are always generated for the transfer executable(base-uri
se-mount-point).

style Sets the condor submit file style. If set to globus, submit
file generated refers to CondorG job submissions. If set
to condor, submit file generated refers to direct Condor
submission to the local Condor pool. It applies for glidein,
where nodes from remote grid sites are glided into the
local condor pool. The default style that is applied is
globus.

Sources for Profiles

Profiles may enter the job-processing stream at various stages. Depending on the requirements and scope a profile is
to apply, profiles can be associated at

• as user property settings.

• dax level

Reference Manual

138

• in the site catalog

• in the transformation catalog

Unfortunately, a different syntax applies to each level and context. This section shows the different profile sources
and syntaxes. However, at the foundation of each profile lies the triple of namespace, key and value.

User Profiles in Properties

Users can specify all profiles in the properties files where the property name is [namespace].key and value of the
property is the value of the profile.

Namespace can be env|condor|globus|dagman|pegasus

Any profile specified as a property applies to the whole workflow unless overridden at the DAX level , Site Catalog ,
Transformation Catalog Level.

Some profiles that they can be set in the properties file are listed below

env.JAVA_HOME "/software/bin/java"

condor.periodic_release 5
condor.periodic_remove my_own_expression
condor.stream_error true
condor.stream_output fa

globus.maxwalltime 1000
globus.maxtime 900
globus.maxcputime 10
globus.project test_project
globus.queue main_queue

dagman.post.arguments --test arguments
dagman.retry 4
dagman.post simple_exitcode
dagman.post.path.simple_exitcode /bin/exitcode/exitcode.sh
dagman.post.scope all
dagman.maxpre 12
dagman.priority 13

dagman.bigjobs.maxjobs 1

pegasus.clusters.size 5

pegasus.stagein.clusters 3

Profiles in DAX

The user can associate profiles with logical transformations in DAX. Environment settings required by a job's
application, or a maximum estimate on the run-time are examples for profiles at this stage.

<job id="ID000001" namespace="asdf" name="preprocess" version="1.0"
 level="3" dv-namespace="voeckler" dv-name="top" dv-version="1.0">
 <argument>-a top -T10 -i <filename file="voeckler.f.a"/>
 -o <filename file="voeckler.f.b1"/>
 <filename file="voeckler.f.b2"/></argument>
 <profile namespace="pegasus" key="walltime">2</profile>
 <profile namespace="pegasus" key="diskspace">1</profile>
 …
</job>

Profiles in Site Catalog

If it becomes necessary to limit the scope of a profile to a single site, these profiles should go into the site catalog.
A profile in the site catalog applies to all jobs and all application run at the site. Commonly, site catalog profiles set
environment settings like the LD_LIBRARY_PATH, or globus rsl parameters like queue and project names.

Currently, there is no tool to manipulate the site catalog, e.g. by adding profiles. Modifying the site catalog requires
that you load it into your editor.

Reference Manual

139

The XML version of the site catalog uses the following syntax:

<profile namespace="namespace" key="key">value</profile>

The XML schema requires that profiles are the first children of a pool element. If the element ordering is wrong, the
XML parser will produce errors and warnings:

<pool handle="isi_condor" gridlaunch="/home/shared/pegasus/bin/kickstart">
 <profile namespace="env"
 key="GLOBUS_LOCATION">/home/shared/globus/</profile>
 <profile namespace="env"
 key="LD_LIBRARY_PATH" >/home/shared/globus/lib</profile>
 <lrc url="rls://sukhna.isi.edu" />
 …
</pool>

The multi-line textual version of the site catalog uses the following syntax:

profile namespace "key" "value"

The order within the textual pool definition is not important. Profiles can appear anywhere:

pool isi_condor {
 gridlaunch "/home/shared/pegasus/bin/kickstart"
 profile env "GLOBUS_LOCATION" "/home/shared/globus"
 profile env "LD_LIBRARY_PATH" "/home/shared/globus/lib"
 …
}

Profiles in Transformation Catalog
Some profiles require a narrower scope than the site catalog offers. Some profiles only apply to certain applications
on certain sites, or change with each application and site. Transformation-specific and CPU-specific environment
variables, or job clustering profiles are good candidates. Such profiles are best specified in the transformation catalog.

Profiles associate with a physical transformation and site in the transformation catalog. The Database version of the
transformation catalog also permits the convenience of connecting a transformation with a profile.

The Pegasus tc-client tool is a convenient helper to associate profiles with transformation catalog entries. As benefit,
the user does not have to worry about formats of profiles in the various transformation catalog instances.

tc-client -a -P -E -p /home/shared/executables/analyze -t INSTALLED -r isi_condor -e
 env::GLOBUS_LOCATION=”/home/shared/globus”

The above example adds an environment variable GLOBUS_LOCATION to the application /home/shared/
executables/analyze on site isi_condor. The transformation catalog guide has more details on the usage of the tc-client.

Profiles Conflict Resolution
Irrespective of where the profiles are specified, eventually the profiles are associated with jobs. Multiple sources
may specify the same profile for the same job. For instance, DAX may specify an environment variable X. The site
catalog may also specify an environment variable X for the chosen site. The transformation catalog may specify an
environment variable X for the chosen site and application. When the job is concretized, these three conflicts need
to be resolved.

Pegasus defines a priority ordering of profiles. The higher priority takes precedence (overwrites) a profile of a lower
priority.

1. Transformation Catalog Profiles

2. Site Catalog Profiles

3. DAX Profiles

4. Profiles in Properties

Details of Profile Handling
The previous sections omitted some of the finer details for the sake of clarity. To understand some of the constraints
that Pegasus imposes, it is required to look at the way profiles affect jobs.

Reference Manual

140

Details of env Profiles

Profiles in the env namespace are translated to a semicolon-separated list of key-value pairs. The list becomes the
argument for the Condor environment command in the job's submit file.

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)
environment=GLOBUS_LOCATION=/shared/globus;LD_LIBRARY_PATH=/shared/globus/lib;
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor
remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue
##
END OF SUBMIT FILE

Condor-G, in turn, will translate the environment command for any remote job into Globus RSL environment settings,
and append them to any existing RSL syntax it generates. To permit proper mixing, all environment setting should
solely use the env profiles, and none of the Condor nor Globus environment settings.

If kickstart starts a job, it may make use of environment variables in its executable and arguments setting.

Details of globus Profiles

Profiles in the globus Namespaces are translated into a list of paranthesis-enclosed equal-separated key-value pairs.
The list becomes the value for the Condor globusrsl setting in the job's submit file:

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)(queue=fast)(project=nvo)
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor
remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue
##
END OF SUBMIT FILE

For this reason, Pegasus prohibits the use of the globusrsl key in the condor profile namespace.

Replica Selection
Each job in the DAX maybe associated with input LFN’s denoting the files that are required for the job to run.
To determine the physical replica (PFN) for a LFN, Pegasus queries the Replica catalog to get all the PFN’s
(replicas) associated with a LFN. The Replica Catalog may return multiple PFN's for each of the LFN's queried. Hence,
Pegasus needs to select a single PFN amongst the various PFN's returned for each LFN. This process is known as
replica selection in Pegasus. Users can specify the replica selector to use in the properties file.

This document describes the various Replica Selection Strategies in Pegasus.

Configuration
The user properties determine what replica selector Pegasus Workflow Mapper uses. The property
pegasus.selector.replica is used to specify the replica selection strategy. Currently supported Replica Selection
strategies are

1. Default

Reference Manual

141

2. Restricted

3. Regex

The values are case sensitive. For example the following property setting will throw a Factory Exception .

pegasus.selector.replica default

The correct way to specify is

pegasus.selector.replica Default

Supported Replica Selectors
The various Replica Selectors supported in Pegasus Workflow Mapper are explained below

Default

This is the default replica selector used in the Pegasus Workflow Mapper. If the property pegasus.selector.replica is
not defined in properties, then Pegasus uses this selector.

This selector looks at each PFN returned for a LFN and checks to see if

1. the PFN is a file URL (starting with file:///)

2. the PFN has a pool attribute matching to the site handle of the site where the compute job that requires the input
file is to be run.

If a PFN matching the conditions above exists then that is returned by the selector .

Else, a random PFN is selected amongst all the PFN’s that have a pool attribute matching to the site handle
of the site where a compute job is to be run.

Else, a random pfn is selected amongst all the PFN’s

To use this replica selector set the following property

pegasus.selector.replica Default

Restricted

This replica selector, allows the user to specify good sites and bad sites for staging in data to a particular compute site.
A good site for a compute site X, is a preferred site from which replicas should be staged to site X. If there are more
than one good sites having a particular replica, then a random site is selected amongst these preferred sites.

A bad site for a compute site X, is a site from which replica’s should not be staged. The reason of not accessing
replica from a bad site can vary from the link being down, to the user not having permissions on that site’s data.

The good | bad sites are specified by the following properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is taken to mean all
sites. The value to these properties is a comma separated list of sites.

For example the following settings

pegasus.selector.replica.*.prefer.stagein.sites usc
pegasus.replica.uwm.prefer.stagein.sites isi,cit

means that prefer all replicas from site usc for staging in to any compute site. However, for uwm use a tighter constraint
and prefer only replicas from site isi or cit. The pool attribute associated with the PFN's tells the replica selector to
what site a replica/PFN is associated with.

Reference Manual

142

The pegasus.replica.*.prefer.stagein.sites property takes precedence over pegasus.replica.*.ignore.stagein.sites
property i.e. if for a site X, a site Y is specified both in the ignored and the preferred set, then site Y is taken to mean
as only a preferred site for a site X.

To use this replica selector set the following property

pegasus.selector.replica Restricted

Regex

This replica selector allows the user allows the user to specific regex expressions that can be used to rank various
PFN’s returned from the Replica Catalog for a particular LFN. This replica selector selects the highest ranked
PFN i.e the replica with the lowest rank value.

The regular expressions are assigned different rank, that determine the order in which the expressions are employed.
The rank values for the regex can expressed in user properties using the property.

pegasus.selector.replica.regex.rank.[value] regex-expression

The [value] in the above property is an integer value that denotes the rank of an expression with a rank value of 1
being the highest rank.

For example, a user can specify the following regex expressions that will ask Pegasus to prefer file URL's over gsiftp
url's from example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://example\.isi\.edu.*

User can specify as many regex expressions as they want.

Since Pegasus is in Java , the regex expression support is what Java supports. It is pretty close to what is supported by
Perl. More details can be found at http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Before applying any regular expressions on the PFN’s for a particular LFN that has to be staged to a site X,
the file URL’s that don't match the site X are explicitly filtered out.

To use this replica selector set the following property

pegasus.selector.replica Regex

Local

This replica selector always prefers replicas from the local host (pool attribute set to local) and that start with a file:
URL scheme. It is useful, when users want to stagein files to a remote site from the submit host using the Condor
file transfer mechanism.

To use this replica selector set the following property

pegasus.selector.replica Default

Job Clustering
A large number of workflows executed through the Pegasus Workflow Management System, are composed of several
jobs that run for only a few seconds or so. The overhead of running any job on the grid is usually 60 seconds or more.
Hence, it makes sense to cluster small independent jobs into a larger job. This is done while mapping an abstract
workflow to a concrete workflow. Site specific or transformation specific criteria are taken into consideration while
clustering smaller jobs into a larger job in the concrete workflow. The user is allowed to control the granularity of
this clustering on a per transformation per site basis.

Overview
The abstract workflow is mapped onto the various sites by the Site Selector. This semi executable workflow is then
passed to the clustering module. The clustering of the workflow can be either be

Reference Manual

143

• level based (horizontal clustering)

• label based (label clustering)

The clustering module clusters the jobs into larger/clustered jobs, that can then be executed on the remote sites. The
execution can either be sequential on a single node or on multiple nodes using MPI. To specify which clustering
technique to use the user has to pass the --cluster option to pegasus-plan .

Generating Clustered Concrete DAG

The clustering of a workflow is activated by passing the --cluster|-C option to pegasus-plan. The clustering
granularity of a particular logical transformation on a particular site is dependant upon the clustering techniques being
used. The executable that is used for running the clustered job on a particular site is determined as explained in section
7.

#Running pegasus-plan to generate clustered workflows

$ pegasus-plan –-dax example.dax --dir ./dags –p siteX –-output local
 --cluster [comma separated list of clustering techniques] –verbose

Valid clustering techniques are horizontal and label.

The naming convention of submit files of the clustered jobs is merge_NAME_IDX.sub . The NAME is derived from
the logical transformation name. The IDX is an integer number between 1 and the total number of jobs in a cluster.
Each of the submit files has a corresponding input file, following the naming convention merge_NAME_IDX.in . The
input file contains the respective execution targets and the arguments for each of the jobs that make up the clustered job.

Horizontal Clustering

In case of horizontal clustering, each job in the workflow is associated with a level. The levels of the workflow are
determined by doing a modified Breadth First Traversal of the workflow starting from the root nodes. The level
associated with a node, is the furthest distance of it from the root node instead of it being the shortest distance as in
normal BFS. For each level the jobs are grouped by the site on which they have been scheduled by the Site Selector.
Only jobs of same type (txnamespace, txname, txversion) can be clustered into a larger job. To use horizontal clustering
the user needs to set the --cluster option of pegasus-plan to horizontal .

Controlling Clustering Granularity

The number of jobs that have to be clustered into a single large job, is determined by the value of two parameters
associated with the smaller jobs. Both these parameters are specified by the use of a PEGASUS namespace profile
keys. The keys can be specified at any of the placeholders for the profiles (abstract transformation in the DAX, site
in the site catalog, transformation in the transformation catalog). The normal overloading semantics apply i.e. profile
in transformation catalog overrides the one in the site catalog and that in turn overrides the one in the DAX. The two
parameters are described below.

• clusters.size factor

The clusters.size factor denotes how many jobs need to be merged into a single clustered job. It is specified via the
use of a PEGASUS namespace profile key “clusters.size”. for e.g. if at a particular level, say 4 jobs
referring to logical transformation B have been scheduled to a siteX. The clusters.size factor associated with job B
for siteX is say 3. This will result in 2 clustered jobs, one composed of 3 jobs and another of 2 jobs. The clusters.size
factor can be specified in the transformation catalog as follows

#site transformation pfn type architecture profiles

siteX B /shared/PEGASUS/bin/jobB INSTALLED INTEL32::LINUX PEGASUS::clusters.size=3
siteX C /shared/PEGASUS/bin/jobC INSTALLED INTEL32::LINUX PEGASUS::clusters.size=2

Reference Manual

144

Figure 10.1.

Reference Manual

145

• clusters.num factor

The clusters.num factor denotes how many clustered jobs does the user want to see per level per site. It is specified
via the use of a PEGASUS namespace profile key “clusters.num”. for e.g. if at a particular level,
say 4 jobs referring to logical transformation B have been scheduled to a siteX. The “clusters.num”
factor associated with job B for siteX is say 3. This will result in 3 clustered jobs, one composed of 2 jobs and others
of a single job each. The clusters.num factor in the transformation catalog can be specified as follows

#site transformation pfn type architecture profiles

siteX B /shared/PEGASUS/bin/jobB INSTALLED INTEL32::LINUX PEGASUS::clusters.num=3
siteX C /shared/PEGASUS/bin/jobC INSTALLED INTEL32::LINUX PEGASUS::clusters.num=2

In the case, where both the factors are associated with the job, the clusters.num value supersedes the clusters.size
value.

#site transformation pfn type architecture profiles

siteX B /shared/PEGASUS/bin/jobB INSTALLED INTEL32::LINUX
 PEGASUS::clusters.size=3,clusters.num=3

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered on the basis
of “clusters.num” value. Hence, if there are 4 jobs referring to logical transformation B scheduled
to siteX, then 3 clustered jobs will be created.

Reference Manual

146

Figure 10.2.

Reference Manual

147

Runtime Clustering

Workflows often consist of jobs of same type, but have varying run times. Two or more instances of the same job,
with varying inputs can differ significantly in their runtimes. A simple way to think about this is running the same
program on two distinct input sets, where one input is smaller (1 MB) as compared to the other which is 10 GB in
size. In such a case the two jobs will having significantly differing run times. When such jobs are clustered using
horizontal clustering, the benefits of job clustering may be lost if all smaller jobs get clustered together, while the
larger jobs are clustered together. In such scenarios it would be beneficial to be able to cluster jobs together such that
all clustered jobs have similar runtimes.

In case of runtime clustering, jobs in the workflow are associated with a level. The levels of the workflow are
determined in the same manner as in horizontal clustering. For each level the jobs are grouped by the site on which they
have been scheduled by the Site Selector. Only jobs of same type (txnamespace, txname, txversion) can be clustered
into a larger job. To use runtime clustering the user needs to set the --cluster option of pegasus-plan to horizontal.

Basic Algorithm of grouping jobs into clusters is as follows

// cluster.maxruntime - Is the maximum runtime for which the clustered job should run.
// j.runtime - Is the runtime of the job j.
1. Create a set of jobs of the same type (txnamespace, txname, txversion), and that run on the same
 site.
2. Sort the jobs in decreasing order of their runtime.
3. For each job j, repeat
 a. If j.runtime > cluster.maxruntime then
 ignore j.
 // Sum of runtime of jobs already in the bin + j.runtime <= cluster.maxruntime
 b. If j can be added to any existing bin (clustered job) then
 Add j to bin
 Else
 Add a new bin
 Add job j to newly added bin

The runtime of a job, and maximum runtime for which a clustered jobs should run, is determined by the value of two
parameters associated with the jobs.

• job.runtime

expected runtime for a job

• clusters.maxruntime

maxruntime for the clustered job

Both these parameters are specified by the use of a PEGASUS namespace profile keys. The keys can be specified at
any of the placeholders for the profiles (abstract transformation in the DAX, site in the site catalog, transformation in
the transformation catalog). The normal overloading semantics apply i.e. profile in transformation catalog overrides
the one in the site catalog and that in turn overrides the one in the DAX. The two parameters are described below.

#site transformation pfn type architecture profiles

siteX B /shared/PEGASUS/bin/jobB INSTALLED INTEL32::LINUX
 PEGASUS::clusters.maxruntime=250,job.runtime=100
siteX C /shared/PEGASUS/bin/jobC INSTALLED INTEL32::LINUX
 PEGASUS::clusters.maxruntime=300,job.runtime=100

Reference Manual

148

Figure 10.3.

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered such that all
clustered jobs will run approximately for the same duration specified by the clusters.maxruntime property. In the
above case we assume all jobs referring to transformation B run for 100 seconds. For jobs with significantly differeing
runtime, the job.runtime property will be associated with the jobs in the DAX.

In addition to the above two profiles, we need to inform pegasus-plan to use runtime clustering. This is done by setting
the following property .

 pegasus.clusterer.preference Runtime

Label Clustering

In label based clustering, the user labels the workflow. All jobs having the same label value are clustered into a single
clustered job. This allows the user to create clusters or use a clustering technique that is specific to his workflows. If
there is no label associated with the job, the job is not clustered and is executed as is

Figure 10.4.

Reference Manual

149

Since, the jobs in a cluster in this case are not independent, it is important the jobs are executed in the correct order.
This is done by doing a topological sort on the jobs in each cluster. To use label based clustering the user needs to
set the --cluster option of pegasus-plan to label.

Labelling the Workflow

The labels for the jobs in the workflow are specified by associated pegasus profile keys with the jobs during the DAX
generation process. The user can choose which profile key to use for labeling the workflow. By default, it is assumed
that the user is using the PEGASUS profile key label to associate the labels. To use another key, in the pegasus
namespace the user needs to set the following property

• pegasus.clusterer.label.key

For example if the user sets pegasus.clusterer.label.key to user_label then the job description in the DAX looks
as follows

<adag >
…
 <job id="ID000004" namespace="app" name="analyze" version="1.0" level="1" >
 <argument>-a bottom -T60 -i <filename file="user.f.c1"/> -o <filename file="user.f.d"/></
argument>
 <profile namespace=“pegasus” key=“user_label”>p1</profile>
 <uses file="user.f.c1" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file="user.f.c2" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file="user.f.d" link="output" dontRegister="false" dontTransfer="false"/>
 </job>
…
</adag>

• The above states that the pegasus profiles with key as user_label are to be used for designating clusters.

• Each job with the same value for pegasus profile key user_label appears in the same cluster.

Recursive Clustering

In some cases, a user may want to use a combination of clustering techniques. For e.g. a user may want some jobs in
the workflow to be horizontally clustered and some to be label clustered. This can be achieved by specifying a comma
separated list of clustering techniques to the –-cluster option of pegasus-plan. In this case the clustering
techniques are applied one after the other on the workflow in the order specified on the command line.

For example

$ pegasus-plan –-dax example.dax --dir ./dags --cluster label,horizontal –s siteX
 –-output local --verbose

Reference Manual

150

Figure 10.5.

Reference Manual

151

Execution of the Clustered Job

The execution of the clustered job on the remote site, involves the execution of the smaller constituent jobs either

• sequentially on a single node of the remote site

The clustered job is executed using seqexec, a wrapper tool written in C that is distributed as part of the
PEGASUS. It takes in the jobs passed to it, and ends up executing them sequentially on a single node. To use
“seqexec” for executing any clustered job on a siteX, there needs to be an entry in the transformation
catalog for an executable with the logical name seqexec and namespace as pegasus.

#site transformation pfn type architecture profiles

siteX pegasus::seqexec /shared/PEGASUS/bin/seqexec INSTALLED INTEL32::LINUX NULL

By default, the entry for seqexec on a site is automatically picked up if $PEGASUS_HOME or $VDS_HOME is
specified in the site catalog for that site.

• On multiple nodes of the remote site using MPI

The clustered job is executed using mpiexec, a wrapper mpi program written in C that is distributed as part of the
PEGASUS. It is only distributed as source not as binary. The wrapper ends up being run on every mpi node, with the
first one being the master and the rest of the ones as workers. The number of instances of mpiexec that are invoked is
equal to the value of the globus rsl key nodecount. The master distributes the smaller constituent jobs to the workers.

For e.g. If there were 10 jobs in the merged job and nodecount was 5, then one node acts as master, and the 10 jobs
are distributed amongst the 4 slaves on demand. The master hands off a job to the slave node as and when it gets
free. So initially all the 4 nodes are given a single job each, and then as and when they get done are handed more
jobs till all the 10 jobs have been executed.

To use “mpiexec” for executing the clustered job on a siteX, there needs to be an entry in the
transformation catalog for an executable with the logical name mpiexec and namespace as pegasus.

#site transformation pfn type architecture profiles

siteX pegasus::seqexec /shared/PEGASUS/bin/mpiexec INSTALLED INTEL32::LINUX NULL

Another added advantage of using mpiexec, is that regular non mpi code can be run via MPI.

Both the clustered job and the smaller constituent jobs are invoked via kickstart, unless the clustered job is being
run via mpi (mpiexec). Kickstart is unable to launch mpi jobs. If kickstart is not installed on a particular site i.e. the
gridlaunch attribute for site is not specified in the site catalog, the jobs are invoked directly.

Specification of Method of Execution for Clustered Jobs

The method execution of the clustered job(whether to launch via mpiexec or seqexec) can be specified

1. globally in the properties file

The user can set a property in the properties file that results in all the clustered jobs of the workflow being executed
by the same type of executable.

#PEGASUS PROPERTIES FILE
pegasus.clusterer.job.aggregator seqexec|mpiexec

In the above example, all the clustered jobs on the remote sites are going to be launched via the property value, as
long as the property value is not overridden in the site catalog.

2. associating profile key “collapser” with the site in the site catalog

<site handle="siteX" gridlaunch = "/shared/PEGASUS/bin/kickstart">
 <profile namespace="env" key="GLOBUS_LOCATION" >/home/shared/globus</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH">/home/shared/globus/lib</profile>
 <profile namespace="pegasus" key="collapser" >seqexec</profile>
 <lrc url="rls://siteX.edu" />
 <gridftp url="gsiftp://siteX.edu/" storage="/home/shared/work" major="2" minor="4"
 patch="0" />

Reference Manual

152

 <jobmanager universe="transfer" url="siteX.edu/jobmanager-fork" major="2" minor="4"
 patch="0" />
 <jobmanager universe="vanilla" url="siteX.edu/jobmanager-condor" major="2" minor="4"
 patch="0" />
 <workdirectory >/home/shared/storage</workdirectory>
 </site>

In the above example, all the clustered jobs on a siteX are going to be executed via seqexec, as long as the value
is not overridden in the transformation catalog.

3. associating profile key “collapser” with the transformation that is being clustered, in the
transformation catalog

#site transformation pfn type architecture profiles

siteX B /shared/PEGASUS/bin/jobB INSTALLED INTEL32::LINUX
 pegasus::clusters.size=3,collapser=mpiexec

In the above example, all the clustered jobs that consist of transformation B on siteX will be executed via mpiexec.

Note

The clustering of jobs on a site only happens only if

• there exists an entry in the transformation catalog for the clustering executable that has been determined by the
above 3 rules

• the number of jobs being clustered on the site are more than 1

Outstanding Issues

1. Label Clustering

More rigorous checks are required to ensure that the labeling scheme applied by the user is valid.

Data Transfers
As part of the Workflow Mapping Process, Pegasus does data management for the executable workflow . It queries
a Replica Catalog to discover the locations of the input datasets and adds data movement and registration nodes in
the workflow to

1. stage-in input data to the staging sites (a site associated with the compute job to be used for staging. In the shared
filesystem setup, staging site is the same as the execution sites where the jobs in the workflow are executed)

2. stage-out output data generated by the workflow to the final storage site.

3. stage-in intermediate data between compute sites if required.

4. data registration nodes to catalog the locations of the output data on the final storage site into the replica catalog.

The separate data movement jobs that are added to the executable workflow are responsible for staging data to
a workflow specific directory accessible to the staging server on a staging site associated with the compute sites.
Depending on the data staging configuration, the staging site for a compute site is the compute site itself. In the default
case, the staging server is usually on the headnode of the compute site and has access to the shared filesystem between
the worker nodes and the head node. Pegasus adds a directory creation job in the executable workflow that creates
the workflow specific directory on the staging server.

In addition to data, Pegasus does transfer user executables to the compute sites if the executables are not installed on
the remote sites before hand. This chapter gives an overview of how transfers of data and executables is managed
in Pegasus.

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

Reference Manual

153

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

Reference Manual

154

Figure 10.6. Shared File System Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Reference Manual

155

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 10.7. Non Shared Filesystem Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

Reference Manual

156

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be
specified using the --staging-site option to pegasus-plan.

Condor Pool Without a Shared Filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Reference Manual

157

Figure 10.8. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executeson the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on thesubmit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Reference Manual

158

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

Local versus Remote Transfers
As far as possible, Pegasus will ensure that the transfer jobs added to the executable workflow are executed on the
submit host. By default, Pegasus will schedule a transfer to be executed on the remote staging site only if there is
no way to execute it on the submit host. For e.g if the file server specified for the staging site/compute site is a file
server, then Pegasus will schedule all the stage in data movement jobs on the compute site to stage-in the input data
for the workflow. Another case would be if a user has symlinking turned on. In that case, the transfer jobs that symlink
against the input data on the compute site, will be executed remotely (on the compute site).

Users can specify the property pegasus.transfer.*.remote.sites to change the default behaviour of Pegasus and force
pegasus to run different types of transfer jobs for the sites specified on the remote site. The value of the property is a
comma separated list of compute sites for which you want the transfer jobs to run remotely.

The table below illustrates all the possible variations of the property.

Table 10.9. Property Variations for pegasus.transfer.*.remote.sites

Property Name Applies to

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

pegasus.transfer.stageout.remote.sites the stage out transfer jobs

pegasus.transfer.inter.remote.sites the inter site transfer jobs

pegasus.transfer.*.remote.sites all types of transfer jobs

The prefix for the transfer job name indicates whether the transfer job is to be executed locallly (on the submit host)
or remotely (on the compute site). For example stage_in_local_ in a transfer job name stage_in_local_isi_viz_0
indicates that the transfer job is a stage in transfer job that is executed locally and is used to transfer input data to
compute site isi_viz. The prefix naming scheme for the transfer jobs is [stage_in|stage_out|inter]_[local|remote]_ .

Symlinking Against Input Data
If input data for a job already exists on a compute site, then it is possible for Pegasus to symlink against that data.
In this case, the remote stage in transfer jobs that Pegasus adds to the executable workflow will symlink instead of
doing a copy of the data.

Pegasus determines whether a file is on the same site as the compute site, by inspecting the pool attribute associated
with the URL in the Replica Catalog. If the pool attribute of an input file location matches the compute site where the
job is scheduled, then that particular input file is a candidate for symlinking.

For Pegasus to symlink against existing input data on a compute site, following must be true

1. Property pegasus.transfer.links is set to true

2. The input file location in the Replica Catalog has the pool attribute matching the compute site.

Tip

To confirm if a particular input file is symlinked instead of being copied, look for the destination URL for
that file in stage_in_remote*.in file. The destination URL will start with symlink:// .

In the symlinking case, Pegasus strips out URL prefix from a URL and replaces it with a file URL.

For example if a user has the following URL catalogued in the Replica Catalog for an input file f.input

Reference Manual

159

f.input gsiftp://server.isi.edu/shared/storage/input/data/f.input pool="isi"

and the compute job that requires this file executes on a compute site named isi , then if symlinking is turned on the
data stage in job (stage_in_remote_viz_0) will have the following source and destination specified for the file

#viz viz
file:///shared/storage/input/data/f.input symlink://shared-scratch/workflow-exec-dir/f.input

Addition of Separate Data Movement Nodes to Executable
Workflow

Pegasus relies on a Transfer Refiner that comes up with the strategy on how many data movement nodes are added
to the executable workflow. All the compute jobs scheduled to a site share the same workflow specific directory. The
transfer refiners ensure that only one copy of the input data is transferred to the workflow execution directory. This
is to prevent data clobbering . Data clobbering can occur when compute jobs of a workflow share some input files,
and have different stage in transfer jobs associated with them that are staging the shared files to the same destination
workflow execution directory.

The default Transfer Refiner used in Pegasus is the Bundle Refiner that allows the user to specify how many local|
remote stagein|stageout jobs are created per execution site.

The behavior of the refiner is controlled by specifying certain pegasus profiles

1. either with the execution sites in the site catalog

2. OR globally in the properties file

Table 10.10. Pegasus Profile Keys For the Bundle Transfer Refiner

Profile Key Description

stagein.clusters This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per compute
site per workflow.

stagein.local.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.

stagein.remote.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it.

stageout.clusters This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow.

stageout.local.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and are
responsible for staging data from a particular remote site.

stageout.remote.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on the
remote site and are responsible for staging data from it.

Reference Manual

160

Figure 10.9. Default Transfer Case : Input Data To Workflow Specific Directory on Shared
File System

Reference Manual

161

Executable Used for Transfer Jobs
Pegasus refers to a python script called pegasus-transfer as the executable in the transfer jobs to transfer the data.
pegasus-transfer is a python based wrapper around various transfer clients . pegasus-transfer looks at source and
destination url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the
PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

Currently, pegasus-transfer interfaces with the following transfer clients

Table 10.11. Transfer Clients interfaced to by pegasus-transfer

Transfer Client Used For

globus-url-copy staging files to and from a gridftp server.

lcg-copy staging files to and from a SRM server.

wget staging files from a HTTP server.

cp copying files from a POSIX filesystem .

ln symlinking against input files.

pegasus-s3/s3cmd staging files to and from s3 bucket in the amazon cloud

scp staging files using scp

iget staging files to and from a irods server.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of PEGASUS_HOME env profile
specified in the site catalog. To specify a different path to the pegasus-transfer client , users can add an entry into the
transformation catalog with fully qualified logical name as pegasus::pegasus-transfer

Executables used for Directory Creation and Cleanup Jobs
Starting 4.0, Pegasus has changed the way how the scratch directories are created on the staging site. The planner
now prefers to schedule the directory creation and cleanup jobs locally. The jobs refer to python based tools, that call
out to protocol specific clients to determine what client is picked up. For protocols, where specific remote cleanup
and directory creation clients don't exist (for example gridftp), the python tools rely on the corresponding transfer
tool to create a directory by initiating a transfer of an empty file. The python clients used to create directories and
remove files are called

• pegasus-create-dir

• pegasus-cleanup

Both these clients inspect the URL's to to determine what underlying client to pick up.

Table 10.12. Clients interfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server

srm-mkdir to create directories against a SRM server.

mkdir to create a directory on the local filesystem

pegasus-s3 to create a s3 bucket in the amazon cloud

scp staging files using scp

imkdir to create a directory against an IRODS server

Table 10.13. Clients interfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove a file against a gridftp/ftp server. In this case a
zero byte file is created

Reference Manual

162

Client Used For

srm-rm to remove files against a SRM server.

rm to remove a file on the local filesystem

pegasus-s3 to remove a file from the s3 bucket.

scp to remove a file against a scp server. In this case a zero
byte file is created.

irm to remove a file against an IRODS server

The only case, where the create dir and cleanup jobs are scheduled to run remotely is when for the staging site, a
file server is specified.

Credentials Staging
Pegasus tries to do data staging from localhost by default, but some data scenarios makes some remote jobs do data
staging. An example of such a case is when running in nonsharedfs mode. Depending on the transfer protocols used,
the job may have to carry credentials to enable these datat transfers. To specify where which credential to use and
where Pegasus can find it, use environment variable profiles in your site catalog. The supported credential types are
X.509 grid proxies, Amazon AWS S3 keys, iRods password and SSH keys.

X.509 Grid Proxies

If the grid proxy is required by transfer jobs, and the proxy is in the standard location, Pegasus will pick the proxy up
automatically. For non-standard proxy locations, you can use the X509_USER_PROXY environment variable. Site
catalog example:

<profile namespace="env" key="X509_USER_PROXY" >/some/location/x509up</profile>

Amazon AWS S3

If a workflow is using s3 URLs, Pegasus has to be told where to find the .s3cfg file. This format of the file is described
in the pegaus-s3 command line client's man page. For the file to be picked up by the workflow, set the S3CFG
environment profile to the location of the file. Site catalog example:

<profile namespace="env" key="S3CFG" >/home/user/.s3cfg</profile>

iRods Password

If a workflow is using irods URLs, Pegasus has to be given an irodsEnv file. It is a standard file, with the addtion
of an password attribute. Example:

iRODS personal configuration file.
#
iRODS server host name:
irodsHost 'iren.renci.org'
iRODS server port number:
irodsPort 1259

Default storage resource name:
irodsDefResource 'renResc'
Home directory in iRODS:
irodsHome '/tip-renci/home/mats'
Current directory in iRODS:
irodsCwd '/tip-renci/home/mats'
Account name:
irodsUserName 'mats'
Zone:
irodsZone 'tip-renci'

this is used with Pegasus
irodsPassword 'somesecretpassword'

The location of the file can be given to the workflow using the irodsEnvFile environment profile. Site catalog
example:

Reference Manual

163

<profile namespace="env" key="irodsEnvFile" >/home/user/.irods/.irodsEnv</profile>

SSH Keys

New in Pegasus 4.0 is the support for data staging with scp using ssh public/private key authentication. In this mode,
Pegasus transports a private key with the jobs. The storage machines will have to have the public part of the key listed
in ~/.ssh/authorized_keys.

Warning

SSH keys should be handled in a secure manner. In order to keep your personal ssh keys secure, It is
recommended that a special set of keys are created for use with the workflow. Note that Pegasus will not
pick up ssh keys automatically. The user will have to specify which key to use with SSH_PRIVATE_KEY.

The location of the ssh private key can be specified with the SSH_PRIVATE_KEY environment profile. Site catalog
example:

<profile namespace="env" key="SSH_PRIVATE_KEY" >/home/user/wf/wfsshkey</profile>

Staging of Executables
Users can get Pegasus to stage the user executables (executables that the jobs in the DAX refer to) as part of the transfer
jobs to the workflow specific execution directory on the compute site. The URL locations of the executables need to
be specified in the transformation catalog as the PFN and the type of executable needs to be set to STAGEABLE .

The location of a transformation can be specified either in

• DAX in the executables section. More details here .

• Transformation Catalog. More details here .

A particular transformation catalog entry of type STAGEABLE is compatible with a compute site only if all the
System Information attributes associated with the entry match with the System Information attributes for the compute
site in the Site Catalog. The following attributes make up the System Information attributes

1. arch

2. os

3. osrelease

4. osversion

Transformation Mappers

Pegasus has a notion of transformation mappers that determines what type of executables are picked up when a job
is executed on a remote compute site. For transfer of executables, Pegasus constructs a soft state map that resides
on top of the transformation catalog, that helps in determining the locations from where an executable can be staged
to the remote site.

Users can specify the following property to pick up a specific transformation mapper

pegasus.catalog.transformation.mapper

Currently, the following transformation mappers are supported.

Table 10.14. Transformation Mappers Supported in Pegasus

Transformation Mapper Description

Installed This mapper only relies on transformation catalog entries
that are of type INSTALLED to construct the soft state
map. This results in Pegasus never doing any transfer of
executables as part of the workflow. It always prefers the
installed executables at the remote sites

Reference Manual

164

Transformation Mapper Description

Staged This mapper only relies on matching transformation
catalog entries that are of type STAGEABLE to construct
the soft state map. This results in the executable workflow
referring only to the staged executables, irrespective of
the fact that the executables are already installed at the
remote end

All This mapper relies on all matching transformation catalog
entries of type STAGEABLE or INSTALLED for a
particular transformation as valid sources for the transfer
of executables. This the most general mode, and results
in the constructing the map as a result of the cartesian
product of the matches.

Submit This mapper only on matching transformation catalog
entries that are of type STAGEABLE and reside at the
submit host (pool local), are used while constructing the
soft state map. This is especially helpful, when the user
wants to use the latest compute code for his computations
on the grid and that relies on his submit host.

Staging of Pegasus Worker Package

Pegasus can optionally stage the pegasus worker package as part of the executable workflow to remote workflow
specific execution directory. The pegasus worker package contains the pegasus auxillary executables that are required
on the remote site. If the worker package is not staged as part of the executable workflow, then Pegasus relies on
the installed version of the worker package on the remote site. To determine the location of the installed version of
the worker package on a remote site, Pegasus looks for an environment profile PEGASUS_HOME for the site in the
Site Catalog.

Users can set the following property to true to turn on worker package staging

pegasus.transfer.worker.package true

By default, when worker package staging is turned on pegasus pulls the compatible worker package from the Pegasus
Website. To specify a different worker package location, users can specify the transformation pegasus::worker in
the transformation catalog with

• type set to STAGEABLE

• System Information attributes of the transformation catalog entry match the System Information attributes of the
compute site.

• the PFN specified should be a remote URL that can be pulled to the compute site.

Worker Package Staging in Non Shared Filesystem setup

Worker package staging is automatically set to true , when workflows are setup to run in a non shared filesystem setup
i.e. pegasus.data.configuration is set to nonsharedfs or condorio . In these configurations, a stage_worker job is
created that brings in the worker package to the submit directory of the workflow. For each job, the worker package
is then transferred with the job using Condor File Transfers (transfer_input_files) . This transfer always happens
unless, PEGASUS_HOME is specified in the site catalog for the site on which the job is scheduled to run.

Users can explicitly set the following property to false, to turn off worker package staging by the Planner. This is
applicable , when running in the cloud and virtual machines / worker nodes already have the pegasus worker tools
installed.

pegasus.transfer.worker.package false

Reference Manual

165

Hierarchical Workflows

Introduction

The Abstract Workflow in addition to containing compute jobs, can also contain jobs that refer to other workflows.
This is useful for running large workflows or ensembles of workflows.

Users can embed two types of workflow jobs in the DAX

1. daxjob - refers to a sub workflow represented as a DAX. During the planning of a workflow, the DAX jobs are
mapped to condor dagman jobs that have pegasus plan invocation on the dax (referred to in the DAX job) as
the prescript.

Figure 10.10. Planning of a DAX Job

2. dagjob - refers to a sub workflow represented as a DAG. During the planning of a workflow, the DAG jobs are
mapped to condor dagman and refer to the DAG file mentioned in the DAG job.

Reference Manual

166

Figure 10.11. Planning of a DAG Job

Specifying a DAX Job in the DAX
Specifying a DAXJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dax vs job) and the attributes specified. DAXJob XML specification is described
in detail in the chapter on DAX API . An example DAX Job in a DAX is shown below

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 -vvvvv --force -s dax_site </argument>
 </dax>

DAX File Locations

The name attribute in the dax element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX .

Note

Currently, only file url's on the local site (submit host) can be specified as DAX file locations.

Arguments for a DAX Job

Users can specify specific arguments to the DAX Jobs. The arguments specified for the DAX Jobs are passed to the
pegasus-plan invocation in the prescript for the corresponding condor dagman job in the executable workflow.

Reference Manual

167

The following options for pegasus-plan are inherited from the pegasus-plan invocation of the parent workflow. If an
option is specified in the arguments section for the DAX Job then that overrides what is inherited.

Table 10.15. Options inherited from parent workflow

Option Name Description

--sites list of execution sites.

It is highly recommended that users dont specify directory related options in the arguments section for the DAX Jobs.
Pegasus assigns values to these options for the sub workflows automatically.

1. --relative-dir

2. --dir

3. --relative-submit-dir

Profiles for DAX Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above maxjobs is set to 10 for the sub workflow.

Execution of the PRE script and Condor DAGMan instance

The pegasus plan that is invoked as part of the prescript to the condor dagman job is executed on the submit host. The
log from the output of pegasus plan is redirected to a file (ending with suffix pre.log) in the submit directory of the
workflow that contains the DAX Job. The path to pegasus-plan is automatically determined.

The DAX Job maps to a Condor DAGMan job. The path to condor dagman binary is determined according to the
following rules -

1. entry in the transformation catalog for condor::dagman for site local, else

2. pick up the value of CONDOR_HOME from the environment if specified and set path to condor dagman as
$CONDOR_HOME/bin/condor_dagman , else

3. pick up the value of CONDOR_LOCATION from the environment if specified and set path to condor dagman as
$CONDOR_LOCATION/bin/condor_dagman , else

4. pick up the path to condor dagman from what is defined in the user's PATH

Tip

It is recommended that user dagman.maxpre in their properties file to control the maximum number of
pegasus plan instances launched by each running dagman instance.

Specifying a DAG Job in the DAX
Specifying a DAGJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dag vs job) and the attributes specified. For DAGJob XML details,see the API
Reference chapter . An example DAG Job in a DAX is shown below

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 </dag>

DAG File Locations

The name attribute in the dag element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

Reference Manual

168

1. Replica Catalog

2. Replica Catalog Section in the DAX.

Note

Currently, only file url's on the local site (submit host) can be specified as DAG file locations.

Profiles for DAG Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above, maxjobs is set to 10 for the sub workflow.

The dagman profile DIR allows users to specify the directory in which they want the condor dagman instance to
execute. In the example above black.dag is set to be executed in directory /dag-dir/test . The /dag-dir/test should be
created beforehand.

File Dependencies Across DAX Jobs

In hierarchal workflows , if a sub workflow generates some output files required by another sub workflow then there
should be an edge connecting the two dax jobs. Pegasus will ensure that the prescript for the child sub-workflow,
has the path to the cache file generated during the planning of the parent sub workflow. The cache file in the submit
directory for a workflow is a textual replica catalog that lists the locations of all the output files created in the remote
workflow execution directory when the workflow executes.

This automatic passing of the cache file to a child sub-workflow ensures that the datasets from the same workflow
run are used. However, the passing of the locations in a cache file also ensures that Pegasus will prefer them over all
other locations in the Replica Catalog. If you need the Replica Selection to consider locations in the Replica Catalog
also, then set the following property.

pegasus.catalog.replica.cache.asrc true

The above is useful in the case, where you are staging out the output files to a storage site, and you want the child
sub workflow to stage these files from the storage output site instead of the workflow execution directory where the
files were originally created.

Recursion in Hierarchal Workflows

It is possible for a user to add a dax jobs to a dax that already contain dax jobs in them. Pegasus does not place a
limit on how many levels of recursion a user can have in their workflows. From Pegasus perspective recursion in
hierarchal workflows ends when a DAX with only compute jobs is encountered . However, the levels of recursion are
limited by the system resources consumed by the DAGMan processes that are running (each level of nesting produces
another DAGMan process) .

The figure below illustrates an example with recursion 2 levels deep.

Reference Manual

169

Figure 10.12. Recursion in Hierarchal Workflows

Reference Manual

170

The execution time-line of the various jobs in the above figure is illustrated below.

Reference Manual

171

Figure 10.13. Execution Time-line for Hierarchal Workflows

Reference Manual

172

Example
The Galactic Plane workflow is a Hierarchical workflow of many Montage workflows. For details, see Workflow
of Workflows.

Notifications
The Pegasus Workflow Mapper now supports job and workflow level notifications. You can specify in the DAX with
the job or the workflow

• the event when the notification needs to be sent

• the executable that needs to be invoked.

The notifications are issued from the submit host by the pegasus-monitord daemon that monitors the Condor logs for
the workflow. When a notification is issued, pegasus-monitord while invoking the notifying executable sets certain
environment variables that contain information about the job and workflow state.

The Pegasus release comes with default notification clients that send notifications via email or jabber.

Specifying Notifications in the DAX
Currently, you can specify notifications for the jobs and the workflow by the use of invoke elements.

Invoke elements can be sub elements for the following elements in the DAX schema.

• job - to associate notifications with a compute job in the DAX.

• dax - to associate notifications with a dax job in the DAX.

• dag - to associate notifications with a dag job in the DAX.

• executable - to associate notifications with a job that uses a particular notification

The invoke element can be specified at the root element level of the DAX to indicate workflow level notifications.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set

Table 10.16. Table 1. Invoke Element attributes and meaning.

Enumeration of Values for when attribute Meaning

never (default). Never notify of anything. This is useful to
temporarily disable an existing notifications.

start create a notification when the job is submitted.

on_error after a job finishes with failure (exitcode != 0).

on_success after a job finishes with success (exitcode == 0).

at_end after a job finishes, regardless of exitcode.

all like start and at_end combined.

You can specify multiple invoke elements corresponding to same when attribute value in the DAX. This will allow
you to have multiple notifications for the same event.

Here is an example that illustrates that.

<job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>

Reference Manual

173

 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" register="false" transfer="true" type="data" />
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, on_end, all -->
 <invoke when="start">/path/to/notify1 arg1 arg2</invoke>
 <invoke when="start">/path/to/notify1 arg3 arg4</invoke>
 <invoke when="on_success">/path/to/notify2 arg3 arg4</invoke>
 </job>

In the above example the executable notify1 will be invoked twice when a job is submitted (when="start"), once with
arguments arg1 and arg2 and second time with arguments arg3 and arg4.

The DAX Generator API chapter has information about how to add notifications to the DAX using the DAX api's.

Notify File created by Pegasus in the submit directory
Pegasus while planning a workflow writes out a notify file in the submit directory that contains all the notifications
that need to be sent for the workflow. pegasus-monitord picks up this notifications file to determine what notifications
need to be sent and when.

1. ENTITY_TYPE ID NOTIFICATION_CONDITION ACTION

• ENTITY_TYPE can be either of the following keywords

• WORKFLOW - indicates workflow level notification

• JOB - indicates notifications for a job in the executable workflow

• DAXJOB - indicates notifications for a DAX Job in the executable workflow

• DAGJOB - indicates notifications for a DAG Job in the executable workflow

• ID indicates the identifier for the entity. It has different meaning depending on the entity type - -

• workflow - ID is wf_uuid

• JOB|DAXJOB|DAGJOB - ID is the job identifier in the executable workflow (DAG).

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification
conditions are enumerated in Table 1

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

2. INVOCATION JOB_IDENTIFIER INV.ID NOTIFICATION_CONDITION ACTION

The INVOCATION lines are only generated for clustered jobs, to specifiy the finer grained notifications for each
constitutent job/invocation .

• JOB IDENTIFIER is the job identifier in the executable workflow (DAG).

• INV.ID indicates the index of the task in the clustered job for which the notification needs to be sent.

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification
conditions are enumerated in Table 1

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

A sample notifications file generated is listed below.

WORKFLOW d2c4f79c-8d5b-4577-8c46-5031f4d704e8 on_error /bin/date1

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_error /bin/date_executable

Reference Manual

174

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_error /bin/date_executable

DAXJOB subdax_black_ID000003 on_error /bin/date13
JOB analyze_ID00004 on_success /bin/date

Configuring pegasus-monitord for notifications
Whenever pegasus-monitord enters a workflow (or sub-workflow) directory, it will read the notifications file generated
by Pegasus. Pegasus-monitord will match events in the running workflow against the notifications specified in the
notifications file and will initiate the script specified in a notification when that notification matches an event in the
workflow. It is important to note that there will be a delay between a certain event happening in the workflow, and
pegasus-monitord processing the log file and executing the corresponding notification script.

The following command line options (and properties) can change how pegasus-monitord handles notifications:

• --no-notifications (pegasus.monitord.notifications=False): Will disable notifications completely.

• --notifications-max=nn (pegasus.monitord.notifications.max=nn): Will limit the number of concurrent notification
scripts to nn. Once pegasus-monitord reaches this number, it will wait until one notification script finishes before
starting a new one. Notifications happening during this time will be queued by the system. The default number of
concurrent notification scripts for pegasus-monitord is 10.

• --notifications-timeout=nn (pegasus.monitord.notifications.timeout=nn): This setting is used to change how long
will pegasus-monitord wait for a notification script to finish. By default pegasus-monitord will wait for as long as
it takes (possibly indefinitely) until a notification script ends. With this option, pegasus-monitord will wait for at
most nn seconds before killing the notification script.

It is also important to understand that pegasus-monitord will not issue any notifications when it is executed in replay
mode.

Environment set for the notification scripts

Whenever a notification in the notifications file matches an event in the running workflow, pegasus-monitord will
run the corresponding script specified in the ACTION field of the notifications file. Pegasus-monitord will set the
following environment variables for each notification script is starts:

• PEGASUS_EVENT: The NOTIFICATION_CONDITION that caused the notification. In the case of the "all"
condition, pegasus-monitord will substitute it for the actual event that caused the match (e.g. "start" or "at_end").

• PEGASUS_EVENT_TIMESTAMP: Timestamp in EPOCH format for the event (better for automated processing).

• PEGASUS_EVENT_TIMESTAMP_ISO: Same as above, but in ISO format (better for human readability).

• PEGASUS_SUBMIT_DIR: The submit directory for the workflow (usually the value from "submit_dir" in the
braindump.txt file)

• PEGASUS_STDOUT: For workflow notifications, this will correspond to the dagman.out file for that workflow.
For job and invocation notifications, this field will contain the output file (stdout) for that particular job instance.

• PEGASUS_STDERR: For job and invocation notifications, this field will contain the error file (stderr) for the
particular executable job instance. This field does not exist in case of workflow notifications.

• PEGASUS_WFID: Contains the workflow id for this notification in the form of DAX_LABEL + DAX_INDEX
(from the braindump.txt file).

• PEGASUS_JOBID: For workflow notifications, this contains the worfkflow wf_uuid (from the braindump.txt file).
For job and invocation notifications, this field contains the job identifier in the executable workflow (DAG) for
the particular notification.

• PEGASUS_INVID: Contains the index of the task in the clustered job for the notification.

• PEGASUS_STATUS: For workflow notifications, this contains DAGMan's exit code. For job and invocation
notifications, this field contains the exit code for the particular job/task. Please note that this field is not present
for 'start' notification events.

Reference Manual

175

Default Notification Scripts
Pegasus ships with two reference notification scripts. These can be used as starting point when creating your own
notification scripts, or if the default one is all you need, you can use them directly in your workflows. The scripts are:

• libexec/notification/email - sends email, including the output from pegasus-status (default) or pegasus-analyzer.

$./libexec/notification/email --help
Usage: email [options]

Options:
 -h, --help show this help message and exit
 -t TO_ADDRESS, --to=TO_ADDRESS
 The To: email address. Defines the recipient for the
 notification.
 -f FROM_ADDRESS, --from=FROM_ADDRESS
 The From: email address. Defaults to the required To:
 address.
 -r REPORT, --report=REPORT
 Include workflow report. Valid values are: none
 pegasus-analyzer pegasus-status (default)

• libexec/notification/jabber - sends simple notifications to Jabber/GTalk. This can be useful for job failures.

$./libexec/notification/jabber --help
Usage: jabber [options]

Options:
 -h, --help show this help message and exit
 -i JABBER_ID, --jabberid=JABBER_ID
 Your jabber id. Example: user@jabberhost.com
 -p PASSWORD, --password=PASSWORD
 Your jabber password
 -s HOST, --host=HOST Jabber host, if different from the host in your jabber
 id. For Google talk, set this to talk.google.com
 -r RECIPIENT, --recipient=RECIPIENT
 Jabber id of the recipient. Not necessary if you want
 to send to your own jabber id

For example, if the DAX generator is written in Python and you want notifications on 'at_end' events (successful or
failed):

job level notifications - in this case for at_end events
job.invoke('at_end', pegasus_home + "/libexec/notifications/email --to me@somewhere.edu")

Please see the notifications example to see a full workflow using notifications.

API Reference

DAX XML Schema
The DAX format is described by the XML schema instance document dax-3.3.xsd [http://pegasus.isi.edu/wms/
docs/schemas/dax-3.3/dax-3.3.xsd]. A local copy of the schema definition is provided in the “etc” directory. The
documentation of the XML schema and its elements can be found in dax-3.3.html [http://pegasus.isi.edu/wms/docs/
schemas/dax-3.3/dax-3.3.html] as well as locally in doc/schemas/dax-3.3/dax-3.3.html in your Pegasus
distribution.

DAX XML Schema In Detail

The DAX file format has four major sections, with the second section divided into more sub-sections. The DAX
format works on the abstract or logical level, letting you focus on the shape of the workflows, what to do and what
to work upon.

1. Workflow-level Notifications

Very simple workflow-level notifications. These are defined in the Notification section.

http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html

Reference Manual

176

2. Catalogs

The first section deals with included catalogs. While we do recommend to use external replica- and transformation
catalogs, it is possible to include some replicas and transformations into the DAX file itself. Any DAX-included
entry takes precedence over regular replica catalog (RC) and transformation catalog (TC) entries.

The first section (and any of its sub-sections) is completely optional.

a. The first sub-section deals with included replica descriptions.

b. The second sub-section deals with included transformation descriptions.

c. The third sub-section declares multi-item executables.

3. Job List

The jobs section defines the job- or task descriptions. For each task to conduct, a three-part logical name declares the
task and aides identifying it in the transformation catalog or one of the executable section above. During planning,
the logical name is translated into the physical executable location on the chosen target site. By declaring jobs
abstractly, physical layout consideration of the target sites do not matter. The job's id uniquley identifies the job
within this workflow.

The arguments declare what command-line arguments to pass to the job. If you are passing filenames, you should
refer to the logical filename using the file element in the argument list.

Important for properly planning the task is the list of files consumed by the task, its input files, and the files produced
by the task, its output files. Each file is described with a uses element inside the task.

Elements exist to link a logical file to any of the stdio file descriptors. The profile element is Pegasus's way to
abstract site-specific data.

Jobs are nodes in the workflow graph. Other nodes include unplanned workflows (DAX), which are planned and
then run when the node runs, and planned workflows (DAG), which are simply executed.

4. Control-flow Dependencies

The third section lists the dependencies between the tasks. The relationships are defined as child parent
relationships, and thus impacts the order in which tasks are run. No cyclic dependencies are permitted.

Dependencies are directed edges in the workflow graph.

XML Intro

If you have seen the DAX schema before, not a lot of new items in the root element. However, we did retire the (old)
attributes ending in Count.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2011-07-28T18:29:57Z -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.3.xsd"
 version="3.3"
 name="diamond"
 index="0"
 count="1">

The following attributes are supported for the root element adag.

Table 10.17.

attribute optional? type meaning

version required VersionPattern Version number of DAX
instance document. Must be
3.3.

Reference Manual

177

attribute optional? type meaning

name required string name of this DAX (or set of
DAXes).

count optional positiveInteger size of list of DAXes with
this name. Defaults to 1.

index optional nonNegativeInteger current index of DAX with
same name. Defaults to 0.

fileCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

jobCount removed positiveInteger Old 2.1 attribute, removed,
do not use.

childCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

The version attribute is restricted to the regular expression \d+(\.\d+(\.\d+)?)?.This expression represents
the VersionPattern type that is used in other places, too. It is a more restrictive expression than before, but allows us
to compute comparable version number using the following formula:

version1: a.b.c version2: d.e.f

n = a * 1,000,000 + b * 1,000 + c m = d * 1,000,000 + e * 1,000 + f

version1 > version2 if n > m

Workflow-level Notifications

(something to be said here.)

 <!-- part 1.1: invocations -->
 <invoke when="at_end">/bin/date -Ins >> my.log</invoke>

The above snippet will append the current time to a log file in the current directory. This is with regards to the monitord
instance acting on the notification.

The Catalogs Section

The initial section features three sub-sections:

1. a catalog of files used,

2. a catalog of transformations used, and

3. compound transformation declarations.

The Replica Catalog Section

The file section acts as in in-file replica catalog (RC). Any files declared in this section take precedence over files in
external replica catalogs during planning.

 <!-- part 1.2: included replica catalog -->
 <file name="example.a" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE -->
 <profile namespace="stat" key="size">/* integer to be defined */</profile>
 <profile namespace="stat" key="md5sum">/* 32 char hex string */</profile>
 <profile namespace="stat" key="mtime">/* ISO-8601 timestamp */</profile>

 <!-- metadata is currently NOT SUPPORTED -->
 <metadata key="timestamp" type="int">/* ISO-8601 *or* 20100417134523:int */</metadata>
 <metadata key="origin" type="string">ocean</metadata>

 <!-- PFN to by-pass replica catalog -->
 <!-- The "site attribute is optional -->
 <pfn url="file:///tmp/example.a" site="local">
 <profile namespace="stat" key="owner">voeckler</profile>

Reference Manual

178

 </pfn>
 <pfn url="file:///storage/funky.a" site="local"/>
 </file>

 <!-- a more typical example from the black diamond -->
 <file name="f.a">
 <pfn url="file:///Users/voeckler/f.a" site="local"/>
 </file>

The first file entry above is an example of a data file with two replicas. The file element requires a logical file name.
Each logical filename may have additional information associated with it, enumerated by profile elements. Each file
entry may have 0 or more metadata associated with it. Each piece of metadata has a key string and type attribute
describing the element's value.

Warning

The metadata element is not support as of this writing! Details may change in the future.

The file element can provide 0 or more pfn locations, taking precedence over the replica catalog. A file element that
does not name any pfn children-elements will still require look-ups in external replica catalogs. Each pfn element
names a concrete location of a file. Multiple locations constitute replicas of the same file, and are assumed to be
usable interchangably. The url attribute is mandatory, and typically would use a file schema URL. The site attribute
is optional, and defaults to value local if missing. A pfn element may have profile children-elements, which refer to
attributes of the physical file. The file-level profiles refer to attributes of the logical file.

Note

The stat profile namespace is ony an example, and details about stat are not yet implemented. The proper
namespaces pegasus, condor, dagman, env, hints, globus and selector enjoy full support.

The second file entry above shows a usage example from the black-diamond example workflow that you are more
likely to encouter or write.

The presence of an in-file replica catalog lets you declare a couple of interesting advanced features. The DAG and
DAX file declarations are just files for all practical purposes. For deferred planning, the location of the site catalog
(SC) can be captured in a file, too, that is passed to the job dealing with the deferred planning as logical filename.

 <file name="black.dax" >
 <!-- specify the location of the DAX file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond_dax.xml" site="local"/>
 </file>

 <file name="black.dag" >
 <!-- specify the location of the DAG file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond.dag" site="local"/>
 </file>

 <file name="sites.xml" >
 <!-- specify the location of a site catalog to use for deferred planning -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/conf/sites.xml" site="local"/>
 </file>

The Transformation Catalog Section

The executable section acts as an in-file transformation catalog (TC). Any transformations declared in this section
take precedence over the external transformation catalog during planning.

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="example" name="mDiffFit" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE! -->
 <profile namespace="stat" key="size">5000</profile>
 <profile namespace="stat" key="md5sum">AB454DSSDA4646DS</profile>
 <profile namespace="stat" key="mtime">2010-11-22T10:05:55.470606000-0800</profile>

 <!-- metadata is currently NOT SUPPORTED! -->
 <metadata key="timestamp" type="int">/* see above */</metadata>
 <metadata key="origin" type="string">ocean</metadata>

Reference Manual

179

 <!-- PFN to by-pass transformation catalog -->
 <!-- The "site" attribute is optional -->
 <pfn url="file:///tmp/mDiffFit" site="local"/>
 <pfn url="file:///tmp/storage/mDiffFit" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mDiff" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiff" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mFitplane" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiffFitplane" site="local">
 <profile namespace="stat" key="md5sum">0a9c38b919c7809cb645fc09011588a6</profile>
 </pfn>
 <invoke when="at_end">/path/to/my_send_email some args</invoke>
 </executable>

 <!-- a more likely example from the black diamond -->
 <executable namespace="diamond" name="preprocess" version="2.0"
 arch="x86_64"
 os="linux"
 osversion="2.6.18">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="local" />
 </executable>

Logical filenames pertaining to a single executables in the transformation catalog use the executable element. Any
executable element features the optional namespace attribute, a mandatory name attribute, and an optional version
attribute. The version attribute defaults to "1.0" when absent. An executable typically needs additional attributes to
describe it properly, like the architecture, OS release and other flags typically seen with transformations, or found in
the transformation catalog.

Table 10.18.

attribute optional? type meaning

name required string logical transformation name

namespace optional string namespace of logical
transformation, default to
null value.

version optional VersionPattern version of logical
transformation, defaults to
"1.0".

installed optional boolean whether to stage the file
(false), or not (true, default).

arch optional Architecture restricted set of tokens, see
schema definition file.

os optional OSType restricted set of tokens, see
schema definition file.

osversion optional VersionPattern kernel version as beginning
of `uname -r`.

glibc optional VersionPattern version of libc.

The rationale for giving these flags in the executable element header is that PFNs are just identical replicas or instances
of a given LFN. If you need a different 32/64 bit-ed-ness or OS release, the underlying PFN would be different, and
thus the LFN for it should be different, too.

Note

We are still discussing some details and implications of this decision.

Reference Manual

180

The initial examples come with the same caveats as for the included replica catalog.

Warning

The metadata element is not support as of this writing! Details may change in the future.

Similar to the replica catalog, each executable element may have 0 or more profile elements abstracting away site-
specific details, zero or more metadata elements, and zero or more pfn elements. If there are no pfn elements, the
transformation must still be searched for in the external transformation catalog. As before, the pfn element may have
profile children-elements, referring to attributes of the physical filename itself.

Each executable element may also feature invoke elements. These enable notifications at the appropriate point when
every job that uses this executable reaches the point of notification. Please refer to the notification section for details
and caveats.

The last example above comes from the black diamond example workflow, and presents the kind and extend of
attributes you are most likely to see and use in your own workflows.

The Compound Transformation Section

The compound transformation section declares a transformation that comprises multiple plain transformation. You
can think of a compound transformation like a script interpreter and the script itself. In order to properly run the
application, you must start both, the script interpreter and the script passed to it. The compound transformation helps
Pegasus to properly deal with this case, especially when it needs to stage executables.

 <transformation namespace="example" version="1.0" name="mDiffFit" >
 <uses name="mDiffFit" />
 <uses name="mDiff" namespace="example" version="2.0" />
 <uses name="mFitPlane" />
 <uses name="mDiffFit.config" executable="false" />
 </transformation>

A transformation element declares a set of purely logical entities, executables and config (data) files, that are all
required together for the same job. Being purely logical entities, the lookup happens only when the transformation
element is referenced (or instantiated) by a job element later on.

The namespace and version attributes of the transformation element are optional, and provide the defaults for the inner
uses elements. They are also essential for matching the transformation with a job.

The transformation is made up of 1 or more uses element. Each uses has a boolean attribute executable, true by
default, or false to indicate a data file. The name is a mandatory attribute, refering to an LFN declared previously
in the File Catalog (executable is false), Executable Catalog (executable is true), or to be looked up as necessary
at instantiation time. The lookup catalog is determined by the executable attribute.

After uses elements, any number of invoke elements may occur to add a notification each whenever this transformation
is instantiated.

The namespace and version attributes' default values inside uses elements are inherited from the transformation
attributes of the same name. There is no such inheritance for uses elements with executable attribute of false.

Graph Nodes

The nodes in the DAX comprise regular job nodes, already instantiated sub-workflows as dag nodes, and still to
be instantiated dax nodes. Each of the graph nodes can has a mandatory id attribute. The id attribute is currently a
restriction of type NodeIdentifierPattern type, which is a restriction of the xs:NMTOKEN type to letters, digits, hyphen
and underscore.

The level attribute is deprecated, as the planner will trust its own re-computation more than user input. Please do not
use nor produce any level attribute.

The node-label attribute is optional. It applies to the use-case when every transformation has the same name, but its
arguments determine what it really does. In the presence of a node-label value, a workflow grapher could use the label
value to show graph nodes to the user. It may also come in handy while debugging.

Reference Manual

181

Any job-like graph node has the following set of children elements, as defined in the AbstractJobType declaration
in the schema definition:

• 0 or 1 argument element to declare the command-line of the job's invocation.

• 0 or more profile elements to abstract away site-specific or job-specific details.

• 0 or 1 stdin element to link a logical file the the job's standard input.

• 0 or 1 stdout element to link a logical file to the job's standard output.

• 0 or 1 stderr element to link a logical file to the job's standard error.

• 0 or more uses elements to declare consumed data files and produced data files.

• 0 or more invoke elements to solicit notifications whence a job reaches a certain state in its life-cycle.

Job Nodes

A job element has a number of attributes. In addition to the id and node-label described in (Graph Nodes)above,
the optional namespace, mandatory name and optional version identify the transformation, and provide the look-
up handle: first in the DAX's transformation elements, then in the executable elements, and finally in an external
transformation catalog.

 <!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>
 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" register="false" transfer="true" type="data" />
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, on_end, all -->
 <!-- PEGASUS_* env-vars: event, status, submit dir, wf/job id, stdout, stderr -->
 <invoke when="start">/path/to arg arg</invoke>
 <invoke when="on_success"><![CDATA[/path/to arg arg]]></invoke>
 <invoke when="on_end"><![CDATA[/path/to arg arg]]></invoke>
 </job>

The argument element contains the complete command-line that is needed to invoke the executable. The only variable
components are logical filenames, as included file elements.

The profile argument lets you encapsulate site-specific knowledge .

The stdin, stdout and stderr element permits you to connect a stdio file descriptor to a logical filename. Note that you
will still have to declare these files in the uses section below.

The uses element enumerates all the files that the task consumes or produces. While it is not necessary nor required
to have all files appear on the command-line, it is imperative that you declare even hidden files that your task requires
in this section, so that the proper ancilliary staging- and clean-up tasks can be generated during planning.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set:

Table 10.19.

keyword job life-cycle state meaning

never never (default). Never notify of anything.
This is useful to temporarily disable
an existing notifications.

Reference Manual

182

keyword job life-cycle state meaning

start submit create a notification when the job is
submitted.

on_error end after a job finishes with failure
(exitcode != 0).

on_success end after a job finishes with success
(exitcode == 0).

at_end end after a job finishes, regardless of
exitcode.

all always like start and at_end combined.

Warning

In clustered jobs, a notification can only be sent at the start or end of the clustered job, not for each member.

Each invoke is a simple local invocation of an executable or script with the specified arguments. The executable inside
the invoke body will see the following environment variables:

Table 10.20.

variable job life-cycle state meaning

PEGASUS_EVENT always The value of the when attribute

PEGASUS_STATUS end The exit status of the graph node. Only
available for end notifications.

PEGASUS_SUBMIT_DIR always In which directory to find the job (or
workflow).

PEGASUS_JOBID always The job (or workflow) identifier. This
is potentially more than merely the
value of the id attribute.

PEGASUS_STDOUT always The filename where stdout goes.
Empty and possibly non-existent at
submit time (though we still have the
filename). The kickstart record for job
nodes.

PEGASUS_STDERR always The filename where stderr goes.
Empty and possibly non-existent at
submit time (though we still have the
filename).

Generators should use CDATA encapsulated values to the invoke element to minimize interference. Unfortunately,
CDATA cannot be nested, so if the user invocation contains a CDATA section, we suggest that they use careful XML-
entity escaped strings. The notifications section describes these in further detail.

DAG Nodes

A workflow that has already been concretized, either by an earlier run of Pegasus, or otherwise constructed for
DAGMan execution, can be included into the current workflow using the dag element.

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 <invoke> <!-- optional, should be possible --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data"/>
 </dag>

The id and node-label attributes were described previously. The name attribute refers to a file from the File Catalog
that provides the actual DAGMan DAG as data content. The dag element features optional profile elements. These

Reference Manual

183

would most likely pertain to the dagman and env profile namespaces. It should be possible to have the optional
notify element in the same manner as for jobs.

A graph node that is a dag instead of a job would just use a different submit file generator to create a DAGMan
invocation. There can be an argument element to modify the command-line passed to DAGMan.

DAX Nodes

A still to be planned workflow incurs an invocation of the Pegasus planner as part of the workflow. This still abstract
sub-workflow uses the dax element.

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="env" key="foo">bar</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 --dir ./datafind -vvvvv --force -s dax_site </argument>
 <invoke> <!-- optional, may not be possible here --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data" />
 </dax>

In addition to the id and node-label attributes, See Graph Nodes. The name attribute refers to a file from the File
Catalog that provides the to be planned DAX as external file data content. The dax element features optional profile
elements. These would most likely pertain to the pegasus, dagman and env profile namespaces. It may be possible
to have the optional notify element in the same manner as for jobs.

A graph node that is a dax instead of a job would just use yet another submit file and pre-script generator to create a
DAGMan invocation. The argument string pertains to the command line of the to-be-generated DAGMan invocation.

Inner ADAG Nodes

While completeness would argue to have a recursive nesting of adag elements, such recursive nestings are currently
not supported, not even in the schema. If you need to nest workflows, please use the dax or dag element to achieve
the same goal.

The Dependency Section

This section describes the dependencies between the jobs.

 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" edge-label="edge1" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" edge-label="edge2" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" edge-label="edge3" />
 <parent ref="ID000003" edge-label="edge4" />
 </child>

Each child element contains one or more parent element. Either element refers to a job, dag or dax element id
attribute using the ref attribute. In this version, we relaxed the xs:IDREF constraint in favor of a restriction on the
xs:NMTOKEN type to permit a larger set of identifiers.

The parent element has an optional edge-label attribute.

Warning

The edge-label attribute is currently unused.

Its goal is to annotate edges when drawing workflow graphs.

Closing

As any XML element, the root element needs to be closed.

Reference Manual

184

</adag>

DAX XML Schema Example

The following code example shows the XML instance document representing the diamond workflow.

<?xml version="1.0" encoding="UTF-8"?>
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/dax-3.3.xsd"
 version="3.3" name="diamond" index="0" count="1">
 <!-- part 1.1: invocations -->
 <invoke when="on_error">/bin/mailx -s 'diamond failed' use@some.domain</invoke>

 <!-- part 1.2: included replica catalog -->
 <file name="f.a">
 <pfn url="file:///lfs/voeckler/src/svn/pegasus/trunk/examples/grid-blackdiamond-perl/f.a"
 site="local" />
 </file>

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="diamond" name="preprocess" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="analyze" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="findrange" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>

 <!-- part 2: definition of all jobs (at least one) -->
 <job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
 <argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /
></argument>
 <uses name="f.b2" link="output" register="false" transfer="true" />
 <uses name="f.b1" link="output" register="false" transfer="true" />
 <uses name="f.a" link="input" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000002">
 <argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
 <uses name="f.b1" link="input" register="false" transfer="true" />
 <uses name="f.c1" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000003">
 <argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
 <uses name="f.b2" link="input" register="false" transfer="true" />
 <uses name="f.c2" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="analyze" version="2.0" id="ID000004">
 <argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></
argument>
 <uses name="f.c2" link="input" register="false" transfer="true" />
 <uses name="f.d" link="output" register="false" transfer="true" />
 <uses name="f.c1" link="input" register="false" transfer="true" />
 </job>

 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" />
 <parent ref="ID000003" />

Reference Manual

185

 </child>
</adag>

The above workflow defines the black diamond from the abstract workflow section of the Introduction chapter. It will
require minimal configuration, because the catalog sections include all necessary declarations.

The file element defines the location of the required input file in terms of the local machine. Please note that

• The file element declares the required input file "f.a" in terms of the local machine. Please note that if you plan the
workflow for a remote site, the has to be some way for the file to be staged from the local site to the remote site.
While Pegasus will augment the workflow with such ancillary jobs, the site catalog as well as local and remote site
have to be set up properlyl. For a locally run workflow you don't need to do anything.

• The executable elements declare the same executable keg that is to be run for each the logical transformation in
terms of the remote site futuregrid. To declare it for a local site, you would have to adjust the site attribute's value
to local. This section also shows that the same executable may come in different guises as transformation.

• The job elements define the workflow's logical constituents, the way to invoke the keg command, where to put
filenames on the commandline, and what files are consumed or produced. In addition to the direction of files, further
attributes determine whether to register the file with a replica catalog and whether to transfer it to the output site in
case of a product. We are only interested in the final data product "f.d" in this workflow, and not any intermediary
files. Typically, you would also want to register the data products in the replica catalog, especially in larger scenarios.

• The child elements define the control flow between the jobs.

DAX Generator API
The DAX generating APIs support Java, Perl and Python. This section will show in each language the necessary code,
using Pegasus-provided libraries, to generate the diamond DAX example above. There may be minor differences in
details, e.g. to show-case certain features, but effectively all generate the same basic diamond.

The Java DAX Generator API

The Java DAX API provided with the Pegasus distribution allows easy creation of complex and huge workflows. This
API is used by several applications to generate their abstract DAX. SCEC, which is Southern California Earthquake
Center, uses this API in their CyberShake workflow generator to generate huge DAX containing 10’s of
thousands of tasks with 100’s of thousands of input and output files. The Java API [http://pegasus.isi.edu/wms/
docs/3.0/javadoc/index.html] is well documented using Javadoc for ADAGs [http://pegasus.isi.edu/wms/docs/3.0/
javadoc/edu/isi/pegasus/planner/dax/ADAG.html] .

The steps involved in creating a DAX using the API are

1. Create a new ADAG object

2. Add any Workflow notification elements

3. Create File objects as necessary. You can augment the files with physical information, if you want to include them
into your DAX. Otherwise, the physical information is determined from the replica catalog.

4. (Optional) Create Executable objects, if you want to include your transformation catalog into your DAX. Otherwise,
the translation of a job/task into executable location happens with the transformation catalog.

5. Create a new Job object.

6. Add arguments, files, profiles, notifications and other information to the Job object

7. Add the job object to the ADAG object

8. Repeat step 4-6 as necessary.

9. Add all dependencies to the ADAG object.

http://pegasus.isi.edu/wms/docs/3.0/javadoc/index.html
http://pegasus.isi.edu/wms/docs/3.0/javadoc/index.html
http://pegasus.isi.edu/wms/docs/3.0/javadoc/index.html
http://pegasus.isi.edu/wms/docs/3.0/javadoc/edu/isi/pegasus/planner/dax/ADAG.html
http://pegasus.isi.edu/wms/docs/3.0/javadoc/edu/isi/pegasus/planner/dax/ADAG.html
http://pegasus.isi.edu/wms/docs/3.0/javadoc/edu/isi/pegasus/planner/dax/ADAG.html

Reference Manual

186

10.Call the writeToFile() method on the ADAG object to render the XML DAX file.

An example Java code that generates the diamond dax show above is listed below. This same code can be found in the
Pegasus distribution in the examples/grid-blackdiamond-java directory as BlackDiamonDAX.java:

/**
 * Copyright 2007-2008 University Of Southern California
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import edu.isi.pegasus.planner.dax.*;

public class BlackDiamondDAX {

 /**
 * Create an example DIAMOND DAX
 * @param args
 */
 public static void main(String[] args) {
 if (args.length != 3) {
 System.out.println("Usage: java ADAG <site_handle> <pegasus_location> <filename.dax>");
 System.exit(1);
 }

 try {
 Diamond(args[0], args[1]).writeToFile(args[2]);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

 private static ADAG Diamond(String site_handle, String pegasus_location) throws Exception {

 java.io.File cwdFile = new java.io.File (".");
 String cwd = cwdFile.getCanonicalPath();

 ADAG dax = new ADAG("blackdiamond");
 dax.addNotification(When.start,"/pegasus/libexec/notification/email -t notify@example.com");
 dax.addNotification(When.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 File fa = new File("f.a");
 fa.addPhysicalFile("file://" + cwd + "/f.a", "local");
 dax.addFile(fa);

 File fb1 = new File("f.b1");
 File fb2 = new File("f.b2");
 File fc1 = new File("f.c1");
 File fc2 = new File("f.c2");
 File fd = new File("f.d");
 fd.setRegister(true);

 Executable preprocess = new Executable("pegasus", "preprocess", "4.0");
 preprocess.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 preprocess.setInstalled(true);
 preprocess.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 Executable findrange = new Executable("pegasus", "findrange", "4.0");
 findrange.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 findrange.setInstalled(true);
 findrange.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 Executable analyze = new Executable("pegasus", "analyze", "4.0");
 analyze.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);

Reference Manual

187

 analyze.setInstalled(true);
 analyze.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 dax.addExecutable(preprocess).addExecutable(findrange).addExecutable(analyze);

 // Add a preprocess job
 Job j1 = new Job("j1", "pegasus", "preprocess", "4.0");
 j1.addArgument("-a preprocess -T 60 -i ").addArgument(fa);
 j1.addArgument("-o ").addArgument(fb1);
 j1.addArgument(" ").addArgument(fb2);
 j1.uses(fa, File.LINK.INPUT);
 j1.uses(fb1, File.LINK.OUTPUT);
 j1.uses(fb2, File.LINK.OUTPUT);
 j1.addNotification(When.start,"/pegasus/libexec/notification/email -t notify@example.com");
 j1.addNotification(When.at_end,"/pegasus/libexec/notification/email -t notify@example.com");
 dax.addJob(j1);

 // Add left Findrange job
 Job j2 = new Job("j2", "pegasus", "findrange", "4.0");
 j2.addArgument("-a findrange -T 60 -i ").addArgument(fb1);
 j2.addArgument("-o ").addArgument(fc1);
 j2.uses(fb1, File.LINK.INPUT);
 j2.uses(fc1, File.LINK.OUTPUT);
 j2.addNotification(When.start,"/pegasus/libexec/notification/email -t notify@example.com");
 j2.addNotification(When.at_end,"/pegasus/libexec/notification/email -t notify@example.com");
 dax.addJob(j2);

 // Add right Findrange job
 Job j3 = new Job("j3", "pegasus", "findrange", "4.0");
 j3.addArgument("-a findrange -T 60 -i ").addArgument(fb2);
 j3.addArgument("-o ").addArgument(fc2);
 j3.uses(fb2, File.LINK.INPUT);
 j3.uses(fc2, File.LINK.OUTPUT);
 j3.addNotification(When.start,"/pegasus/libexec/notification/email -t notify@example.com");
 j3.addNotification(When.at_end,"/pegasus/libexec/notification/email -t notify@example.com");
 dax.addJob(j3);

 // Add analyze job
 Job j4 = new Job("j4", "pegasus", "analyze", "4.0");
 j4.addArgument("-a analyze -T 60 -i ").addArgument(fc1);
 j4.addArgument(" ").addArgument(fc2);
 j4.addArgument("-o ").addArgument(fd);
 j4.uses(fc1, File.LINK.INPUT);
 j4.uses(fc2, File.LINK.INPUT);
 j4.uses(fd, File.LINK.OUTPUT);
 j4.addNotification(When.start,"/pegasus/libexec/notification/email -t notify@example.com");
 j4.addNotification(When.at_end,"/pegasus/libexec/notification/email -t notify@example.com");
 dax.addJob(j4);

 dax.addDependency("j1", "j2");
 dax.addDependency("j1", "j3");
 dax.addDependency("j2", "j4");
 dax.addDependency("j3", "j4");
 return dax;
 }
}

Of course, you will have to set up some catalogs and properties to run this example. The details are catpured in the
examples directory examples/grid-blackdiamond-java.

The Python DAX Generator API

Refer to the auto-generated python documentation [http://pegasus.isi.edu/wms/docs/3.0/python/] explaining this API.

#!/usr/bin/env python

from Pegasus.DAX3 import *
import sys
import os

if len(sys.argv) != 2:
 print "Usage: %s PEGASUS_HOME" % (sys.argv[0])
 sys.exit(1)

Create a abstract dag
diamond = ADAG("diamond")

http://pegasus.isi.edu/wms/docs/3.0/python/
http://pegasus.isi.edu/wms/docs/3.0/python/

Reference Manual

188

Add input file to the DAX-level replica catalog
a = File("f.a")
a.addPFN(PFN("file://" + os.getcwd() + "/f.a", "local"))
diamond.addFile(a)

Add executables to the DAX-level replica catalog
In this case the binary is keg, which is shipped with Pegasus, so we use
the remote PEGASUS_HOME to build the path.
e_preprocess = Executable(namespace="diamond", name="preprocess", version="4.0", os="linux",
 arch="x86_64")
e_preprocess.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_preprocess)

e_findrange = Executable(namespace="diamond", name="findrange", version="4.0", os="linux",
 arch="x86_64")
e_findrange.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_findrange)

e_analyze = Executable(namespace="diamond", name="analyze", version="4.0", os="linux",
 arch="x86_64")
e_analyze.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_analyze)

Add a preprocess job
preprocess = Job(namespace="diamond", name="preprocess", version="4.0")
b1 = File("f.b1")
b2 = File("f.b2")
preprocess.addArguments("-a preprocess","-T60","-i",a,"-o",b1,b2)
preprocess.uses(a, link=Link.INPUT)
preprocess.uses(b1, link=Link.OUTPUT)
preprocess.uses(b2, link=Link.OUTPUT)
diamond.addJob(preprocess)

Add left Findrange job
frl = Job(namespace="diamond", name="findrange", version="4.0")
c1 = File("f.c1")
frl.addArguments("-a findrange","-T60","-i",b1,"-o",c1)
frl.uses(b1, link=Link.INPUT)
frl.uses(c1, link=Link.OUTPUT)
diamond.addJob(frl)

Add right Findrange job
frr = Job(namespace="diamond", name="findrange", version="4.0")
c2 = File("f.c2")
frr.addArguments("-a findrange","-T60","-i",b2,"-o",c2)
frr.uses(b2, link=Link.INPUT)
frr.uses(c2, link=Link.OUTPUT)
diamond.addJob(frr)

Add Analyze job
analyze = Job(namespace="diamond", name="analyze", version="4.0")
d = File("f.d")
analyze.addArguments("-a analyze","-T60","-i",c1,c2,"-o",d)
analyze.uses(c1, link=Link.INPUT)
analyze.uses(c2, link=Link.INPUT)
analyze.uses(d, link=Link.OUTPUT, register=True)
diamond.addJob(analyze)

Add control-flow dependencies
diamond.depends(parent=preprocess, child=frl)
diamond.depends(parent=preprocess, child=frr)
diamond.depends(parent=frl, child=analyze)
diamond.depends(parent=frr, child=analyze)

Add notification for analyze job
analyze.invoke(When.ON_ERROR, '/home/user/bin/email -s "Analyze job failed" user@example.com')

Add notification for workflow
diamond.invoke(When.AT_END, '/home/user/bin/email -s "Workflow finished" user@example.com')
diamond.invoke(When.ON_SUCCESS, '/home/user/bin/publish_workflow_result')

Write the DAX to stdout
diamond.writeXML(sys.stdout)

Reference Manual

189

The Perl DAX Generator

The Perl API example below can be found in file blackdiamond.pl in directory examples/grid-
blackdiamond-perl. It requires that you set the environment variable PEGASUS_HOME to the installation
directory of Pegasus, and include into PERL5LIB the path to the directory lib/perl of the Pegasus installation. The
actual code is longer, and will not require these settings, only the example below does. The Perl API is documented
using perldoc [http://pegasus.isi.edu/wms/docs/3.0/perl/]. For each of the modules you can invoke perldoc, if your
PERL5LIB variable is set.

The steps to generate a DAX from Perl are similar to the Java steps. However, since most methods to the classes are
deeply within the Perl class modules, the convenience module Perl::DAX::Factory makes most constructors
accessible without you needing to type your fingers raw:

1. Create a new ADAG object.

2. Create Job objects as necessary.

3. As example, the required input file "f.a" is declared as File object and linked to the ADAG object.

4. The first job arguments and files are filled into the job, and the job is added to the ADAG object.

5. Repeat step 4 for the remaining jobs.

6. Add dependencies for all jobs. You have the option of assigning label text to edges, though these are not used (yet).

7. To generate the DAX file, invoke the toXML() method on the ADAG object. The first argument is an opened file
handle or IO::Handle descriptor scalar to write to, the second the default indentation for the root element, and
the third the XML namespace to use for elements and attributes. The latter is typically unused unless you want to
include your output into another XML document.

#!/usr/bin/env perl
#
use 5.006;
use strict;
use IO::Handle;
use Cwd;
use File::Spec;
use File::Basename;
use Sys::Hostname;
use POSIX ();

BEGIN { $ENV{'PEGASUS_HOME'} ||= `pegasus-config --nocrlf --home` }
use lib File::Spec->catdir($ENV{'PEGASUS_HOME'}, 'lib', 'perl');

use Pegasus::DAX::Factory qw(:all);
use constant NS => 'diamond';

my $adag = newADAG(name => NS);
my $job1 = newJob(namespace => NS, name => 'preprocess', version => '2.0');
my $job2 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job3 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job4 = newJob(namespace => NS, name => 'analyze', version => '2.0');

create "f.a" locally
my $fn = "f.a";
open(F, ">$fn") || die "FATAL: Unable to open $fn: $!\n";
my @now = gmtime();
printf F "%04u-%02u-%02u %02u:%02u:%02uZ\n",
 $now[5]+1900, $now[4]+1, @now[3,2,1,0];
close F;

my $file = newFile(name => 'f.a');
$file->addPFN(newPFN(url => 'file://' . Cwd::abs_path($fn),
 site => 'local'));
$adag->addFile($file);

follow this path, if the PEGASUS_HOME was determined
if (exists $ENV{'PEGASUS_HOME'}) {
 my $keg = File::Spec->catfile($ENV{'PEGASUS_HOME'}, 'bin', 'keg');
 my @os = POSIX::uname();
 # $os[2] =~ s/^(\d+(\.\d+(\.\d+)?)?).*/$1/; ## create a proper osversion

http://pegasus.isi.edu/wms/docs/3.0/perl/
http://pegasus.isi.edu/wms/docs/3.0/perl/

Reference Manual

190

 $os[4] =~ s/i.86/x86/;

 # add Executable instances to DAX-included TC. This will only work,
 # if we know how to access the keg executable. HOWEVER, for a grid
 # workflow, these entries are not used, and you need to
 # [1] install the work tools remotely
 # [2] create a TC with the proper entries
 if (-x $keg) {
 for my $j ($job1, $job2, $job4) {
 my $app = newExecutable(namespace => $j->namespace,
 name => $j->name,
 version => $j->version,
 installed => 'false',
 arch => $os[4],
 os => lc($^O));
 $app->addProfile('globus', 'maxtime', '2');
 $app->addProfile('dagman', 'RETRY', '3');
 $app->addPFN(newPFN(url => "file://$keg", site => 'local'));
 $adag->addExecutable($app);
 }
 }
}

my %hash = (link => LINK_OUT, register => 'false', transfer => 'true');
my $fna = newFilename(name => $file->name, link => LINK_IN);
my $fnb1 = newFilename(name => 'f.b1', %hash);
my $fnb2 = newFilename(name => 'f.b2', %hash);
$job1->addArgument('-a', $job1->name, '-T60', '-i', $fna,
 '-o', $fnb1, $fnb2);
$adag->addJob($job1);

my $fnc1 = newFilename(name => 'f.c1', %hash);
$fnb1->link(LINK_IN);
$job2->addArgument('-a', $job2->name, '-T60', '-i', $fnb1,
 '-o', $fnc1);
$adag->addJob($job2);

my $fnc2 = newFilename(name => 'f.c2', %hash);
$fnb2->link(LINK_IN);
$job3->addArgument('-a', $job3->name, '-T60', '-i', $fnb2,
 '-o', $fnc2);
$adag->addJob($job3);
a convenience function -- you can specify multiple dependents
$adag->addDependency($job1, $job2, $job3);

my $fnd = newFilename(name => 'f.d', %hash);
$fnc1->link(LINK_IN);
$fnc2->link(LINK_IN);
$job4->separator(''); # just to show the difference wrt default
$job4->addArgument('-a ', $job4->name, ' -T60 -i ', $fnc1, ' ', $fnc2,
 ' -o ', $fnd);
$adag->addJob($job4);
this is a convenience function adding parents to a child.
it is clearer than overloading addDependency
$adag->addInverse($job4, $job2, $job3);

workflow level notification in case of failure
refer to Pegasus::DAX::Invoke for details
my $user = $ENV{USER} || $ENV{LOGNAME} || scalar getpwuid($>);
$adag->invoke(INVOKE_ON_ERROR,
 "/bin/mailx -s 'blackdiamond failed' $user");

my $xmlns = shift;
$adag->toXML(*STDOUT, '', $xmlns);

DAX Generator without a Pegasus DAX API
If you are using some other scripting or programming environment, you can directly write out the DAX format
using the provided schema using any language. For instance, LIGO, the Laser Interferometer Gravitational Wave
Observatory, generate their DAX files as XML using their own Python code, not using our provided API.

If you write your own XML, you must ensure that the generated XML is well formed and valid with respect to the
DAX schema. You can use the pegasus-dax-validator to verify the validity of your generated file. Typically, you
generate a smallish test file to, validate that your generator creates valid XML using the validator, and then ramp it up

Reference Manual

191

to produce the full workflow(s) you want to run. At this point the pegasus-dax-validator is a very simple program
that will only take exactly one argument, the name of the file to check.The following snippet checks a black-diamond
file that uses an improper osversion attribute in its executable element:

$ pegasus-dax-validator blackdiamond.dax
ERROR: cvc-pattern-valid: Value '2.6.18-194.26.1.el5' is not facet-valid
 with respect to pattern '[0-9]+(\.[0-9]+(\.[0-9]+)?)?' for type 'VersionPattern'.
ERROR: cvc-attribute.3: The value '2.6.18-194.26.1.el5' of attribute 'osversion'
 on element 'executable' is not valid with respect to its type, 'VersionPattern'.

0 warnings, 2 errors, and 0 fatal errors detected.

We are working on improving this program, e.g. provide output with regards to the line number where the issue
occurred. However, it will return with a non-zero exit code whenever errors were detected.

Command Line Tools
This chapter contains reference material for all the command-line tools distributed with Pegasus.

Reference Manual

192

Name
pegasus-analyzer — debugs a workflow.

Synopsis

pegasus-analyzer [--help|-h] [--quiet|-q] [--strict|-s]
 [--monitord|-m|-t] [--verbose|-v]
 [--output-dir|-o output_dir]
 [--dag dag_filename] [--dir|-d|-i input_dir]
 [--print|-p print_options] [--debug-job job]
 [--debug-dir debug_dir] [--type workflow_type]
 [--conf|-c property_file] [--files]
 [--top-dir dir_name] [workflow_directory]

Description

pegasus-analyzer is a command-line utility for parsing the jobstate.log file and reporting successful and failed jobs.
When executed without any options, it will query the SQLite or MySQL database and retrieve failed job information
for the particular workflow. When invoked with the --files option, it will retrieve information from several log files,
isolating jobs that did not complete successfully, and printing their stdout and stderr so that users can get detailed
information about their workflow runs.

Options

-h , --help Prints a usage summary with all the available command-line options.

-q , --quiet Only print the the output and error filenames instead of their contents.

-s , --strict Get jobs' output and error filenames from the job’s submit file.

-m , -t , --monitord Invoke pegasus-monitord before analyzing the jobstate.log file. Although
pegasus-analyzer can be executed during the workflow execution as well as
after the workflow has already completed execution, pegasus-monitord" is
always invoked with the --replay option. Since multiple instances of pegasus-
monitord" should not be executed simultaneously in the same workflow
directory, the user should ensure that no other instances of pegasus-monitord
are running. If the run_directory is writable, pegasus-analyzer will create a
jobstate.log file there, rotating an older log, if it is found. If the run_directory
is not writable (e.g. when the user debugging the workflow is not the same user
that ran the workflow), pegasus-analyzer will exit and ask the user to provide
the --output-dir option, in order to provide an alternative location for pegasus-
monitord log files.

-v , --verbose Sets the log level for pegasus-analyzer. If omitted, the default level will be set
to WARNING. When this option is given, the log level is changed to INFO. If
this option is repeated, the log level will be changed to DEBUG.

-o output_dir , --output-dir
output_dir

This option provides an alternative location for all monitoring log files for
a particular workflow. It is mainly used when an user does not have write
privileges to a workflow directory and needs to generate the log files needed
by pegasus-analyzer. If this option is used in conjunction with the --monitord
option, it will invoke pegasus-monitord using output_dir to store all output
files. Because workflows can have sub-workflows, pegasus-monitord will
create its files prepending the workflow wf_uuid to each filename. This way,
multiple workflow files can be stored in the same directory. pegasus-analyzer
has built-in logic to find the specific jobstate.log file by looking at the
workflow braindump.txt file first and figuring out the corresponding wf_uuid.
If output_dir does not exist, it will be created.

Reference Manual

193

--dag 'dag_filename In this option, dag_filename specifies the path to the DAG file to use. pegasus-
analyzer will get the directory information from the dag_filename. This option
overrides the --dir option below.

-d input_dir , -i input_dir , --dir
input_dir

Makes pegasus-analyzer look for the jobstate.log file in the input_dir
directory. If this option is omitted, pegasus-analyzer will look in the current
directory.

-p print_options , --print
print_options

Tells pegasus-analyzer what extra information it should print for failed jobs.
print_options is a comma-delimited list of options, that include pre, invocation,
and/or all, which activates all printing options. With the pre option, pegasus-
analyzer will print the pre-script information for failed jobs. For the invocation
option, pegasus-analyzer will print the invocation command, so users can
manually run the failed job.

--debug-job job When given this option, pegasus-analyzer turns on its debug_mode, when it
can be used to debug a particular job. In this mode, pegasus-analyzer will
create a shell script in the debug_dir (see below, for specifying it) and copy all
necessary files to this local directory and then execute the job locally.

--debug-dir debug_dir When in debug_mode, pegasus-analyzer will create a temporary debug
directory. Users can give this option in order to specify a particular debug_dir
directory to be used instead.

--type workflow_type In this options, users specify what workflow_type they want to debug. At this
moment, the only workflow_type available is condor and it is the default value
if this option is not specified.

-c property_file , --conf
property_file

This option is used to specify an alternative property file, which may contain
the path to the database to be used by pegasus-analyzer. If this option is
not specified, the config file specified in the braindump.txt file will take
precedence.

--files This option allows users to run pegasus-analyzer using the files in the
workflow directory instead of the database as the source of information.
pegasus-analyzer will output the same information, this option only changes
where the data comes from.

--top-dir dir_name This option enables pegasus-analyzer to show information about sub-
workflows when using the database mode. When debugging a top-level
workflow with failures in sub-workflows, the analyzer will automatically print
the command users should use to debug a failed sub-workflow. This allows the
analyzer to find the database it needs to access.

Environment Variables

pegasus-analyzer does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

Example

The simplest way to use pegasus-analyzer is to go to the run_directory and invoke the analyzer:

$ pegasus-analyzer .

which will cause pegasus-analyzer to print information about the workflow in the current directory.

pegasus-analyzer output contains a summary, followed by detailed information about each job that either failed, or
is in an unknown state. Here is the summary section of the output:

**************************Summary***************************

 Total jobs : 75 (100.00%)

Reference Manual

194

 # jobs succeeded : 41 (54.67%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 33 (44.00%)
 # jobs unknown : 1 (1.33%)

jobs_succeeded are jobs that have completed successfully. jobs_failed are jobs that have finished, but that did not
complete successfully. jobs_unsubmitted are jobs that are listed in the dag_file, but no information about them was
found in the jobstate.log file. Finally, jobs_unknown are jobs that have started, but have not reached completion.

After the summary section, pegasus-analyzer will display information about each job in the job_failed and
job_unknown categories.

******************Failed jobs' details**********************

=======================findrange_j3=========================

 last state: POST_SCRIPT_FAILURE
 site: local
 submit file: /home/user/diamond-submit/findrange_j3.sub
 output file: /home/user/diamond-submit/findrange_j3.out.000
 error file: /home/user/diamond-submit/findrange_j3.err.000

--------------------Task #1 - Summary-----------------------

 site : local
 hostname : server-machine.domain.com
 executable : (null)
 arguments : -a findrange -T 60 -i f.b2 -o f.c2
 error : 2
 working dir :

In the example above, the findrange_j3 job has failed, and the analyzer displays information about the job, showing that
the job finished with a POST_SCRIPT_FAILURE, and lists the submit, output and error files for this job. Whenever
pegasus-analyzer detects that the output file contains a kickstart record, it will display the breakdown containing each
task in the job (in this case we only have one task). Because pegasus-analyzer was not invoked with the --quiet flag,
it will also display the contents of the output and error files (or the stdout and stderr sections of the kickstart record),
which in this case are both empty.

In the case of SUBDAG and subdax jobs, pegasus-analyzer will indicate it, and show the command needed for the
user to debug that sub-workflow. For example:

=================subdax_black_ID000009=====================

 last state: JOB_FAILURE
 site: local
 submit file: /home/user/run1/subdax_black_ID000009.sub
 output file: /home/user/run1/subdax_black_ID000009.out
 error file: /home/user/run1/subdax_black_ID000009.err
 This job contains sub workflows!
 Please run the command below for more information:
 pegasus-analyzer -d /home/user/run1/blackdiamond_ID000009.000

-----------------subdax_black_ID000009.out-----------------

Executing condor dagman ...

-----------------subdax_black_ID000009.err-----------------

tells the user the subdax_black_ID000009 sub-workflow failed, and that it can be debugged by using the indicated
pegasus-analyzer command.

See Also

pegasus-status(1), pegasus-monitord(1), pegasus-statistics(1).

Authors

Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Reference Manual

195

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

196

Name
pegasus-cleanup — Removes files during Pegasus workflows enactment.

Synopsis
pegasus-cleanup [-h][-l level][-f urls]

Description

pegasus-cleanup removes the files associated with the given URL. Some of the protocols it can handle are GridFTP,
SRM, Amazon S3, HTTP, and file://.

Options

-h , --help Prints a usage summary with all the available command-line options.

-l level , --loglevel level The debugging output level. Valid values are debug, info, warning, and error. Default
value is info.

-f urls , --file urls Specifies the file with URLs to clean up (one per line). If this option is not given the list
of URLs will be read from stdin.

Example
echo gsiftp://somehost/some/path | pegasus-cleanup

Authors

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

197

Name
pegasus-cluster — run a list of applications

Synopsis
pegasus-cluster [-d] [-e | -f] [-S ec] [-s fn] [-R fn] [-n nr] [inputfile]

Description

The pegasus-cluster tool executes a list of application in the order specified (assuming sequential mode.) It is generally
used to do horizontal clustering of independent application, and does not care about any application failures. Such
failures should be caught by using pegasus-kickstart to start application.

In vertical clustering mode, the hard failure mode is encouraged, ending execution as soon as one application fails.
When running a complex workflow through pegasus-cluster , the order of applications in the input file must be
topologically sorted.

Applications are usually using pegasus-kickstart to execute. In the pegasus-kickstart case, all invocations of
pegasus-kickstart except the first should add the pegasus-kickstart option -H to supress repeating the XML preamble
and certain other headers of no interest when repeated.

pegasus-cluster permits shell-style quoting. One level of quoting is removed from the arguments. Please note that
pegasus-kickstart will also remove one level of quoting.

Arguments

-d This option increases the debug level. Debug message are generated on stdout . By default,
debugging is minimal.

-e This flag turns on the old behavior of pegasus-cluster to always run everything and return success
no matter what. The -e flag is mutually exclusive with the -f flag. By default, all applications are
executed regardles of failures. Any detected application failure results in a non-zero exit status
from pegasus-cluster.

-f In hard failure mode, as soon as one application fails, either through a non-zero exit code, or by
dying on a signal, further execution is stopped. In parallel execution mode, one or more other
applications later in the sequence file may have been started already by the time failure is detected.
Pegasus-cluster will wait for the completion of these applications, but not start new ones. The -f
flag is mutually exclusive with the -e flag. By default, all applications are executed regardless of
failures. Any detected application failure results in a non-zero exit status from pegasus-cluster.

-h This option prints the help message and exits the program.

-s fn This option will send protocol message (for Mei) to the specified file. By default, all message are
written to stdout .

-R fn The progress reporting feature, if turned on, will write one event record whenever an application
is started, and one event record whenever an application finished. This is to enable tracking
of jobs in progress. By default, track logs are not written, unless the environment variable
SEQEXEC_PROGRESS_REPORT is set. If set, progress reports are appended to the file pointed
to by the environment variable.

-S ec This option is a multi-option, which may be used multiple times. For each given non-zero exit-
code of an application, mark it as a form of success. In -f mode, this means that pegasus-cluster
will not fail when seeing this exit code from any application it runs. By default, all non-zero exit
code constitute failure.

-n nr This option determines the amount of parallel execution. Typically, parallel execution is only
recommended on multi-core systems, and must be deployed rather carefully, i.e. only completely
independent jobs across of whole inputfile should ever be attempted to be run in parallel. The

Reference Manual

198

argument nr is the number of parallel jobs that should be used. In addition to a non-negative
integer, the word auto is also understood. When auto is specified, pegasus-cluster will attempt to
automatically determine the number of cores available in the system. Strictly sequential execution,
as if nr was 1, is the default. If the environment variable SEQEXEC_CPUS is set, it will determine
the default number of CPUs.

inputfile The input file specifies a list of application to run, one per line. Comments and empty lines are
permitted. The comment character is the octothorpe (#), and extends to the end of line. By default,
pegasus-cluster uses stdin to read the list of applications to execute.

Return Value

The pegasus-cluster tool returns 1, if an illegal option was used. It returns 2, if the status file from option -s cannot be
opened. It returns 3, if the input file cannot be opened. It does not return any failure for failed applications in old-exit
-e mode. In default and hard failure -f mode, it will return 5 for true failure. The determination of failure is modified
by the -S option.

All other internal errors being absent, pegasus-cluster will always return 0 when run without -f . Unlike shell, it will
not return the last application’s exit code. In default mode, it will return 5, if any application failed. Unlike shell, it
will not return the last application’s exit code. However, it will execute all applications. The determination of failure
is modified by the -S flag. In -f mode, *pegasus-cluster returns either 0 if all main sequence applications succeeded,
or 5 if one failed; or more than one in parallel execution mode. It will run only as long as applications were successful.
As before, the *-S flag determines what constitutes a failure.

The pegasus-cluster application will also create a small summary on stdout for each job, and one for itself, about the
success and failure. The field failed reports any exit code that was not zero or a signal of death termination. It does
not include non-zero exit codes that were marked as success using the -S option.

Task Summary

Each task executed by pegasus-cluster generates a record bracketed by square brackets like this (each entry is broken
over two lines for readability):

[seqexec-task id=1, start="2011-04-27T14:31:25.340-07:00", duration=0.521,
 status=0, line=1, pid=18543, app="/bin/usleep"]
[seqexec-task id=2, start="2011-04-27T14:31:25.342-07:00", duration=0.619,
 status=0, line=2, pid=18544, app="/bin/usleep"]
[seqexec-task id=3, start="2011-04-27T14:31:25.862-07:00", duration=0.619,
 status=0, line=3, pid=18549, app="/bin/usleep"]

Each record is introduced by the string seqexec-task with the following constituents, where strings are quoted:

id This is a numerical value for main sequence application, indicating the application’s place in the
sequence file. The setup task uses the string setup , and the cleanup task uses the string cleanup .

start is the ISO 8601 time stamp, with millisecond resolution, when the application was started. This
string is quoted.

duration is the application wall-time duration in seconds, with millisecond resolution.

status is the raw exit status as returned by the wait family of system calls. Typically, the exit code is found
in the high byte, and the signal of death in the low byte. Typically, 0 indicates a successful execution,
and any other value a problem. However, details could differ between systems, and exit codes are
only meaningful on the same os and architecture.

line is the line number where the task was found in the main sequence file. Setup- and cleanup tasks
don’t have this attribute.

pid is the process id under which the application had run.

app is the path to the application that was started. As with the progress record, any pegasus-kickstart
will be parsed out so that you see the true application.

Reference Manual

199

pegasus-cluster Summary

The final summary of counts is a record bracketed by square brackets like this (broken over two lines for readability):

[seqexec-summary stat="ok", lines=3, tasks=3, succeeded=3, failed=0, extra=0,
 duration=1.143, start="2011-04-27T14:31:25.338-07:00", pid=18542, app="./seqexec"]

The record is introduced by the string seqexec-summary with the following constituents:

stat The string fail when pegasus-cluster would return with an exit status of 5. Concretely, this is any
failure in default mode, and first failure in -f mode. Otherwise, it will always be the string ok , if
the record is produced.

lines is the stopping line number of the input sequence file, indicating how far processing got. Up to the
number of cores additional lines may have been parsed in case of -f mode.

tasks is the number of tasks processed.

succeeded is the number of main sequence jobs that succeeded.

failed is the number of main sequence jobs that failed. The failure condition depends on the -S settings,
too.

extra is 0, 1 or 2, depending on the existence of setup- and cleanup jobs.

duration is the duration in seconds, with millisecond resolution, how long *pegasus-cluster ran.

start is the start time of pegasus-cluster as ISO 8601 time stamp.

See Also

pegasus-kickstart(1)

Caveats

The -S option sets success codes globally. It is not possible to activate success codes only for one specific application,
and doing so would break the shell compatibility. Due to the global nature, use success codes sparingly as last resort
emergency handler. In better plannable environments, you should use an application wrapper instead.

Example

The following shows an example input file to pegasus-cluster making use of pegasus-kickstart to track applications.

#
mkdir
/path/to/pegasus-kickstart -R HPC -n mkdir /bin/mkdir -m 2755 -p split-corpus split-ne-corpus
#
drop-dian
/path/to/pegasus-kickstart -H -R HPC -n drop-dian -o '^f-new.plain' /path/to/drop-dian /path/to/f-
tok.plain /path/to/f-tok.NE
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 f-new.plain split-
corpus/corpus.
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 /path/to/f-tok.NE
 split-ne-corpus/corpus.

Environment Variables

A number of environment variables permits to influence the behavior of pegasus-cluster during run-time.

SEQEXEC_PROGRESS_REPORTIf this variable is set, and points to a writable file location, progress report
records are appended to the file. While care is taken to atomically append

Reference Manual

200

records to the log file, in case concurrent instances of pegasus-cluster are
running, broken Linux NFS may still garble some content.

SEQEXEC_CPUS If this variable is set to a non-negative integer, that many CPUs are attempted
to be used. The special value auto permits to auto-detect the number of CPUs
available to pegasus-cluster on the system.

SEQEXEC_SETUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be run before any jobs are started. The exit
code of this setup job will have no effect upon the main job sequence. Success
or failure will not be counted towards the summary.

SEQEXEC_CLEANUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be before pegasus-cluster quits. Failure of
any previous job will have no effect on the ability to run this job. The exit code
of the cleanup job will have no effect on the overall success or failure state.
Success or failure will not be counted towards the summary.

History

As you may have noticed, pegasus-cluster had the name seqexec in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

Reference Manual

201

Name
pegasus-config — The authority for where parts of the Pegasus system exists on the filesystem. pegasus-config can
be used to find libraries such as the DAX generators.

Synopsis
pegasus-config [-h] [--help] [-V] [--version] [--noeoln]
 [--perl-dump] [--perl-hash] [--python-dump] [--sh-dump]
 [--bin] [--conf] [--java] [--perl] [--python]
 [--python-externals] [--schema] [--classpath]
 [--local-site] [--full-local]

Description

pegasus-config is used to find locations of Pegasus system components. The tool is used internally in Pegasus and by
users who need to find paths for DAX generator libraries and schemas.

Options

-h , --help Prints help and exits.

-V , --version Prints Pegasus version information

--perl-dump Dumps all settings in perl format as separate variables.

--perl-hash Dumps all settings in perl format as single perl hash.

--python-dump Dumps all settings in python format.

--sh-dump Dumps all settings in shell format.

--bin Print the directory containing Pegasus binaries.

--conf Print the directory containing configuration files.

--java Print the directory containing the jars.

--perl Print the directory to include into your PERL5LIB.

--python Print the directory to include into your PYTHONLIB.

--python-externals Print the directory to the external Python libraries.

--schema Print the directory containing schemas.

--classpath Builds a classpath containing the Pegasus jars.

--noeoln Do not produce a end-of-line after output. This is useful when being called from non-
shell backticks in scripts. However, order is important for this option: If you intend
to use it, specify it first.

--local-site [d] Create a site catalog entry for site "local". This is only an XML snippet without root
element nor XML headers. The optional argument "d" points to the mount point to
use. If not specified, defaults to the user’s $HOME directory.

--full-local [d] Create a complete site catalog with only site "local". The an XML snippet without
root element nor XML headers. The optional argument "d" points to the mount point
to use. If not specified, defaults to the user’s $HOME directory.

Example

To set the PYTHONPATH variable in your shell for using the Python DAX API:

Reference Manual

202

export PYTHONPATH=`pegasus-config --python`

To set the same path inside Python:

config = subprocess.Popen("pegasus-config --python-dump", stdout=subprocess.PIPE,
 shell=True).communicate()[0]
exec config

To set the PERL5LIB variable in your shell for using the Perl DAX API:

export PERL5LIB=`pegasus-config --perl`

To set the same path inside Perl:

eval `pegasus-config --perl-dump`;
die("Unable to eval pegasus-config output: $@") if $@;

will set variables a number of lexically local-scoped my variables with prefix "pegasus_" and expand Perl’s search
path for this script.

Alternatively, you can fail early and collect all Pegasus-related variables into a single global %pegasus variable for
convenience:

BEGIN {
 eval `pegasus-config --perl-hash`;
 die("Unable to eval pegasus-config output: $@") if $@;
}

Author

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

203

Name
pegasus-create-dir — Creates work directories in Pegasus workflows.

Synopsis
pegasus-create-dir [-h][-l level][-u URL]

Description

pegasus-create-dir creates a directory for the given URL. Some of the protocols it can handle are GridFTP, SRM,
Amazon S3, HTTP, and file:// (using mkdir).

Options

-h , --help Prints a usage summary with all the available command-line options.

-l level , --loglevel level The debugging output level. Valid values are debug, info, warning, and error. Default
value is info.

-u URL , --url URL Specifies the directory to create.

Example
$ pegasus-create-dir -u gsiftp://somehost/some/path

Authors

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

204

Name
pegasus-dax-validator — determines if a given DAX file is valid.

Synopsis
pegasus-dax-validator daxfile [verbose]

Description

The pegasus-dax-validator is a simple application that determines, if a given DAX file is valid XML. For this, it
parses the file with as many XML validity checks that the Apache Xerces XML parser framework supports.

Options

daxfile The location of the file containing the DAX.

verbose If any kind of second argument was specified, not limited to the string verbose, the verbose output
mode is switched on.

Return Value

If the DAX was parsed successfully, or only warning’s were issued, the exit code is 0. Any 'error or fatal error will
result in an exit code of 1.

Additionally, a summary statistics with counts of warnings, errors, and fatal errors will be displayed.

Example

The following shows the parsing of a DAX file that uses the wrong kind of value for certain enumerations. The output
shows the errors with the respective line number and column number of the input DAX file, so that one can find and
fix them more easily. (The lines in the example were broken to fit the manpage format.)

$ pegasus-dax-validator bd.dax
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'i386' is not
 facet-valid with respect to enumeration '[x86, x86_64, ppc, ppc_64,
 ia64, sparcv7, sparcv9, amd64]'. It must be a value from the
 enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'i386' of
 attribute 'arch' on element 'executable' is not valid with respect to
 its type, 'ArchitectureType'.
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'darwin' is
 not facet-valid with respect to enumeration '[aix, sunos, linux, macosx,
 windows]'. It must be a value from the enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'darwin' of
 attribute 'os' on element 'executable' is not valid with respect to
 its type, 'OSType'.

0 warnings, 4 errors, and 0 fatal errors detected.

See Also

Apache Xerces-J http://xerces.apache.org/xerces2-j/

Authors

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

http://xerces.apache.org/xerces2-j/
http://pegasus.isi.edu/

Reference Manual

205

Name
pegasus-exitcode — Checks the stdout/stderr files of a workflow job for any indication that an error occurred in the
job. This script is intended to be invoked automatically by DAGMan as the POST script of a job.

Synopsis
pegasus-exitcode [-h][-t n][-r rv][-n] job.out

Description

pegasus-exitcode is a utility that examines the STDOUT of a job to determine if the job failed, and renames the
STDOUT and STDERR files of a job to preserve them in case the job is retried.

Pegasus uses pegasus-exitcode as the DAGMan postscript for all jobs submitted via Globus GRAM. This tool exists
as a workaround to a known problem with Globus where the exitcodes of GRAM jobs are not returned. This is a
problem because Pegasus uses the exitcode of a job to determine if the job failed or not.

In order to get around the exitcode problem, Pegasus wraps all GRAM jobs with Kickstart, which records the exitcode
of the job in an XML invocation record, which it writes to the job’s STDOUT. The STDOUT is transferred from the
execution host back to the submit host when the job terminates. After the job terminates, DAGMan runs the job’s
postscript, which Pegasus sets to be pegasus-exitcode. pegasus-exitcode looks at the invocation record generated
by kickstart to see if the job succeeded or failed. If the invocation record indicates a failure, then pegasus-exitcode
returns a non-zero result, which indicates to DAGMan that the job has failed. If the invocation record indicates that
the job succeeded, then pegasus-exitcode returns 0, which tells DAGMan that the job succeeded.

pegasus-exitcode performs several checks to determine whether a job failed or not. These checks include:

1. Is STDOUT empty? If it is empty, then the job failed.

2. Are there any <status> tags with a non-zero value? If there are, then the job failed. Note that, if this is a clustered
job, there could be multiple <status> tags, one for each task. If any of them are non-zero, then the job failed.

3. Is there at least one <status> tag with a zero value? There must be at least one successful invocation or the
job has failed.

In addition, pegasus-exitcode allows the caller to specify the exitcode returned by Condor using the --return
argument. This can be passed to pegasus-exitcode in a DAGMan post script by using the $RETURN variable. If this
value is non-zero, then pegasus-exitcode returns a non-zero result before performing any other checks. For GRAM
jobs, the value of $RETURN will always be 0 regardless of whether the job failed or not.

Also, pegasus-exitcode allows the caller to specify the number of successful tasks it should see using the --tasks
argument. If pegasus-exitcode does not see N successful tasks, where N is set by --tasks, then it will return a non-zero
result. The default value is 1. This can be used to detect failures in clustered jobs where, for any number of reasons,
invocation records do not get generated for all the tasks in the clustered job.

In addition to checking the success/failure of a job, pegasus-exitcode also renames the STDOUT and STDERR files
of the job so that if the job is retried, the STDOUT and STDERR of the previous run are not lost. It does this by
appending a sequence number to the end of the files. For example, if the STDOUT file is called "job.out", then the
first time the job is run pegasus-exitcode will rename the file "job.out.000". If the job is run again, then pegasus-
exitcode sees that "job.out.000" already exists and renames the file "job.out.001". It will continue to rename the file
by incrementing the sequence number every time the job is executed.

Options

-h , --help Prints a usage summary with all the available command-line options.

-t n , --tasks n Number of tasks expected. If less than n tasks succeeded, then pegasus-exitcode will fail with a
non-zero return value. This is used in cases where we may not get a Kickstart invocation record
for some tasks. Normally Seqexec will detect failed Kickstart invocations and fail accordingly.

Reference Manual

206

-r rv , --return
rv

Return value reported by DAGMan. This can be specified in the DAG using the $RETURN
variable. If this is non-zero, then pegasus-exitcode immediately fails with a non-zero return
value itself.

-n , --no-rename Don’t rename job.out and job.err to .out.XXX and .err.XXX. This option is used primarily for
testing.

Authors

Gideon Juve <juve@usc.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

207

Name
pegasus-invoke — invokes a command from a file

Synopsis
pegasus-invoke (app | @fn) [arg | *@fn [..]]

Description

The pegasus-invoke tool invokes a single application with as many arguments as your Unix permits (128k characters
for Linux). Arguments are come from two places, either the command-line as regular arguments, or from a special
file, which contains one argument per line.

The pegasus-invoke tool became necessary to work around the 4k argument length limit in Condor. It also permits
to use arguments inside argument files without worry about shell, Condor or Globus escape necessities. All argument
file contents are passed as is, one line per argument entry.

Arguments

-d This option increases the debug level. Currently, only debugging or no debugging is distinguished. Debug
message are generated on stdout . By default, debugging is disabled.

-h This option prints the help message and exits the program.

-- This option stops any option processing. It may only be necessary, if the application is stated on the command-
line, and starts with a hyphen itself.The first argument must either be the application to run as fully-specified
location (either absolute, or relative to current wd), or a file containing one argument per line. The PATH
environment variables is not used to locate an application. Subsequent arguments may either be specified
explicitely on the commandline. Any argument that starts with an at (@) sign is taken to introduce a filename,
which contains one argument per line. The textual file may contain long arguments and filenames. However,
Unices still impose limits on the maximum length of a directory name, and the maximum length of a file name.
These lengths are not checked, because pegasus-invoke is oblivious of the application (e.g. what argument
is a filename, and what argument is a mere string resembling a filename).

Return Value

The pegasus-invoke tool returns 127, if it was unable to find the application. It returns 126, if there was a problem
parsing the file. All other exit status, including 126 and 127, come from the application.

See Also

pegasus-kickstart(1)

Example
$ echo "/bin/date" > X
$ echo "-Isec" >> X
$ pegasus-invoke @X
2005-11-03T15:07:01-0600

Recursion is also possible. Please mind not to use circular inclusions. Also note how duplicating the initial at (@) sign
will escape its meaning as inclusion symbol.

$ cat test.3
This is test 3

$ cat test.2
/bin/echo
@test.3
@@test.3

$ pegasus-invoke @test.2
This is test 3 @test.3

Reference Manual

208

Restrictions

While the arguments themselves may contain files with arguments to parse, starting with an at (@) sign as before, the
maximum recursion limit is 32 levels of inclusions. It is not possible (yet) to use stdin as source of inclusion.

History

As you may have noticed, pegasus-invoke had the name invoke in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors

Mike Wilde <wilde at mcs dot anl dot gov>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

Reference Manual

209

Name
pegasus-keg — kanonical executable for grids

Synopsis
pegasus-keg [-a appname] [-t interval |-T interval] [-l logname]
 [-P prefix] [-o fn [..]] [-i fn [..]] [-G sz]
 [-C] [-e env [..]] [-p parm [..]]

Description

The kanonical executable is a stand-in for regular binaries in a DAG - but not for their arguments. It allows to trace
the shape of the execution of a DAG, and thus is an aid to debugging DAG related issues.

Key feature of pegasus-keg is that it can copy any number of input files, including the generator case, to any number
of output files, including the datasink case. In addition, it protocols the IPv4 and hostname of the host it ran upon, the
current timestamp, and the run time from start til the point of logging the information, the current working directory
and some information on the system environment. pegasus-keg will also report all input files, the current output files
and any requested string and environment value.

Arguments

The -e, -i, -o and -p arguments allow lists with arbitrary number of arguments. These options may also occur repeatedly
on the command line. The file options may be provided with the special filename - to indicate stdout in append mode
for writing, or stdin for reading. The -a, -l , -P , -T and -t arguments should only occur a single time with a single
argument.

If pegasus-keg is called without any arguments, it will display its usage and exit with success.

-a appname This option allows pegasus-keg to display a different name as its applications. This mode
of operation is useful in make-believe mode. The default is the basename of argv[0].

-e env [..] This option names any number of environment variables, whose value should be reported
as part of the data dump. By default, no environment variables are reported.

-i infile [..] The pegasus-keg binary can work on any number of input files. For each output file,
every input file will be opened, and its content copied to the output file. Textual input
files are assumed. Each input line is indented by two spaces. The input file content is
bracketed between an start and end section, see below. By default, pegasus-keg operates
in generator mode.

-l logfile The logfile is the name of a file to append atomically the self-info, see below. The atomic
write guarantees that the multi-line information will not interleave with other processes
that simultaneously write to the same file. The default is not to use any log file.

-o outfile [..] The pegasus-keg can work on any number of output files. For each output file, every
input file will be opened, and its content copied to the output file. Textual input files are
assumed. Each input line is indented by two spaces. The input file content is bracketed
between an start and end section, see 2nd example. After all input files are copied, the data
dump from this instance of pegasus-keg is appended to the output file. Without output
files, pegasus-keg operates in data sink mode.

-G size If you want pegasus-keg to generate a lot of output, the generator option will do that for
you. Just specify how much, in bytes, you want. This option is off by default.

-C This option causes pegasus-keg to list all environment variables that start with the prefix
_CONDOR The option is useful, if .B pegasus-keg is run as (part of) a Condor job. This
option is off by default.

-p string [..] Any number of parameters can be reported, without being specific on their content.
Effectively, these strings are copied straight from the command line. By default, no extra
arguments are shown.

Reference Manual

210

-P prefix Each line from every input file is indented with a prefix string to visually emphasize the
provenance of an input files through multiple instances of pegasus-keg. By default, two
spaces are used as prefix string.

-t interval The interval is an amount of sleep time that the pegasus-keg executable is to sleep. This
can be used to emulate light work without straining the pool resources. If used together
with the -T spin option, the sleep interval comes before the spin interval. The default is
no sleep time.

-T interval The interval is an amount of busy spin time that the pegasus-keg executable is to simulate
intense computation. The simulation is done by random julia set calculations. This option
can be used to emulate an intense work to strain pool resources. If used together with the -t
sleep option, the sleep interval comes before the spin interval. The default is no spin time.

Return Value

Execution as planned will return 0. The failure to open an input file will return 1, the failure to open an output file,
including the log file, will return with exit code 2.

Example

The example shows the bracketing of an input file, and the copy produced on the output file. For illustration purposes,
the output file is connected to stdout :

$ date > xx
$ pegasus-keg -i xx -p a b c -o -
--- start xx ----
 Thu May 5 10:55:45 PDT 2011
--- final xx ----
Timestamp Today: 20110505T105552.910-07:00 (1304618152.910;0.000)
Applicationname: pegasus-keg [3661M] @ 128.9.xxx.xxx (xxx.isi.edu)
Current Workdir: /opt/pegasus/default/bin/pegasus-keg
Systemenvironm.: x86_64-Linux 2.6.18-238.9.1.el5
Processor Info.: 4 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2660.068
Load Averages : 0.298 0.135 0.104
Memory Usage MB: 11970 total, 8089 free, 0 shared, 695 buffered
Swap Usage MB: 12299 total, 12299 free
Filesystem Info: / ext3 62GB total, 20GB avail
Filesystem Info: /lfs/balefire ext4 1694GB total, 1485GB avail
Filesystem Info: /boot ext2 493MB total, 447MB avail
Output Filename: -
Input Filenames: xx
Other Arguments: a b c

Restrictions

The input file must be textual files. The behaviour with binary files is unspecified.

The host address is determined from the primary interface. If there is no active interface besides loopback, the host
address will default to 0.0.0.0. If the host address is within a virtual private network address range, only (VPN) will
be displayed as hostname, and no reverse address lookup will be attempted.

The processor info line is only available on Linux systems. The line will be missing on other operating systems. Its
information is assuming symmetrical multi processing, reflecting the CPU name and speed of the last CPU available
in /dev/cpuinfo .

There is a limit of 4 * page size to the output buffer of things that .B pegasus-keg can report in its self-info dump.
There is no such restriction on the input to output file copy.

Authors

Jens-S. Vöckler <voeckler at isi dot edu>

Mike Wilde

Yong Zhao

Reference Manual

211

Pegasus - http://pegasus.isi.edu/

http://pegasus.isi.edu/

Reference Manual

212

Name
pegasus-kickstart — run an executable in a more universal environment.

Synopsis
pegasus-kickstart [-n tr] [-N dv] [-H] [-R site] [-W | -w dir]
 [-L lbl -T iso] [-s p | @fn] [-S p | @fn] [-i fn]
 [-o fn] [-e fn] [-X] [-l fn sz] [-F] (-I fn | app [appflags])
pegasus-kickstart -V

Description

The pegasus-kickstart executable is a light wrapper program which connects the stdin, stdout and stderr file handles
for grid jobs on the remote site, and reports back the remote application termination condition.

Sitting in between the remote scheduler and the executable, it is possible for pegasus-kickstart to gather additional
information about the executable run-time behavior and resource usage, including the exit status of jobs. This
information is important for the Pegasus invocation tracking as well as to Condor DAGMan’s awareness of Globus
job failures.

pegasus-kickstart allows the optional execution of jobs before and after the main application job that run in chained
execution with the main application job. See section SUBJOBS for details about this feature.

All jobs with relative path specifications to the application are part of search relative to the current working directory
(yes, this is unsafe), and by prepending each component from the PATH environment variable. The first match is used.
Jobs that use absolute pathnames, starting in a slash, are exempt. Using an absolute path to your executable is the
safe and recommended option.

pegasus-kickstart rewrites the command line of any job (pre, post and main) with variable substitutions from Unix
environment variables. See section VARIABLE REWRITING below for details on this feature.

pegasus-kickstart provides a temporary named pipe (fifo) for applications that are gridstart-aware. Any data an
application writes to the FIFO will be propagated back to the submit host, thus enabling progress meters and other
application dependent monitoring. See section FEEDBACK CHANNEL below for details on this feature.

Options

-n tr In order to associate the minimal performance information of the job with the invocation records,
the jobs needs to carry which transformation was responsible for producing it. The format is the
textual notation for fully-qualified definition names, like namespace::name:version, with only the
name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-N dv The jobs may carry which instantiation of a transformation was responsible for producing it. The
format is the textual notation for fully-qualified definition names, like namespace::name:version,
with only the name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-H This option avoids pegasus-kickstart writing the XML preamble (entity), if you need to combine
multiple pegasus-kickstart records into one document.

Additionally, if specified, the environment and the resource usage segments will not be written,
assuming that a in a concatenated record version, the initial run will have captured those settings.

-R site In order to provide the greater picture, pegasus-kickstart can reflect the site handle (resource
identifier) into its output.

There is no default. If no value is given, the attribute will not be generated.

Reference Manual

213

-L lbl , -T
iso

These optional arguments denote the workflow label (from DAX) and the workflow’s last
modification time (from DAX). The label lbl can be any sensible string of up to 32 characters, but
should use C identifier characters. The timestamp iso must be an ISO 8601 compliant time-stamp.

-S l=p If stat information on any file is required before any jobs were started, logical to physical file
mappings to stat can be passed using the -S option. The LFN and PFN are concatenated by an
equals (=) sign. The LFN is optional: If no equals sign is found, the argument is taken as sole PFN
specification without LFN.

This option may be specified multiple times. To reduce and overcome command line length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value initial. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-s fn If stat information on any file is required after all jobs have finished, logical to physical file mappings
to stat can be passed using the -s option. The LFN and PFN are concatenated by an equals (=) sign.
The LFN is optional: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome commandline length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value final. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-i fn This option allows pegasus-kickstart to re-connect the stdin of the application that it starts. Use a
single hyphen to share stdin with the one provided to pegasus-kickstart.

The default is to connect stdin to /dev/null.

-o fn This option allows pegasus-kickstart to re-connect the stdout of the application that it starts. The
mode is used whenever an application produces meaningful results on its stdout that need to be
tracked by Pegasus. The real stdout of Globus jobs is staged via GASS (GT2) or RFT (GT4). The
real stdout is used to propagate the invocation record back to the submit site. Use the single hyphen
to share the application’s stdout with the one that is provided to pegasus-kickstart. In that case,
the output from pegasus-kickstart will interleave with application output. For this reason, such a
mode is not recommended.

In order to provide an un-captured stdout as part of the results, it is the default to connect the stdout of
the application to a temporary file. The content of this temporary file will be transferred as payload
data in the pegasus-kickstart results. The content size is subject to payload limits, see the -B option.
If the content grows large, only an initial portion will become part of the payload. If the temporary
file grows too large, it may flood the worker node’s temporary space. The temporary file will be
deleted after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stdout to a temporary file.

-e fn This option allows pegasus-kickstart to re-connect the stderr of the application that it starts. This
option is used whenever an application produces meaningful results on stderr that needs tracking
by Pegasus. The real stderr of Globus jobs is staged via GASS (GT2) or RFT (GT4). It is used

Reference Manual

214

to propagate abnormal behavior from both, pegasus-kickstart and the application that it starts,
though its main use is to propagate application dependent data and heartbeats. Use a single hyphen to
share stderr with the stderr that is provided to pegasus-kickstart. This is the backward compatible
behavior.

In order to provide an un-captured stderr as part of the results, by default the stderr of the application
will be connected to a temporary file. Its content is transferred as payload data in the pegasus-
kickstart results. If too large, only the an initial portion will become part of the payload. If the
temporary file grows too large, it may flood the worker node’s temporary space. The temporary file
will be deleted after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stderr to a temporary file.

-l logfn allows to append the performance data to the specified file. Thus, multiple XML documents may
end up in the same file, including their XML preamble. stdout is normally used to stream back the
results. Usually, this is a GASS-staged stream. Use a single hyphen to generate the output on the
stdout that was provided to pegasus-kickstart, the default behavior.

Default is to append the invocation record onto the provided stdout.

-w dir permits the explicit setting of a new working directory once pegasus-kickstart is started. This is
useful in a remote scheduling environment, when the chosen working directory is not visible on
the job submitting host. If the directory does not exist, pegasus-kickstart will fail. This option is
mutually exclusive with the -W dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-W dir permits the explicit creation and setting of a new working directory once pegasus-kickstart is started.
This is useful in a remote scheduling environment, when the chosen working directory is not visible
on the job submitting host. If the directory does not exist, pegasus-kickstart will attempt to create
it, and then change into it. Both, creation and directory change may still fail. This option is mutually
exclusive with the -w dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-X make an application executable, no matter what. It is a work-around code for a weakness of globus-
url-copy which does not copy the permissions of the source to the destination. Thus, if an executable
is staged-in using GridFTP, it will have the wrong permissions. Specifying the -X flag will attempt
to change the mode to include the necessary x (and r) bits to make the application executable.

Default is not to change the mode of the application. Note that this feature can be misused by hackers,
as it is attempted to call chmod on whatever path is specified.

-B sz varies the size of the debug output data section. If the file descriptors stdout and stderr remain
untracked, pegasus-kickstart tracks that output in temporary files. The first few pages from this
output is copied into a data section in the output. In order to resize the length of the output within
reasonable boundaries, this option permits a changes. Data beyond the size will not be copied, i.e.
is truncated.

Warning: This is not a cheap way to obtain the stdio file handle data. Please use tracked files for
that. Due to output buffer pre-allocation, using arbitrary large arguments may result in failures of
pegasus-kickstart itself to allocate the necessary memory.

The default maximum size of the data section is 262144 byte.

-F This flag will issue an explicit fsync() call on kickstart’s own stdout file. Typically you won’t need
this flag. Albeit, certain shared file system situations may improve when adding a flush after the
written invocation record.

Reference Manual

215

The default is to just use kickstart’s NFS alleviation strategy by locking and unlocking stdout.

-I fn In this mode, the application name and any arguments to the application are specified inside of file fn.
The file contains one argument per line. Escaping from Globus, Condor and shell meta characters is
not required. This mode permits to use the maximum possible command line length of the underlying
operating system, e.g. 128k for Linux. Using the -I mode stops any further command line processing
of pegasus-kickstart command lines.

Default is to use the app flags mode, where the application is specified explicitly on the command-
line.

app The path to the application has to be completely specified. The application is a mandatory option.

appflags Application may or may not have additional flags.

Return Value

pegasus-kickstart will return the return value of the main job. In addition, the error code 127 signals that the call
to exec failed, and 126 that reconnecting the stdio failed. A job failing with the same exit codes is indistinguishable
from pegasus-kickstart failures.

See Also

pegasus-plan(1), condor_submit_dag(1), condor_submit(1), getrusage(3c).

http://pegasus.isi.edu/wms/docs/schemas/iv-2.1/iv-2.1.html

http://pegasus.isi.edu/documentation

Subjobs

Subjobs are a new feature and may have a few wrinkles left.

In order to allow specific setups and assertion checks for compute nodes, pegasus-kickstart allows the optional
execution of a prejob. This prejob is anything that the remote compute node is capable of executing. For modern Unix
systems, this includes #! scripts interpreter invocations, as long as the x bits on the executed file are set. The main job
is run if and only if the prejob returned regularly with an exit code of zero.

With similar restrictions, the optional execution of a postjob is chained to the success of the main job. The postjob
will be run, if the main job terminated normally with an exit code of zero.

In addition, a user may specify a setup and a cleanup job. The setup job sets up the remote execution environment. The
cleanup job may tear down and clean-up after any job ran. Failure to run the setup job has no impact on subsequent
jobs. The cleanup is a job that will even be attempted to run for all failed jobs. No job information is passed. If you
need to invoke multiple setup or clean-up jobs, bundle them into a script, and invoke the clean-up script. Failure of the
clean-up job is not meant to affect the progress of the remote workflow (DAGMan). This may change in the future.

The setup-, pre-, and post- and cleanup-job run on the same compute node as the main job to execute. However, since
they run in separate processes as children of pegasus-kickstart, they are unable to influence each others nor the main
jobs environment settings.

All jobs and their arguments are subject to variable substitutions as explained in the next section.

To specify the prejob, insert the the application invocation and any optional commandline argument into the
environment variable GRIDSTART_PREJOB. If you are invoking from a shell, you might want to use single quotes to
protect against the shell. If you are invoking from Globus, you can append the RSL string feature. From Condor, you
can use Condor’s notion of environment settings. In Pegasus use the profile command to set generic scripts that will
work on multiple sites, or the transformation catalog to set environment variables in a pool-specific fashion. Please
remember that the execution of the main job is chained to the success of the prejob.

http://pegasus.isi.edu/wms/docs/schemas/iv-2.1/iv-2.1.html
http://pegasus.isi.edu/documentation

Reference Manual

216

To set up the postjob, use the environment variable GRIDSTART_POSTJOB to point to an application with potential
arguments to execute. The same restrictions as for the prejob apply. Please note that the execution of the post job is
chained to the main job.

To provide the independent setup job, use the environment variable GRIDSTART_SETUP. The exit code of the setup
job has no influence on the remaining chain of jobs. To provide an independent cleanup job, use the environment
variable GRIDSTART_CLEANUP to point to an application with possible arguments to execute. The same restrictions
as for prejob and postjob apply. The cleanup is run regardless of the exit status of any other jobs.

Variable Rewriting

Variable substitution is a new feature and may have a few wrinkles left.

The variable substitution employs simple rules from the Bourne shell syntax. Simple quoting rules for backslashed
characters, double quotes and single quotes are obeyed. Thus, in order to pass a dollar sign to as argument to your job,
it must be escaped with a backslash from the variable rewriting.

For pre- and postjobs, double quotes allow the preservation of whitespace and the insertion of special characters like \a
(alarm), \b (backspace), \n (newline), \r (carriage return), \t (horizontal tab), and \v (vertical tab). Octal modes are not
allowed. Variables are still substituted in double quotes. Single quotes inside double quotes have no special meaning.

Inside single quotes, no variables are expanded. The backslash only escapes a single quote or backslash.

Backticks are not supported.

Variables are only substituted once. You cannot have variables in variables. If you need this feature, please request it.

Outside quotes, arguments from the pre- and postjob are split on linear whitespace. The backslash makes the next
character verbatim.

Variables that are rewritten must start with a dollar sign either outside quotes or inside double quotes. The dollar may
be followed by a valid identifier. A valid identifier starts with a letter or the underscore. A valid identifier may contain
further letters, digits or underscores. The identifier is case sensitive.

The alternative use is to enclose the identifier inside curly braces. In this case, almost any character is allowed for
the identifier, including whitespace. This is the only curly brace expansion. No other Bourne magic involving curly
braces is supported.

One of the advantages of variable substitution is, for example, the ability to specify the application as $HOME/bin/
app1 in the transformation catalog, and thus to gridstart. As long as your home directory on any compute node has a
bin directory that contains the application, the transformation catalog does not need to care about the true location of
the application path on each pool. Even better, an administrator may decide to move your home directory to a different
place. As long as the compute node is set up correctly, you don’t have to adjust any Pegasus data.

Mind that variable substitution is an expert feature, as some degree of tricky quoting is required to protect substitutable
variables and quotes from Globus, Condor and Pegasus in that order. Note that Condor uses the dollar sign for its
own variables.

The variable substitution assumptions for the main job differ slightly from the prejob and postjob for technical reasons.
The pre- and postjob command lines are passed as one string. However, the main jobs command line is already split
into pieces by the time it reaches pegasus-kickstart. Thus, any whitespace on the main job’s command line must be
preserved, and further argument splitting avoided.

It is highly recommended to experiment on the Unix command line with the echo and env applications to obtain a
feeling for the different quoting mechanisms needed to achieve variable substitution.

Feedback Channel

A long-running application may consider to stream back heart beats and other application-specific monitoring and
progress data. For this reason, pegasus-kickstart provides a feedback channel. At start-up, a transient named pipe,
also known as FIFO, is created. While waiting for started jobs to finish, pegasus-kickstart will attempt to read from
the FIFO. By default, any information read will be encapsulated in XML tags, and written to stderr. Please note that in

Reference Manual

217

a Pegasus, Globus, Condor-G environment, stderr will be GASS streamed or staged to the submit host. At the submit
host, an application specific monitor may unpack the data chunks and could for instance visually display them, or
aggregate them with other data. Please note that pegasus-kickstart only provides a feedback channel. The content
and interpretation is up to, and specific for the application.

In order to make an application gridstart aware, it needs to be able to write to a FIFO. The filename can be picked
up from the environment variable GRIDSTART_CHANNEL which is provided to all jobs. Please note that the
application must be prepared to handle the PIPE signal when writing to a FIFO, and must be able to cope with failing
write operations.

Example

You can run the pegasus-kickstart executable locally to verify that it is functioning well. In the initial phase, the
format of the performance data may be slightly adjusted.

$ env GRIDSTART_PREJOB='/bin/usleep 250000' \\
 GRIDSTART_POSTJOB='/bin/date -u' \\
 pegasus-kickstart -l xx \\$PEGASUS_HOME/bin/keg -T1 -o-
$ cat xx
<?xml version="1.0" encoding="ISO-8859-1"?>
 ...
 </statcall>
</invocation>

Please take note a few things in the above example:

The output from the postjob is appended to the output of the main job on stdout. The output could potentially be
separated into different data sections through different temporary files. If you truly need the separation, request that
feature.

The log file is reported with a size of zero, because the log file did indeed barely exist at the time the data structure
was (re-) initialized. With regular GASS output, it will report the status of the socket file descriptor, though.

The file descriptors reported for the temporary files are from the perspective of pegasus-kickstart. Since the temporary
files have the close-on-exec flag set, pegasus-kickstarts file descriptors are invisible to the job processes. Still, the
'stdio of the job processes are connected to the temporary files.

Even this output already appears large. The output may already be too large to guarantee that the append operation
on networked pipes (GASS, NFS) are atomically written.

The current format of the performance data is as follows:

Output Format

Refer to http://pegasus.isi.edu/wms/docs/schemas/iv-2.1/iv-2.1.html for an up-to-date description of elements and
their attributes. Check with http://pegasus.isi.edu/documentation for invocation schemas with a higher version number.

Restrictions

There is no version for the Condor standard universe. It is simply not possible within the constraints of Condor.

Due to its very nature, pegasus-kickstart will also prove difficult to port outside the Unix environment.

Any of the pre-, main-, cleanup and postjob are unable to influence one another’s visible environment.

Do not use a Pegasus transformation with just the name null and no namespace nor version.

First Condor, and then Unix, place a limit on the length of the command line. The additional space required for the
gridstart invocation may silently overflow the maximum space, and cause applications to fail. If you suspect to work
with many argument, try an argument-file based approach.

A job failing with exit code 126 or 127 is indistinguishable from pegasus-kickstart failing with the same exit codes.
Sometimes, careful examination of the returned data can help.

http://pegasus.isi.edu/wms/docs/schemas/iv-2.1/iv-2.1.html
http://pegasus.isi.edu/documentation

Reference Manual

218

If the logfile is collected into a shared file, due to the size of the data, simultaneous appends on a shared filesystem from
different machines may still mangle data. Currently, file locking is not even attempted, although all data is written
atomically from the perspective of pegasus-kickstart.

The upper limit of characters of command line characters is currently not checked by pegasus-kickstart. Thus, some
variable substitutions could potentially result in a command line that is larger than permissible.

If the output or error file is opened in append mode, but the application decides to truncate its output file, as in the
above example by opening /dev/fd/1 inside keg, the resulting file will still be truncated. This is correct behavior, but
sometimes not obvious.

Files

/usr/share/pegasus/schema/
iv-2.1.xsd

is the suggested location of the latest XML schema describing the data on the
submit host.

Environment Variables

GRIDSTART_TMP is the hightest priority to look for a temporary directory, if specified. This rather special
variable was introduced to overcome some peculiarities with the FNAL cluster.

TMP is the next hightest priority to look for a temporary directory, if specified.

TEMP is the next priority for an environment variable denoting a temporary files directory.

TMPDIR is next in the checklist. If none of these are found, either the stdio definition P_tmpdir
is taken, or the fixed string /tmp.

GRIDSTART_SETUP contains a string that starts a job to be executed unconditionally before any other jobs,
see above for a detailed description.

GRIDSTART_PREJOB contains a string that starts a job to be executed before the main job, see above for a
detailed description.

GRIDSTART_POSTJOB contains a string that starts a job to be executed conditionally after the main job, see
above for a detailed description.

GRIDSTART_CLEANUP contains a string that starts a job to be executed unconditionally after any of the previous
jobs, see above for a detailed description.

GRIDSTART_CHANNEL is the name of a FIFO for an application-specific feedback-channel, see above for a
detailed description.

History

As you may have noticed, pegasus-kickstart had the name kickstart in previous incantations. We are slowly moving
to the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors

Michael Milligan <mbmillig at uchicago dot edu>

Mike Wilde <wilde at mcs dot anl dot gov>

Yong Zhao <yongzh at cs dot uchicago dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Reference Manual

219

Name
pegasus-monitord — tracks a workflow progress, mining information

Synopsis
pegasus-monitord [--help|-help] [--verbose|-v]
 [--adjust|-a i] [--foreground|-N]
 [--no-daemon|-n] [--job|-j jobstate.log file]
 [--log|-l logfile] [--conf properties file]
 [--no-recursive] [--no-database | --no-events]
 [--replay|-r] [--no-notifications]
 [--notifications-max max_notifications]
 [--notifications-timeout timeout]
 [--sim|-s millisleep] [--db-stats]
 [--skip-stdout] [--force|-f]
 [--socket] [--output-dir | -o dir]
 [--dest|-d PATH or URL] [--encoding|-e bp | bson]
 DAGMan output file

Description

This program follows a workflow, parsing the output of DAGMAN’s dagman.out file. In addition to generating the
jobstate.log file, pegasus-monitord can also be used mine information from the workflow dag file and jobs' submit and
output files, and either populate a database or write a NetLogger events file with that information. pegasus-monitord
can also perform notifications when tracking a workflow’s progress in real-time.

Options

-h , --help Prints a usage summary with all the available command-line options.

-v , --verbose Sets the log level for pegasus-monitord. If omitted, the default level will be
set to WARNING. When this option is given, the log level is changed to INFO.
If this option is repeated, the log level will be changed to DEBUG.

The log level in pegasus-monitord can also be adjusted interactively,
by sending the USR1 and USR2 signals to the process, respectively for
incrementing and decrementing the log level.

-a i , --adjust i For adjusting time zone differences by i seconds, default is 0.

-N , --foreground Do not daemonize pegasus-monitord, go through the motions as if (Condor).

-n , --no-daemon Do not daemonize pegasus-monitord, keep it in the foreground (for
debugging).

-j jobstate.log file , --job
jobstate.log file

Alternative location for the jobstate.log file. The default is to write a
jobstate.log in the workflow directory. An absolute file name should only
be used if the workflow does not have any sub-workflows, as each sub-
workflow will generate its own jobstate.log file. If an alternative, non-absolute,
filename is given with this option, pegasus-monitord will create one file in
each workflow (and sub-workflow) directory with the filename provided by the
user with this option. If an absolute filename is provided and sub-workflows
are found, a warning message will be printed and pegasus-monitord will not
track any sub-workflows.

--log logfile , --log-file logfile Specifies an alternative logfile to use instead of the monitord.log file in the
main workflow directory. Differently from the jobstate.log file above, pegasus-
monitord only generates one logfile per execution (and not one per workflow
and sub-workflow it tracks).

Reference Manual

220

--conf properties_file is an alternative file containing properties in the key=value format, and allows
users to override values read from the braindump.txt file. This option has
precedence over the properties file specified in the braindump.txt file. Please
note that these properties will apply not only to the main workflow, but also to
all sub-workflows found.

--no-recursive This options disables pegasus-monitord to automatically follow any sub-
workflows that are found.

--nodatabase , --no-database , --
no-events

Turns off generating events (when this option is given, pegasus-monitord
will only generate the jobstate.log file). The default is to automatically log
information to a SQLite database (see the --dest option below for more details).
This option overrides any parameter given by the --dest option.

-r , --replay This option is used to replay the output of an already finished workflow.
It should only be used after the workflow is finished (not necessarily
successfully). If a jobstate.log file is found, it will be rotated. However, when
using a database, all previous references to that workflow (and all its sub-
workflows) will be erased from it. When outputing to a bp file, the file will
be deleted. When running in replay mode, pegasus-monitord will always run
with the --no-daemon option, and any errors will be output directly to the
terminal. Also, pegasus-monitord will not process any notifications while in
replay mode.

--no-notifications This options disables notifications completely, making pegasus-monitord
ignore all the .notify files for all workflows it tracks.

--notifications-max
max_notifications

This option sets the maximum number of concurrent notifications that pegasus-
monitord will start. When the max_notifications limit is reached, pegasus-
monitord will queue notifications and wait for a pending notification script to
finish before starting a new one. If max_notifications is set to 0, notifications
will be disabled.

--notifications-timeout timeout Normally, pegasus-monitord will start a notification script and wait
indefinitely for it to finish. This option allows users to set up a maximum
timeout that pegasus-monitord will wait for a notification script to finish
before terminating it. If notification scripts do not finish in a reasonable amount
of time, it can cause other notification scripts to be queued due to the maximum
number of concurrent scripts allowed by pegasus-monitord. Additionally,
until all notification scripts finish, pegasus-monitord will not terminate.

-s millisleep , --sim millisleep This option simulates delays between reads, by sleeping millisleep
milliseconds. This option is mainly used by developers.

--db-stats This option causes the database module to collect and print database statistics
at the end of the execution. It has no effect if the --no-database option is given.

--skip-stdout This option causes pegasus-monitord not to populate jobs' stdout and stderr
into the BP file or the Stampede database. It should be used to avoid increasing
the database size substantially in cases where jobs are very verbose in their
output.

-f , --force This option causes pegasus-monitord to skip checking for another instance of
itself already running on the same workflow directory. The default behavior
prevents two or more pegasus-monitord instances from starting and running
simultaneously (which would cause the bp file and database to be left in an
unstable state). This option should noly be used when the user knows the
previous instance of pegasus-monitord is NOT running anymore.

--socket This option causes pegasus-monitord to start a socket interface that can be
used for advanced debugging. The port number for connecting to pegasus-
monitord can be found in the monitord.sock file in the workflow directory

Reference Manual

221

(the file is deleted when pegasus-monitord finishes). If not already started,
the socket interface is also created when pegasus-monitord receives a USR1
signal.

-o dir , --ouput-dir dir When this option is given, pegasus-monitord will create all its output files in
the directory specified by dir. This option is useful for allowing a user to debug
a workflow in a directory the user does not have write permissions. In this case,
all files generated by pegasus-monitord will have the workflow wf_uuid as
a prefix so that files from multiple sub-workflows can be placed in the same
directory. This option is mainly used by pegasus-analyzer. It is important to
note that the location for the output BP file or database is not changed by this
option and should be set via the --dest option.

-d URL params , --dest URL
params

This option allows users to specify the destination for the log events generated
by pegasus-monitord. If this option is omitted, pegasus-monitord will create
a SQLite database in the workflow’s run directory with the same name as the
workflow, but with a .stampede.db prefix. For an empty scheme, params are
a file path with - meaning standard output. For a x-tcp scheme, params are
TCP_host[:port=14380]. For a database scheme, params are a SQLAlchemy
engine URL with a database connection string that can be used to specify
different database engines. Please see the examples section below for more
information on how to use this option. Note that when using a database
engine other than sqlite, the necessary Python database drivers will need to be
installed.

-e encoding , --encoding
encoding

This option specifies how to encode log events. The two available possibilities
are bp and bson. If this option is not specified, events will be generated in the
bp format.

DAGMan_output_file The DAGMan_output_file is the only requires command-line argument in
pegasus-monitord and must have the .dag.dagman.out extension.

Return Value

If the plan could be constructed, pegasus-monitord returns with an exit code of 0. However, in case of error, a non-zero
exit code indicates problems. In that case, the logfile should contain additional information about the error condition.

Environment Variables

pegasus-monitord does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

Examples

Usually, pegasus-monitord is invoked automatically by pegasus-run and tracks the workflow progress in real-time,
producing the jobstate.log file and a corresponding SQLite database. When a workflow fails, and is re-submitted
with a rescue DAG, pegasus-monitord will automatically pick up from where it left previously and continue the
jobstate.log file and the database.

If users need to create the jobstate.log file after a workflow is already finished, the --replay | -r option should be used
when running pegasus-monitord manually. For example:

$ pegasus_monitord -r diamond-0.dag.dagman.out

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. If a diamond-0.stampede.db SQLite database already exists, pegasus-monitord will purge
all references to the workflow id specified in the braindump.txt file, including all sub-workflows associated with that
workflow id.

$ pegasus_monitord -r --no-database diamond-0.dag.dagman.out

will do the same thing, but without generating any log events.

Reference Manual

222

$ pegasus_monitord -r --dest `pwd`/diamond-0.bp diamond-0.dag.dagman.out

will create the file diamond-0.bp in the current directory, containing NetLogger events with all the workflow data.
This is in addition to the jobstate.log file.

For using a database, users should provide a database connection string in the format of:

dialect://username:password@host:port/database

Where dialect is the name of the underlying driver (mysql, sqlite, oracle, postgres) and database is the name of the
database running on the server at the host computer.

If users want to use a different SQLite database, pegasus-monitord requires them to specify the absolute path of the
alternate file. For example:

$ pegasus_monitord -r --dest sqlite:////home/user/diamond_database.db diamond-0.dag.dagman.out

Here are docs with details for all of the supported drivers: http://www.sqlalchemy.org/docs/05/reference/dialects/
index.html

Additional per-database options that work into the connection strings are outlined there.

It is important to note that one will need to have the appropriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQLAlchemy and the SQLite Python driver.

As a final note, it is important to mention that unlike when using SQLite databases, using SQLAlchemy with other
database servers, e.g. MySQL or Postgres, the target database needs to exist. So, if a user wanted to connect to:

mysql://pegasus-user:supersecret@localhost:localport/diamond

it would need to first connect to the server at localhost and issue the appropriate create database command before
running pegasus-monitord as SQLAlchemy will take care of creating the tables and indexes if they do not already
exist.

See Also

pegasus-run(1)

Authors

Gaurang Mehta <gmehta at isi dot edu>

Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://pegasus.isi.edu

Reference Manual

223

Name
pegasus-plan — runs Pegasus to generate the executable workflow

Synopsis
pegasus-plan [-v] [-q] [-V] [-h]
 [-Dprop=value…]] [-b prefix]
 [--conf propsfile]
 [-c cachefile[,cachefile…]]
 [-C style[,style…]]
 [--dir dir]
 [--force] [--force-replan]
 [--inherited-rc-files] [-j prefix]
 [-n] [-o site]
 [-s site1[,site2…]]
 [--staging-site s1=ss1[,s2=ss2[..]]
 [--randomdir[=dirname]]
 [--relative-dir dir]
 [--relative-submit-dir dir]
 -d daxfile

Description

The pegasus-plan command takes in as input the DAX and generates an executable workflow usually in form of
condor submit files, which can be submitted to an execution site for execution.

As part of generating an executable workflow, the planner needs to discover:

data The Pegasus Workflow Planner ensures that all the data required for the execution of the
executable workflow is transferred to the execution site by adding transfer nodes at appropriate
points in the DAG. This is done by looking up an appropriate Replica Catalog to determine
the locations of the input files for the various jobs. At present the default replica mechanism
used is RLS.

The Pegasus Workflow Planner also tries to reduce the workflow, unless specified otherwise.
This is done by deleting the jobs whose output files have been found in some location in the
Replica Catalog. At present no cost metrics are used. However preference is given to a location
corresponding to the execution site

The planner can also add nodes to transfer all the materialized files to an output site. The location
on the output site is determined by looking up the site catalog file, the path to which is picked
up from the pegasus.catalog.site.file property value.

executables The planner looks up a Transformation Catalog to discover locations of the executables referred
to in the executable workflow. Users can specify INSTALLED or STAGEABLE executables
in the catalog. Stageable executables can be used by Pegasus to stage executables to resources
where they are not pre-installed.

resources The layout of the sites, where Pegasus can schedule jobs of a workflow are described in the
Site Catalog. The planner looks up the site catalog to determine for a site what directories a job
can be executed in, what servers to use for staging in and out data and what jobmanagers (if
applicable) can be used for submitting jobs.

The data and executable locations can now be specified in DAX’es conforming to DAX schema version 3.2 or higher.

Options

Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s

Reference Manual

224

properties file and the PEGASUS home location. One may set several CLI
properties by giving this option multiple times. The -D option(s) must be the
first option on the command line. A CLI property take precedence over the
properties file property of the same key.

-d file , --dax file The DAX is the XML input file that describes an abstract workflow. This is a
mandatory option, which has to be used.

-b prefix , --basename prefix The basename prefix to be used while constructing per workflow files like the
dagman file (.dag file) and other workflow specific files that are created by
Condor. Usually this prefix, is taken from the name attribute specified in the
root element of the dax files.

-c file[,file,…] , --cache file[,file,
…]

A comma separated list of paths to replica cache files that override the results
from the replica catalog for a particular LFN.

Each entry in the cache file describes a LFN , the corresponding PFN and the
associated attributes. The pool attribute should be specified for each entry.

LFN_1 PFN_1 pool=[site handle 1]
LFN_2 PFN_2 pool=[site handle 2]
 ...
LFN_N PFN_N [site handle N]

To treat the cache files as supplemental replica catalogs set the property
pegasus.catalog.replica.cache.asrc to true. This results in the mapping in the
cache files to be merged with the mappings in the replica catalog. Thus, for a
particular LFN both the entries in the cache file and replica catalog are available
for replica selection.

-C style[,style,…] , --cluster
style[,style,…]

Comma-separated list of clustering styles to apply to the workflow. This mode
of operation results in clustering of n compute jobs into a larger jobs to reduce
remote scheduling overhead. You can specify a list of clustering techniques to
recursively apply them to the workflow. For example, this allows you to cluster
some jobs in the workflow using horizontal clustering and then use label based
clustering on the intermediate workflow to do vertical clustering.

The clustered jobs can be run at the remote site, either sequentially or by using
MPI. This can be specified by setting the property pegasus.job.aggregator.
The property can be overridden by associating the PEGASUS profile key
collapser either with the transformation in the transformation catalog or the
execution site in the site catalog. The value specified (to the property or the
profile), is the logical name of the transformation that is to be used for clustering
jobs. Note that clustering will only happen if the corresponding transformations
are catalogued in the transformation catalog.

PEGASUS ships with a clustering executable seqexec that can be found in
the $PEGASUS_HOME/bin directory. It runs the jobs in the clustered job
sequentially on the same node at the remote site.

In addition, an MPI wrapper mpiexec, is distributed as source with PEGASUS.
It can be found in the $PEGASUS_HOME/src/tools/cluster directory. The
wrapper is run on every MPI node, with the first one being the master and the
rest of the ones as workers. The number of instances of mpiexec that are invoked
is equal to the value of the Globus RSL key nodecount. The master distributes
the smaller constituent jobs to the workers. For e.g. If there were 10 jobs in the
clustered job and nodecount was 5, then one node acts as master, and the 10
jobs are distributed amongst the 4 slaves on demand. The master hands off a
job to the slave node as and when it gets free. So initially all the 4 nodes are
given a single job each, and then as and when they get done are handed more
jobs till all the 10 jobs have been executed.

Reference Manual

225

By default, seqexec is used for clustering jobs unless overridden in the
properties or by the pegasus profile key collapser.

The following type of clustering styles are currently supported:

• horizontal is the style of clustering in which jobs on the same level are
aggregated into larger jobs. A level of the workflow is defined as the greatest
distance of a node, from the root of the workflow. Clustering occurs only on
jobs of the same type i.e they refer to the same logical transformation in the
transformation catalog.

Horizontal Clustering can operate in one of two modes. a. Job count based.

The granularity of clustering can be specified by associating either
the PEGASUS profile key clusters.size or the PEGASUS profile key
clusters.num with the transformation.

The clusters.size key indicates how many jobs need to be clustered into the
larger clustered job. The clusters.num key indicates how many clustered jobs
are to be created for a particular level at a particular execution site. If both
keys are specified for a particular transformation, then the clusters.num key
value is used to determine the clustering granularity.

a. Runtime based.

To cluster jobs according to runtimes user needs to set one property
and two profile keys. The property pegasus.clusterer.preference must be
set to the value runtime. In addition user needs to specify two Pegasus
profiles. a. clusters.maxruntime which specifies the maximum duration
for which the clustered job should run for. b. job.runtime which specifies
the duration for which the job with which the profile key is associated,
runs for. Ideally, clusters.maxruntime should be set in transformation
catalog and job.runtime should be set for each job individually.

• label is the style of clustering in which you can label the jobs in your
workflow. The jobs with the same level are put in the same clustered job.
This allows you to aggregate jobs across levels, or in a manner that is best
suited to your application.

To label the workflow, you need to associate PEGASUS profiles with the
jobs in the DAX. The profile key to use for labeling the workflow can be
set by the property pegasus.clusterer.label.key. It defaults to label, meaning
if you have a PEGASUS profile key label with jobs, the jobs with the same
value for the pegasus profile key label will go into the same clustered job.

--conf propfile The path to properties file that contains the properties planner needs to use
while planning the workflow.

--dir dir The base directory where you want the output of the Pegasus Workflow
Planner usually condor submit files, to be generated. Pegasus creates a directory
structure in this base directory on the basis of username, VO Group and the
label of the workflow in the DAX.

By default the base directory is the directory from which one runs the pegasus-
plan command.

-f , --force This bypasses the reduction phase in which the abstract DAG is reduced, on the
basis of the locations of the output files returned by the replica catalog. This is
analogous to a make style generation of the executable workflow.

Reference Manual

226

--force-replan By default, for hierarichal workflows if a DAX job fails, then on job retry
the rescue DAG of the associated workflow is submitted. This option causes
Pegasus to replan the DAX job in case of failure instead.

-g , --group The VO Group to which the user belongs to.

-h , --help Displays all the options to the pegasus-plan command.

--inherited-rc-files file[,file,…] A comma separated list of paths to replica files. Locations mentioned in these
have a lower priority than the locations in the DAX file. This option is usually
used internally for hierarchical workflows, where the file locations mentioned
in the parent (encompassing) workflow DAX, passed to the sub workflows
(corresponding) to the DAX jobs.

-j prefix , --job-prefix prefix The job prefix to be applied for constructing the filenames for the job submit
files.

-n , --nocleanup This results in the generation of the separate cleanup workflow that removes
the directories created during the execution of the executable workflow. The
cleanup workflow is to be submitted after the executable workflow has finished.

If this option is not specified, then Pegasus adds cleanup nodes to the executable
workflow itself that cleanup files on the remote sites when they are no longer
required.

-o site , --o site The output site where all the materialized data is transferred to.

By default the materialized data remains in the working directory on the
execution site where it was created. Only those output files are transferred to
an output site for which transfer attribute is set to true in the DAX.

-q , --quiet Decreases the logging level.

-r[dirname] , --
randomdir[=dirname]

Pegasus Worfklow Planner adds create directory jobs to the executable
workflow that create a directory in which all jobs for that workflow execute on
a particular site. The directory created is in the working directory (specified in
the site catalog with each site).

By default, Pegasus duplicates the relative directory structure on the submit
host on the remote site. The user can specify this option without arguments
to create a random timestamp based name for the execution directory that are
created by the create dir jobs. The user can can specify the optional argument
to this option to specify the basename of the directory that is to be created.

The create dir jobs refer to the dirmanager executable that is shipped as part
of the PEGASUS worker package. The transformation catalog is searched
for the transformation named pegasus::dirmanager for all the remote sites
where the workflow has been scheduled. Pegasus can create a default path
for the dirmanager executable, if PEGASUS_HOME environment variable is
associated with the sites in the site catalog as an environment profile.

--relative-dir dir The directory relative to the base directory where the executable workflow it to
be generated and executed. This overrides the default directory structure that
Pegasus creates based on username, VO Group and the DAX label.

--relative-submit-dir dir The directory relative to the base directory where the executable workflow it to
be generated. This overrides the default directory structure that Pegasus creates
based on username, VO Group and the DAX label. By specifying --relative-dir
and --relative-submit-dir you can have different relative execution directory
on the remote site and different relative submit directory on the submit host.

-s site[,site,…] , --sites site[,site,
…]

A comma separated list of execution sites on which the workflow is to be
executed. Each of the sites should have an entry in the site catalog, that is being
used. To run on the submit host, specify the execution site as local.

Reference Manual

227

In case this option is not specified, all the sites in the site catalog are picked up
as candidates for running the workflow.

--staging-site s1=ss1[,s2=ss2[..]] A comma separated list of key=value pairs , where the key is the execution site
and value is the staging site for that execution site.

In case of running on a shared filesystem, the staging site is automatically
associated by the planner to be the execution site. If only a value is specified,
then that is taken to be the staging site for all the execution sites. e.g --staging-
site local means that the planner will use the local site as the staging site for
all jobs in the workflow.

-s , --submit Submits the generated executable workflow using pegasus-run script in
$PEGASUS_HOME/bin directory. By default, the Pegasus Workflow Planner
only generates the Condor submit files and does not submit them.

-v , --verbose Increases the verbosity of messages about what is going on. By default, all
FATAL, ERROR, CONSOLE and WARN messages are logged. The logging
hierarchy is as follows:

1. FATAL

2. ERROR

3. CONSOLE

4. WARN

5. INFO

6. CONFIG

7. DEBUG

8. TRACE

For example, to see the INFO, CONFIG and DEBUG messages additionally,
set -vvv.

-V , --version Displays the current version number of the Pegasus Workflow Management
System.

Return Value

If the Pegasus Workflow Planner is able to generate an executable workflow successfully, the exitcode will be 0. All
runtime errors result in an exitcode of 1. This is usually in the case when you have misconfigured your catalogs etc.
In the case of an error occurring while loading a specific module implementation at run time, the exitcode will be 2.
This is usually due to factory methods failing while loading a module. In case of any other error occurring during the
running of the command, the exitcode will be 1. In most cases, the error message logged should give a clear indication
as to where things went wrong.

Pegasus Properties

This is not an exhaustive list of properties used. For the complete description and list of properties refer to
$PEGASUS_HOME/doc/advanced-properties.pdf

pegasus.selector.site Identifies what type of site selector you want to use. If not specified the
default value of Random is used. Other supported modes are RoundRobin and
NonJavaCallout that calls out to a external site selector.

pegasus.catalog.replica Specifies the type of replica catalog to be used.

If not specified, then the value defaults to RLS.

Reference Manual

228

pegasus.catalog.replica.url Contact string to access the replica catalog. In case of RLS it is the RLI url.

pegasus.dir.exec A suffix to the workdir in the site catalog to determine the current working
directory. If relative, the value will be appended to the working directory from
the site.config file. If absolute it constitutes the working directory.

pegasus.catalog.transformation Specifies the type of transformation catalog to be used. One can use either a file
based or a database based transformation catalog. At present the default is Text.

pegasus.catalog.transformation.file The location of file to use as transformation catalog.

If not specified, then the default location of $PEGASUS_HOME/var/tc.data is
used.

pegasus.catalog.site Specifies the type of site catalog to be used. One can use either a text based or
an xml based site catalog. At present the default is XML3.

pegasus.catalog.site.file The location of file to use as a site catalog. If not specified, then default value of
$PEGASUS_HOME/etc/sites.xml is used in case of the xml based site catalog
and $PEGASUS_HOME/etc/sites.txt in case of the text based site catalog.

pegasus.data.configuration This property sets up Pegasus to run in different environments. This can be set
to

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared
filesystem on the execution site. This assumes, that the head node of a cluster
and the worker nodes share a filesystem. The staging site in this case is the
same as the execution site.

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execution
site without relying on a shared filesystem between the head node and the
worker nodes.

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool,
with the nodes not sharing a filesystem. Data is staged to the compute nodes
from the submit host using Condor File IO.

pegasus.code.generator The code generator to use. By default, Condor submit files are generated for
the executable workflow. Setting to Shell results in Pegasus generating a shell
script that can be executed on the submit host.

Files

$PEGASUS_HOME/etc/
dax-3.3.xsd

is the suggested location of the latest DAX schema to produce DAX output.

$PEGASUS_HOME/etc/
sc-3.0.xsd

is the suggested location of the latest Site Catalog schema that is used to create
the XML3 version of the site catalog

$PEGASUS_HOME/etc/
tc.data.text

is the suggested location for the file corresponding to the Transformation
Catalog.

$PEGASUS_HOME/etc/
sites.xml3 | $PEGASUS_HOME/
etc/sites.xml

is the suggested location for the file containing the site information.

$PEGASUS_HOME/lib/
pegasus.jar

contains all compiled Java bytecode to run the Pegasus Workflow Planner.

See Also

pegasus-sc-client(1), pegasus-tc-client(1), pegasus-rc-client(1)

Reference Manual

229

Authors

Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

230

Name
pegasus-plots — A tool to generate graphs and charts to visualize workflow run.

Synopsis
pegasus-plots [-h|--help]
 [-o|--output outdir]
 [-c|--conf propfile]
 [-m|--max-graph-nodes max]
 [-p|--plotting-level level]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [submitdir]

Description

pegasus-plots generates graphs and charts to visualize workflow run. It generates workflow execution Gantt chart, job
over time chart, time chart, dax and dag graph. It uses executable 'dot\' to generate graphs. pegasus-plots looks for the
executable in your path and generates graphs based on it’s availability .

Options

-h , --help Prints a usage summary with all the available command-line options.

-o outdir , --output outdir Writes the output to the given directory

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-m max , --max-graph-nodes
max

Maximum limit on the number of tasks/jobs in the dax/dag up to which the
graph should be generated. The default value is 100.

-p level , --plotting-level level Specifies the charts and graphs to generate. Valid levels are: all, all_charts,
all_graphs, dax_graph, dag_graph, gantt_chart, host_chart, time_chart,
breakdown_chart. Default is all_charts. The output generated by pegasus-
plots is based on the level set:

• all: generates all charts and graphs.

• all_charts: generates all charts.

• all_graphs: generates all graphs.

• dax_graph: generates dax graph.

• dag_graph: generates dag graph.

• gantt_chart: generates the workflow execution Gantt chart.

• host_chart: generates the host over time chart.

• time_chart: generates the time chart which shows the job instance/
invocation count and runtime over time.

• breakdown_chart: generates the breakdown chart which shows the
invocation count and runtime grouped by transformation name.

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

Reference Manual

231

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

Example

Runs pegasus-plots and writes the output to the given directory:

pegasus-plots -o /scratch/plot /scratch/grid-setup/run0001

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

232

Name
pegasus-rc-client — shell client for replica implementations

Synopsis
pegasus-rc-client [-Dproperty=value[…]] [-V]
 [-c fn] [-p k=v]
 [[-f fn]|[-i|-d fn]|[cmd [args]]

Description

The shell interface to replica catalog implementations is a prototype. It determines from various property setting which
class implements the replica manager interface, and loads that driver at run-time. Some commands depend on the
implementation.

Options

Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’s properties file and
the PEGASUS home location. One may set several CLI properties by giving this option
multiple times. The -D option(s) must be the first option on the command line. A CLI
property take precedence over the properties file property of the same key.

-c fn , --conf fn Path to the property file

-f fn , --file fn The optional input file argument permits to enter non-interactive bulk mode. If this
option is not present, replica manager specific commands should be issued on the
command-line. The special filename hyphen (-) can be used to read from pipes.

Default is to use an interactive interface reading from stdin.

-i fn , --insert fn The optional input file argument permits insertion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation. This is highly,
useful when interfacing with the Globus RLS as the backend, and one wants to inserts
millions of entries in it.

Each line in the file denotes one mapping of the format <lfn> <pfn> [k=v [..]]

-d fn , --delete fn The optional input file argument permits deletion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation. This is highly,
useful when interfacing with the Globus RLS as the backend, and one wants to delete
millions of entries from it.

Each line in the file denotes one mapping of the format: <lfn> <pfn> [k=v [..]]

-p k=v , --pref k=v This option may be specified multiple times. Each specification populates instance
preferences. Preferences control the extend of log information, or the output format
string to use in listings.

The keys format and level are recognized as of this writing.

There are no defaults.

cmd [args] If not in file-driven mode, a single command can be specified with its arguments.

Default is to use interactive mode.

-V , --version displays the version of Pegasus you are using.

Reference Manual

233

Return Value

Regular and planned program terminations will result in an exit code of 0. Abnormal termination will result in a non-
zero exit code.

Files

$PEGASUS_HOME/etc/
properties

contains the basic properties with all configurable options.

$HOME/.pegasusrc contains the basic properties with all configurable options.

pegasus.jar contains all compiled Java bytecode to run the replica manager.

Environment Variables

PEGASUS_HOME is the suggested base directory of your the execution environment.

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as
$JAVA_HOME/bin/java.

CLASSPATH should be set to contain all necessary files for the execution environment. Please make sure
that your CLASSPATH includes pointer to the replica implementation required jar files.

Properties

The complete branch of properties pegasus.catalog.replica including itself are interpreted by the prototype. While the
pegasus.catalog.replica property itself steers the backend to connect to, any meaning of branched keys is dependent
on the backend. The same key may have different meanings for different backends.

pegasus.catalog.replica determines the name of the implementing class to load at run-time. If the
class resides in org.griphyn.common.catalog.replica no prefix is required.
Otherwise, the fully qualified class name must be specified.

pegasus.catalog.replica.url is used by the RLS|LRC implementations. It determines the RLI / LRC url to
use.

pegasus.catalog.replica.file is used by the SimpleFile implementation. It specifies the path to the file to use
as the backend for the catalog.

pegasus.catalog.replica.db.driver is used by a simple rDBMs implementation. The string is the fully-qualified
class name of the JDBC driver used by the RDBMS implementer.

pegasus.catalog.replica.db.url is the JDBC URL to use to connect to the database.

pegasus.catalog.replica.db.user is used by a simple rDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.db.passwordis used by a simple RDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.chunk.size is used by the pegasus-rc-client for the bulk insert and delete operations. The
value determines the number of lines that are read in at a time, and worked
upon at together.

Commands

The command line tool provides a simplified shell-wrappable interface to manage a replica catalog backend. The
commands can either be specified in a file in bulk mode, in a pipe, or as additional arguments to the invocation.

Note that you must escape special characters from the shell.

Reference Manual

234

help displays a small resume of the commands.

exit , quit should only be used in interactive mode to exit the interactive mode.

clear drops all contents from the backend. Use with special care!

insert <lfn> <pfn> [k=v […]] inserts a given lfn and pfn, and an optional site string into the backend. If the
site is not specified, a null value is inserted for the site.

delete <lfn> <pfn> [k=v […]] removes a triple of lfn, pfn and, optionally, site from the replica backend. If
the site was not specified, all matches of the lfn pfn pairs will be removed,
regardless of the site.

lookup <lfn> [<lfn> […]] retrieves one or more mappings for a given lfn from the replica backend.

remove <lfn> [<lfn> […]] removes all mappings for each lfn from the replica backend.

list [lfn <pat>] [pfn <pat>]
[<name> <pat>]

obtains all matches from the replica backend. If no arguments were specified,
all contents of the replica backend are matched. You must use the word lfn, pfn
or <name> before specifying a pattern. The pattern is meaningful only to the
implementation. Thus, a SQL implementation may chose to permit SQL wild-
card characters. A memory-resident service may chose to interpret the pattern
as regular expression.

set [var [value]] sets an internal variable that controls the behavior of the front-end. With no
arguments, all possible behaviors are displayed. With one argument, just the
matching behavior is listed. With two arguments, the matching behavior is set
to the value.

Database Schema

The tables are set up as part of the PEGASUS database setup. The files concerned with the database have a suffix
-rc.sql.

Authors

Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmetha at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot dot edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Reference Manual

235

Name
pegasus-remove — removes a workflow that has been planned and submitted using pegasus-plan and pegasus-run

Synopsis
pegasus-remove [-d dagid] [-v] [rundir]

Description

The pegasus-remove command remove a submitted/running workflow that has been planned and submitted using
pegasus-plan and pegasus-run. The command can be invoked either in the planned directory with no options and
arguments or just the full path to the run directory.

Options

By default pegasus-remove does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs to
be specified or the dagid of the workflow to be removed.

pegasus-remove takes the following options:

-d dagid , --dagid
dagid

The workflow dagid to remove

-v , --verbose Raises debug level. Each invocation increase the level by 1.

rundir Is the full qualified path to the base directory containing the planned workflow DAG and
submit files. This is optional if pegasus-remove command is invoked from within the run
directory.

Return Value

If the workflow is removed successfully pegasus-remove returns with an exit code of 0. However, in case of error, a
non-zero exit code indicates problems. An error message clearly marks the cause.

Files

The following files are opened:

braindump This file is located in the rundir. pegasus-remove uses this file to find out paths to several other files.

Environment Variables

PATH The path variable is used to locate binary for condor_rm.

See Also

pegasus-plan(1), pegasus-run(1)

Authors

Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

236

Name
pegasus-run — executes a workflow that has been planned using *pegasus-plan*.

Synopsis
pegasus-run [-Dproperty=value…][-c propsfile][-d level]
 [-v][--grid*][rundir]

Description

The pegasus-run command executes a workflow that has been planned using pegasus-plan. By default pegasus-run
can be invoked either in the planned directory with no options and arguments or just the full path to the run directory.
pegasus-run also can be used to resubmit a failed workflow by running the same command again.

Options

By default pegasus-run does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs
to be specified.

pegasus-run takes the following options

-Dproperty=value The -D option allows an advanced user to override certain properties which influence
pegasus-run. One may set several CLI properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

See the PROPERTIES section below.

-c propsfile , --conf
propsfile

Provide a property file to override the default Pegasus properties file from the planning
directory. Ordinary users do not need to use this option unless the specifically want to
override several properties

-d level , --debug level Set the debug level for the client. Default is 0.

-v , --verbose Raises debug level. Each invocation increase the level by 1.

--grid Enable grid checks to see if your submit machine is GRID enabled.

rundir Is the full qualified path to the base directory containing the planned workflow DAG
and submit files. This is optional if the pegasus-run command is invoked from within
the run directory.

Return Value

If the workflow is submitted for execution pegasus-run returns with an exit code of 0. However, in case of error, a
non-zero return value indicates problems. An error message clearly marks the cause.

Files

The following files are created, opened or written to:

braindump This file is located in the rundir. pegasus-run uses this file to find out paths to
several other files, properties configurations etc.

pegasus.?????????.properties This file is located in the rundir. pegasus-run uses this properties file by default
to configure its internal settings.

workflowname.dag pegasus-run uses the workflowname.dag or workflowname.sh file and submits
it either to condor for execution or runs it locally in a shell environment

Reference Manual

237

Properties

pegasus-run reads its properties from several locations.

RUNDIR/
pegasus.??????????.properties

The default location for pegasus-run to read the properties from

--conf propfile properties file provided in the conf option replaces the default properties file
used.

$HOME/.pegasusrc will be used if neither default rundir properties or --conf propertiesfile are
found.

Additionally properties can be provided individually using the -
Dpropkey=propvalue option on the command line before all other options.
These properties will override properties provided using either --conf or
RUNDIR/pegasus.???????.properties or the $HOME/.pegasusrc

The merge logic is CONF PROPERTIES || DEFAULT RUNDIR
PROPERTIES || PEGASUSRC overriden by Command line properties

Environment Variables

PATH The path variable is used to locate binaries for condor-submit-dag, condor-dagman, condor-
submit,pegasus-submit-dag, pegasus-dagman and pegasus-monitord

See Also

pegasus-plan(1)

Authors

Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

238

Name
pegasus-s3 — Upload, download, delete objects in Amazon S3

Synopsis
pegasus-s3 help
pegasus-s3 ls [options] URL
pegasus-s3 mkdir [options] URL…
pegasus-s3 rmdir [options] URL…
pegasus-s3 rm [options] [URL…]
pegasus-s3 put [options] FILE URL
pegasus-s3 get [options] URL [FILE]
pegasus-s3 lsup [options] URL
pegasus-s3 rmup [options] URL [UPLOAD]

Description

pegasus-s3 is a client for the Amazon S3 object storage service and any other storage services that conform to the
Amazon S3 API, such as Eucalyptus Walrus.

Options

Global Options

-h , --help Show help message for subcommand and exit

-d , --debug Turn on debugging

-v , --verbose Show progress messages

-C FILE , --
conf=FILE

Path to configuration file

rm Options

-f , --force If the URL does not exist, then ignore the error.

-F FILE , --
file=FILE

File containing a list of URLs to delete

put Options

-c X , --chunksize=X Set the chunk size for multipart uploads to X MB. A value of 0 disables multipart uploads.
The default is 10MB, the min is 5MB and the max is 1024MB. This parameter only applies
for sites that support multipart uploads (see multipart_uploads configuration parameter
in the CONFIGURATION section). The maximum number of chunks is 10,000, so if
you are uploading a large file, then the chunk size is automatically increased to enable the
upload. Choose smaller values to reduce the impact of transient failures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 0, which disables parallel
uploads. This parameter is only valid if the site supports mulipart uploads and the --
chunksize parameter is not 0.

-b , --create-bucket Create the destination bucket if it does not already exist

get Options

-c X , --
chunksize=X

Set the chunk size for parallel downloads to X megabytes. A value of 0 will avoid
chunked reads. This option only applies for sites that support ranged downloads (see

Reference Manual

239

ranged_downloads configuration parameter). The default chunk size is 10MB, the min is
1MB and the max is 1024MB. Choose smaller values to reduce the impact of transient
failures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 0, which disables parallel
downloads. This parameter is only valid if the site supports ranged downloads and the --
chunksize parameter is not 0.

rmup Options

-a , --all Cancel all uploads for the specified bucket

Subcommands

pegasus-s3 has several subcommands for different storage service operations.

help The help subcommand lists all available subcommands.

ls The ls subcommand lists the contents of a URL. If the URL does not contain a bucket, then all the buckets
owned by the user are listed. If the URL contains a bucket, but no key, then all the keys in the bucket are
listed. If the URL contains a bucket and a key, then all keys in the bucket that begin with the specified
key are listed.

mkdir The mkdir subcommand creates one or more buckets.

rmdir The rmdir subcommand deletes one or more buckets from the storage service. In order to delete a bucket,
the bucket must be empty.

rm The rm subcommand deletes one or more keys from the storage service.

put The put subcommand stores the file specified by FILE in the storage service under the bucket and key
specified by URL. If the URL contains a bucket, but not a key, then the file name is used as the key.

If a transient failure occurs, then the upload will be retried several times before pegasus-s3 gives up
and fails.

The put subcommand can do both chunked and parallel uploads if the service supports multipart uploads
(see multipart_uploads in the CONFIGURATION section). Currently only Amazon S3 supports
multipart uploads.

This subcommand will check the size of the file to make sure it can be stored before attempting to store it.

Chunked uploads are useful to reduce the probability of an upload failing. If an upload is chunked, then
pegasus-s3 issues separate PUT requests for each chunk of the file. Specifying smaller chunks (using --
chunksize) will reduce the chances of an upload failing due to a transient error. Chunksizes can range
from 5 MB to 1GB (chunk sizes smaller than 5 MB produced incomplete uploads on Amazon S3). The
maximum number of chunks for any single file is 10,000, so if a large file is being uploaded with a small
chunksize, then the chunksize will be increased to fit within the 10,000 chunk limit. By default, the file
will be split into 10 MB chunks if the storage service supports multipart uploads. Chunked uploads can be
disabled by specifying a chunksize of 0. If the upload is chunked, then each chunk is retried independently
under transient failures. If any chunk fails permanently, then the upload is aborted.

Parallel uploads can increase performance for services that support multipart uploads. In a parallel upload
the file is split into N chunks and each chunk is uploaded concurrently by one of M threads in first-come,
first-served fashion. If the chunksize is set to 0, then parallel uploads are disabled. If M > N, then the
actual number of threads used will be reduced to N. The number of threads can be specified using the --
parallel argument. If --parallel is 0 or 1, then only a single thread is used. The default value is 0. There is
no maximum number of threads, but it is likely that the link will be saturated by 4 threads. Very high-bandwidth,

long-delay links may get better results with up to 8 threads.

Under certain circumstances, when a multipart upload fails it could leave behind data on the server. When
a failure occurs the put subcommand will attempt to abort the upload. If the upload cannot be aborted,

Reference Manual

240

then a partial upload may remain on the server. To check for partial uploads run the lsup subcommand.
If you see an upload that failed in the output of lsup, then run the rmup subcommand to remove it.

get The get subcommand retrieves an object from the storage service identified by URL and stores it in the
file specified by FILE. If FILE is not specified, then the key is used as the file name (Note: if the key has
slashes, then the file name will be a relative subdirectory, but pegasus-s3 will not create the subdirectory
if it does not exist).

If a transient failure occurs, then the download will be retried several times before pegasus-s3 gives up
and fails.

The get subcommand can do both chunked and parallel downloads if the service supports ranged
downloads (see ranged_downloads in the CONFIGURATION section). Currently only Amazon S3
has good support for ranged downloads. Eucalyptus Walrus supports ranged downloads, but the current
release, 1.6, is inconsistent with the Amazon interface and has a bug that causes ranged downloads to
hang in some cases. It is recommended that ranged downloads not be used with Eucalyptus until these
issues are resolved.

Chunked downloads can be used to reduce the probability of a download failing. When a download is
chunked, pegasus-s3 issues separate GET requests for each chunk of the file. Specifying smaller chunks
(using --chunksize) will reduce the chances that a download will fail to do a transient error. Chunk
sizes can range from 1 MB to 1 GB. By default, a download will be split into 10 MB chunks if the site
supports ranged downloads. Chunked downloads can be disabled by specifying a --chunksize of 0. If
a download is chunked, then each chunk is retried independently under transient failures. If any chunk
fails permanently, then the download is aborted.

Parallel downloads can increase performance for services that support ranged downloads. In a parallel
download, the file to be retrieved is split into N chunks and each chunk is downloaded concurrently by
one of M threads in a first-come, first-served fashion. If the chunksize is 0, then parallel downloads are
disabled. If M > N, then the actual number of threads used will be reduced to N. The number of threads
can be specified using the --parallel argument. If --parallel is 0 or 1, then only a single thread is used. The
default value is 0. There is no maximum number of threads, but it is likely that the link will be saturated
by 4 threads. Very high-bandwidth, long-delay links may get better results with up to 8 threads.

lsup The lsup subcommand lists active multipart uploads. The URL specified should point to a bucket. This
command is only valid if the site supports multipart uploads. The output of this command is a list of
keys and upload IDs.

This subcommand is used with rmup to help recover from failures of multipart uploads.

rmup The rmup subcommand cancels and active upload. The URL specified should point to a bucket, and
UPLOAD is the long, complicated upload ID shown by the lsup subcommand.

This subcommand is used with lsup to recover from failures of multipart uploads.

URL Format

All URLs for objects stored in S3 should be specified in the following format:

s3[s]://USER@SITE[/BUCKET[/KEY]]

The protocol part can be s3:// or s3s://. If s3s:// is used, then pegasus-s3 will force the connection to use SSL and
override the setting in the configuration file. If s3:// is used, then whether the connection uses SSL or not is determined
by the value of the endpoint variable in the configuration for the site.

The USER@SITE part is required, but the BUCKET and KEY parts may be optional depending on the context.

The USER@SITE portion is referred to as the “identity”, and the SITE portion is referred to as the “site”. Both the
identity and the site are looked up in the configuration file (see CONFIGURATION) to determine the parameters
to use when establishing a connection to the service. The site portion is used to find the host and port, whether to
use SSL, and other things. The identity portion is used to determine which authentication tokens to use. This format
is designed to enable users to easily use multiple services with multiple authentication tokens. Note that neither the

Reference Manual

241

USER nor the SITE portion of the URL have any meaning outside of pegasus-s3. They do not refer to real usernames
or hostnames, but are rather handles used to look up configuration values in the configuration file.

The BUCKET portion of the URL is the part between the 3rd and 4th slashes. Buckets are part of a global namespace
that is shared with other users of the storage service. As such, they should be unique.

The KEY portion of the URL is anything after the 4th slash. Keys can include slashes, but S3-like storage services
do not have the concept of a directory like regular file systems. Instead, keys are treated like opaque identifiers for
individual objects. So, for example, the keys a/b and a/c have a common prefix, but cannot be said to be in the same
directory.

Some example URLs are:

s3://ewa@amazon
s3://juve@skynet/gideon.isi.edu
s3://juve@magellan/pegasus-images/centos-5.5-x86_64-20101101.part.1
s3s://ewa@amazon/pegasus-images/data.tar.gz

Configuration

Each user should specify a configuration file that pegasus-s3 will use to look up connection parameters and
authentication tokens.

Search Path

This client will look in the following locations, in order, to locate the user’s configuration file:

1. The -C/--conf argument

2. The S3CFG environment variable

3. $HOME/.s3cfg

If it does not find the configuration file in one of these locations it will fail with an error.

Configuration File Format

The configuration file is in INI format and contains two types of entries.

The first type of entry is a site entry, which specifies the configuration for a storage service. This entry specifies the
service endpoint that pegasus-s3 should connect to for the site, and some optional features that the site may support.
Here is an example of a site entry for Amazon S3:

[amazon]
endpoint = http://s3.amazonaws.com/

The other type of entry is an identity entry, which specifies the authentication information for a user at a particular
site. Here is an example of an identity entry:

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

It is important to note that user names and site names used are only logical—they do not correspond to actual hostnames
or usernames, but are simply used as a convenient way to refer to the services and identities used by the client.

The configuration file should be saved with limited permissions. Only the owner of the file should be able to read
from it and write to it (i.e. it should have permissions of 0600 or 0400). If the file has more liberal permissions, then
pegasus-s3 will fail with an error message. The purpose of this is to prevent the authentication tokens stored in the
configuration file from being accessed by other users.

Configuration Variables

endpoint (site) The URL of the web service endpoint. If the URL begins with https, then SSL
will be used.

Reference Manual

242

max_object_size (site) The maximum size of an object in GB (default: 5GB)

multipart_uploads (site) Does the service support multipart uploads (True/False, default: False)

ranged_downloads (site) Does the service support ranged downloads? (True/False, default: False)

access_key (identity) The access key for the identity

secret_key (identity) The secret key for the identity

Example Configuration

This is an example configuration that specifies a two sites (amazon and magellan) and three identities
(pegasus@amazon,juve@magellan, and voeckler@magellan). For the amazon site the maximum object
size is 5TB, and the site supports both multipart uploads and ranged downloads, so both uploads and downloads can
be done in parallel.

[amazon]
endpoint = https://s3.amazonaws.com/
max_object_size = 5120
multipart_uploads = True
ranged_downloads = True

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

[magellan]
NERSC Magellan is a Eucalyptus site. It doesn't support multipart uploads,
or ranged downloads (the defaults), and the maximum object size is 5GB
(also the default)
endpoint = https://128.55.69.235:8773/services/Walrus

[juve@magellan]
access_key = quwefahsdpfwlkewqjsdoijldsdf
secret_key = asdfa9wejalsdjfljasldjfasdfa

[voeckler@magellan]
Each site can have multiple associated identities
access_key = asdkfaweasdfbaeiwhkjfbaqwhei
secret_key = asdhfuinakwjelfuhalsdflahsdl

Example

List all buckets owned by identity user@amazon:

$ pegasus-s3 ls s3://user@amazon

List the contents of bucket bar for identity user@amazon:

$ pegasus-s3 ls s3://user@amazon/bar

List all objects in bucket bar that start with hello:

$ pegasus-s3 ls s3://user@amazon/bar/hello

Create a bucket called mybucket for identity user@amazon:

$ pegasus-s3 mkdir s3://user@amazon/mybucket

Delete a bucket called mybucket:

$ pegasus-s3 rmdir s3://user@amazon/mybucket

Upload a file foo to bucket bar:

$ pegasus-s3 putfoo s3://user@amazon/bar/foo

Download an object foo in bucket bar:

$ pegasus-s3 get s3://user@amazon/bar/foo foo

Reference Manual

243

Upload a file in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 put --parallel 4 --chunksize 100 foo s3://user@amazon/bar/foo

Download an object in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 get --parallel 4 --chunksize 100 s3://user@amazon/bar/foo foo

List all partial uploads for bucket bar:

$ pegasus-s3 lsup s3://user@amazon/bar

Remove all partial uploads for bucket bar:

$ pegasus-s3 rmup --all s3://user@amazon/bar

Return Value

pegasus-s3 returns a zero exist status if the operation is successful. A non-zero exit status is returned in case of failure.

Author

Gideon Juve <juve@usc.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

244

Name
pegasus-sc-client — generates a site catalog by querying sources.

Synopsis
pegasus-sc-client [-Dproperty=value…]
 [--source src]
 [-g|--grid grid]
 [-o|--vo vo]
 [-s|--sc scfile]
 [-p|--properties propfile]
 [-V|--version]
 [-v|--verbose]
 [-h|--help]

Description

pegasus-sc-client generates site catalog by querying sources like OSGMM, MYSOG, etc.

Options

-Dproperty=value The -D option allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s
properties file and the PEGASUS_HOME location. One may set several CLI
properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties
take precedence over the file-based properties of the same key.

--source src the source to query for site information. Valid sources are: OSGMM|MYOSG|
VORS

-g grid , --grid grid the grid for which to generate the site catalog information.

-o vo , --vo vo The Virtual Organization (VO) to which the user belongs. The default VO is
LIGO. The collector host should be set by default unless overridden by the
property pegasus.catalog.site.osgmm.collector.host according to the following
rules:

• if VO is ligo then collector host queried is ligo-osgmm.renci.org

• if VO is engage then collector host queried is engage-central.renci.org

• for any other VO, engage-central.renci.org will be queried and in all the paths
the name of the engage VO will be replaced with the name of the VO passed.
e.g if user specifies the VO to be cigi, engage will be replaced by cigi in the
directory paths.

-s scfile , --sc scfile The path to the created site catalog file

-p propfile , --properties
propfile

Generate a Pegasus properties file containing the SRM properties. The properties
file is created only if --source is set to OSGMM.

-v , --verbose Increases the verbosity of messages about what is going on.

-V , --version Displays the current version of Pegasus.

-h , --help Displays all the options to the pegasus-sc-client command.

Example

Runs pegasus-sc-client and generates the site catalog:

Reference Manual

245

$ pegasus-sc-client --source OSGMM --sc osg-sites.xml --vo LIGO --grid OSG

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

246

Name
pegasus-sc-converter — A client to convert site catalog from one format to another format.

Synopsis
pegasus-sc-converter [-v] [-V] [-h] [-Dproperty=value…]
 [-I fmt] [-O fmt]
 -i infile[,infile,…] -o outfile

Description

The pegasus-sc-converter program is used to convert the site catalog from one format to another.

Currently, the following formats of site catalog exist.

Text This is a easy to read multiline textual format.

A sample entry in this format looks as follows

site local{
 sysinfo "INTEL32::LINUX"
 gridlaunch "/nfs/software/pegasus/default/bin/kickstart"
 workdir "/scratch"
 gridftp "gsiftp://viz-login.isi.edu/scratch" "4.0.4"
 universe transfer "viz-login.isi.edu/jobmanager-fork" "4.0.4"
 universe vanilla "viz-login.isi.edu/jobmanager-pbs" "4.0.4"
 lrc "rlsn://smarty.isi.edu"
 profile env "GLOBUS_LOCATION" "/nfs/software/globus/default"
 profile env "LD_LIBRARY_PATH" "/nfs/software/globus/default/lib"
 profile env "PEGASUS_HOME" "/nfs/software/pegasus/default"
}

XML This is equivalent to the Text format in XML. All information in the Text format can be represented in
the XMLS format and vice-a-versa.

A sample entry in this format looks as follows

<site handle="local" gridlaunch="/nfs/software/pegasus/default/bin/kickstart"
 sysinfo="INTEL32::LINUX">
 <profile namespace="env" key="GLOBUS_LOCATION" >/nfs/software/globus/default</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/nfs/software/globus/default/lib</
profile>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/software/pegasus/default</profile>
 <lrc url="rlsn://smarty.isi.edu" />
 <gridftp url="gsiftp://viz-login.isi.edu" storage="/scratch" major="4" minor="0"
 patch="4">
 </gridftp>
 <jobmanager universe="transfer" url="viz-login.isi.edu/jobmanager-fork" major="4"
 minor="0" patch="4" />
 <jobmanager universe="vanilla" url="viz-login.isi.edu/jobmanager-pbs" major="4"
 minor="0" patch="4" />
 <workdirectory >/scratch</workdirectory>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-2.0.xsd.

XML3 This format is a superset of previous formats. All information about a site that can be described about a
site can be described in this format. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node.

A sample entry in this format looks as follows

<site handle="local" arch="x86" os="LINUX">
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <head-fs>
 <scratch>

http://pegasus.isi.edu/schema/sc-2.0.xsd

Reference Manual

247

 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu">
 </replica-catalog>
 <profile namespace="env" key="GLOBUS_LOCATION" >/nfs/software/globus/default</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/nfs/software/globus/default/lib</
profile>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/software/pegasus/default</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-3.0.xsd.

Options

-i infile[,infile,…] , --input
infile[,infile,…]

The comma separated list of input files that need to be converted to a file in the
format specified by --oformat option.

-o outfile , --output outfile The output file to which the output needs to be written out to.

Other Options

-I fmt , --iformat
fmt

The input format of the input files.

Valid values for the input format are XML and Text.

-O fmt , --oformat
fmt

The output format of the output file.

Valid values for the output format is XML3.

-v , --verbose Increases the verbosity of messages about what is going on.

By default, all FATAL ERROR, ERROR , WARNINGS and INFO messages are logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner Software.

-h , --help Displays all the options to the pegasus-plan command.

Example
pegasus-sc-converter -i sites.xml -I XML -o sites.xml.new -O XML3 -vvvvv

Authors

Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu/schema/sc-3.0.xsd
http://pegasus.isi.edu

Reference Manual

248

Name
pegasus-statistics — A tool to generate statistics about the workflow run.

Synopsis
pegasus-statistics [-h|--help]
 [-o|--output dir]
 [-c|--conf propfile]
 [-p|--statistics-level level]
 [-t|--time-filter filter]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [submitdir]

Description

pegasus-statistics generates statistics about the workflow run like total jobs/tasks/sub workflows ran , how many
succeeded/failed etc. It generates job instance statistics like run time, condor queue delay etc. It generates invocation
statistics information grouped by transformation name. It also generates job instance and invocation statistics
information grouped by time and host.

Options

-h , --help Prints a usage summary with all the available command-line options.

-o dir , --output dir Writes the output to the given directory.

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-s level , --statistics-level level Specifies the statistics information to generate. Valid levels are: all, summary,
wf_stats, jb_stats, tf_stats, and ti_stats. Default is summary. The output
generated by pegasus-statistics is based on the the level set:

• all: generates all the statistics information.

• summary: generates the workflow statistics summary. In the case of a
hierarchical workflow the summary is across all sub workflows.

• wf_stats: generates the workflow statistics information of each individual
workflow. In case of a hierarchical workflow the workflow statistics are
created for each sub workflow.

• jb_stats: generates the job statistics information of each individual
workflow. In case of hierarchical workflow the job statistics is created for
each sub workflows.

• tf_stats: generates the invocation statistics information of each individual
workflow grouped by transformation name .In case of hierarchical workflow
the transformation statistics is created for each sub workflows.

• ti_stats: generates the job instance and invocation statistics like total count
and runtime grouped by time and host.

-t filter , --time-filter filter Specifies the time filter to group the time statistics. Valid filter values are:
month, week, day, hour. Default is day.

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

Reference Manual

249

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

Example

Runs pegasus-statistics and writes the output to the given directory:

$ pegasus-statistics -o /scratch/statistics /scratch/grid-setup/run0001

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

250

Name
pegasus-status — Pegasus workflow- and run-time status

Synopsis
pegasus-status [-h|--help]
 [-V|--version] [-v|--verbose] [-d|--debug]
 [-w|--watch [s]]
 [-L|--[no]legend] [-c|--[no]color] [-U|--[no]utf8]
 [-Q|--[no]queue] [-i|--[no]idle] [--[no]held]
 [--[no]heavy] [-S|--[no]success]
 [-j|--jobtype jt] [-s|--site sid]
 [-u|--user name]
 { [-l|--long] | [-r|--rows] }
 [rundir]

Description

pegasus-status shows the current state of the Condor Q and a workflow, depending on settings. If no valid run directory
could be determined, including the current directory, pegasus-status will show all jobs of the current user and no
workflows. If a run directory was specified, or the current directory is a valid run directory, status about the workflow
will also be shown.

Many options will modify the behavior of this program, not withstanding a proper UTF-8 capable terminal, watch
mode, the presence of jobs in the queue, progress in the workflow directory, etc.

Options

-h , --help Prints a concise help and exits.

-V , --version Prints the version information and exits.

-w [sec] , --watch
[sec]

This option enables the watch mode. In watch mode, the program repeatedly polls the status
sources and shows them in an updating window. The optional argument sec to this option
determines how often these sources are polled.

We strongly recommend to set this interval not too low, as frequent polling will degrade the
scheduler performance and increase the host load. In watch mode, the terminal size is the
limiting factor, and parts of the output may be truncated to fit it onto the given terminal.

Watch mode is disabled by default. The sec argument defaults to 60 seconds.

-L , --legend , --
nolegend

This option shows a legend explaining the columns in the output, or turns off legends.

By default, legends are turned off to save terminal real estate.

-c , --color , --
nocolor

This option turns on (or off) ANSI color escape sequences in the output. The single letter
option can only switch on colors.

By default, colors are turned off, as they will not display well on a terminal with black
background.

-U , --utf8 , --
noutf8

This option turns on (or off) the output of Unicode box drawing characters as UTF-8 encoded
sequences. The single option can only turn on box drawing characters.

The defaults for this setting depend on the LANG environment variable. If the variable
contains a value ending in something indicating UTF-8 capabilities, the option is turned on
by default. It is off otherwise.

-Q , --queue , --
noqueue

This option turns on (or off) the output from parsing Condor Q.

Reference Manual

251

By default, Condor Q will be parsed for jobs of the current user. If a workflow run directory
is specified, it will furthermore be limited to jobs only belonging to the workflow.

-v , --verbose This option increases the expert level, showing more information about the condor_q state.
Being an incremental option, two increases are supported.

Additionally, the signals SIGUSR1 and SIGUSR2 will increase and decrease the expert level
respectively during run-time.

By default, the simplest queue view is enabled.

-d , --debug This is an internal debugging tool and should not be used outside the development team. As
incremental option, it will show Pegasus-specific ClassAd tuples for each job, more in the
second level.

By default, debug mode is off.

-u name , --user
name

This option permits to query the queue for a different user than the current one. This may be
of interest, if you are debugging the workflow of another user.

By default, the current user is assumed.

-i , --idle , --noidle With this option, jobs in Condor state idle are omitted from the queue output.

By default, idle jobs are shown.

--held , --noheld This option enables or disabled showing of the reason a job entered Condor’s held state. The
reason will somewhat destroy the screen layout.

By default, the reason is shown.

--heavy , --noheavy If the terminal is UTF-8 capable, and output is to a terminal, this option decides whether to
use heavyweight or lightweight line drawing characters.

By default, heavy lines connect the jobs to workflows.

-j jt , --jobtype jt This option filters the Condor jobs shown only to the Pegasus jobtypes given as argument
or arguments to this option. It is a multi-option, and may be specified multiple times, and
may use comma-separated lists. Use this option with an argument help to see all valid and
recognized jobtypes.

By default, all Pegasus jobtypes are shown.

-s site , --site site This option limits the Condor jobs shown to only those pertaining to the (remote) site site.
This is an multi-option, and may be specified multiple times, and may use comma-separated
lists.

By default, all sites are shown.

-l , --long This option will show one line per sub-DAG, including one line for the workflow. If there is
only a single DAG pertaining to the rundir, only total will be shown.

This option is mutually exclusive with the --rows option. If both are specified, the --long
option takes precedence.

By default, only DAG totals (sums) are shown.

-r , --rows , --
norows

This option is shows the workflow summary statistics in rows instead of columns. This option
is useful for sending the statistics in email and later viewing them in a proportional font.

This option is mutually exclusive with the --long option. If both are specified, the --long
option takes precedence.

Reference Manual

252

By default, the summary is shown in columns.

-S , --success , --
nosuccess

This option modifies the previous --long option. It will omit (or show) fully successful sub-
DAGs from the output.

By default, all DAGs are shown.

rundir This option show statistics about the given DAG that runs in rundir. To gather proper
statistics, pegasus-status needs to traverse the directory and all sub-directories. This can
become an expensive operation on shared filesystems.

By default, the rundir is assumed to be the current directory. If the current directory is not
a valid rundir, no DAG statistics will be shown.

Return Value

pegasus-status will typically return success in regular mode, and the termination signal in watch mode. Abnormal
behavior will result in a non-zero exit code.

Example

pegasus-status This invocation will parse the Condor Q for the current user and show all
her jobs. Additionally, if the current directory is a valid Pegasus workflow
directory, totals about the DAG in that directory are displayed.

pegasus-status -l rundir As above, but providing a specific Pegasus workflow directory in argument
rundir and requesting to itemize sub-DAGs.

pegasus-status -j help This option will show all permissible job types and exit.

pegasus-status -vvw 300 -Ll This invocation will parse the queue, print it in high-expert mode, show legends,
itemize DAG statistics of the current working directory, and redraw the terminal
every five minutes with updated statistics.

Restrictions

Currently only supports a single (optional) run directory. If you want to watch multiple run directories, I suggest to
open multiple terminals and watch them separately. If that is not an option, or deemed too expensive, you can ask
pegasus-support at isi dot edu to extend the program.

See Also

condor_q(1), pegasus-statistics(1)

Authors

Jens-S. Vöckler <voeckler at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Reference Manual

253

Name
pegasus-submit-dag — Wrapper around *condor_submit_dag*. Not to be run by user.

Description

The pegasus-submit-dag is a wrapper that invokes condor_submit_dag. This is started automatically by pegasus-
run. DO NOT USE DIRECTLY

Return Value

If the workflow is submitted succesfully pegasus-submit-dag exits with 0, else exits with non-zero.

Environment Variables

PATH The path variable is used to locate binary for condor_submit_dag and pegasus-dagman

See Also

pegasus-run(1) pegasus-dagman(1)

Authors

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

254

Name
pegasus-tc-client — A full featured generic client to handle adds, deletes and queries to the Transformation Catalog
(TC).

Synopsis
pegasus-tc-client [-Dproperty=value…] [-h] [-v] [-V]
 OPERATION TRIGGERS [OPTIONS]

Description

The pegasus-tc-client command is a generic client that performs the three basic operation of adding, deleting and
querying of any Transformation Catalog implemented to the TC API. The client implements all the operations
supported by the TC API. It is up to the TC implementation whether they support all operations or modes.

The following 3 operations are supported by the pegasus-tc-client. One of these operations have to be specified to
run the client.

ADD This operation allows the client to add or update entries in the Transformation Catalog. Entries can be
added one by one on the command line or in bulk by using the BULK Trigger and providing a file with
the necessary entries. Also Profiles can be added to either the logical transformation or the physical
transformation.

DELETE This operation allows the client to delete entries from the Transformation Catalog. Entries can be deleted
based on logical transformation, by resource, by transformation type as well as the transformation
system information. Also Profiles associated with the logical or physical transformation can be deleted.

QUERY This operation allows the client to query for entries from the Transformation Catalog. Queries can be
made for printing all the contents of the Catalog or for specific entries, for all the logical transformations
or resources etc.

See the TRIGGERS and VALID COMBINATIONS section for more details.

Operations

To select one of the 3 operations.

-a, --add Perform addition operations on the TC.

-d, --delete Perform delete operations on the TC.

-q, --query Perform query operations on the TC.

Triggers

Triggers modify the behavior of an OPERATION. For example, if you want to perform a bulk operation you would
use a BULK Trigger or if you want to perform an operation on a Logical Transformation then you would use the
LFN Trigger.

The following 7 Triggers are available. See the VALID COMBINATIONS section for the correct grouping and usage.

-B Triggers a bulk operation.

-L Triggers an operation on a logical transformation.

-P Triggers an operation on a physical transformation

-R Triggers an operation on a resource.

-E Triggers an operation on a Profile.

-T Triggers an operation on a Type.

Reference Manual

255

-S Triggers an operation on a System information.

Options

The following options are applicable for all the operations.

-Dproperty=value The -D options allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s
properties file and the PEGASUS home location. One may set several CLI
properties by giving this option multiple times. The -D option(s) must be the
first option on the command line. A CLI property take precedence over the
properties file property of the same key.

-l, --lfn logical The logical transformation to be added. The format is:
NAMESPACE::NAME:VERSION. The name is always required,
namespace and version are optional.

-p, --pfn physical The physical transformation to be added. For INSTALLED executables its a
local file path, for all others its a url.

-t, --type type The type of physical transformation. Valid values are:
INSTALLED, STATIC_BINARY, DYNAMIC_BINARY, SCRIPT,
SOURCE, PACMAN_PACKAGE.

-r, --resource resource The resourceID where the transformation is located.

-e, --profile profiles The profiles for the transformation. Multiple profiles of same namespace can
be added simultaneously by separating them with a comma ",". Each profile
section is written as NAMESPACE::KEY=VALUE,KEY2=VALUE2
e.g. ENV::JAVA_HOME=/usr/bin/java2,PEGASUS_HOME=/usr/
local/pegasus. To add multiple namespaces you need to repeat the -e
option for each namespace. e.g. -e ENV::JAVA_HOME=/usr/bin/java
-e GLOBUS::JobType=MPI,COUNT=10

-s, --system systeminfo The architecture, os, osversion and glibc if any for the executable. Each system
info is written in the form ARCH::OS:OSVER:GLIBC

-v, --verbose Displays the output in verbose mode (Lots of Debugging info).

-V, --version Displays the Pegasus version.

-h, --help Generates help

Other Options

-o, --oldformat Generates the output in the old single line format

-c, --conf path to property file

Valid Combinations

The following are valid combinations of OPERATIONS, TRIGGERS, OPTIONS for the pegasus-tc-client.

ADD

Add TC Entry -a -l lfn -p pfn -t type -r resource -s system [-e profiles…]

Adds a single entry into the transformation catalog.

Add PFN Profile -a -P -E -p pfn -t type -r resource -e profiles …

Adds profiles to a specified physical transformation on a given resource and of a given
type.

Reference Manual

256

Add LFN Profile -a -L -E -l lfn -e profiles …

Adds profiles to a specified logical transformation.

Add Bulk Entries -a -B -f file

Adds entries in bulk mode by supplying a file containing the entries. The format of the
file contains 6 columns. E.g.

#RESOURCE LFN PFN TYPE SYSINFO PROFILES
#
isi NS::NAME:VER /bin/date INSTALLED ARCH::OS:OSVERS:GLIBC
 NS::KEY=VALUE,KEY=VALUE;NS2::KEY=VALUE,KEY=VALUE

DELETE

Delete all TC -d -BPRELST

Deletes the entire contents of the TC.

WARNING : USE WITH CAUTION.

Delete by LFN -d -L -l lfn [-r resource] [-t type]

Deletes entries from the TC for a particular logical transformation and additionally
a resource and or type.

Delete by PFN -d -P -l lfn -p pfn [-r resource] [-t type]

Deletes entries from the TC for a given logical and physical transformation and
additionally on a particular resource and or of a particular type.

Delete by Type -d -T -t type [-r resource]

Deletes entries from TC of a specific type and/or on a specific resource.

Delete by Resource -d -R -r resource

Deletes the entries from the TC on a particular resource.

Delete by SysInfo -d -S -s sysinfo

Deletes the entries from the TC for a particular system information type.

Delete Pfn Profile -d -P -E -p pfn -r resource -t type [-e profiles ..]

Deletes all or specific profiles associated with a physical transformation.

Delete Lfn Profile -d -L -E -l lfn -e profiles ….

Deletes all or specific profiles associated with a logical transformation.

QUERY

Query Bulk -q -B

Queries for all the contents of the TC. It produces a file format TC which can be added
to another TC using the bulk option.

Query LFN -q -L [-r resource] [-t type]

Queries the TC for logical transformation and/or on a particular resource and/or of a
particular type.

Query PFN -q -P -l lfn [-r resource] [-t type]

Reference Manual

257

Queries the TC for physical transformations for a give logical transformation and/or
on a particular resource and/or of a particular type.

Query Resource -q -R -l lfn [-t type]

Queries the TC for resources that are registered and/or resources registered for a
specific type of transformation.

Query LFN Profile -q -L -E -l lfn

Queries for profiles associated with a particular logical transformation

Query Pfn Profile -q -P -E -p pfn -r resource -t type

Queries for profiles associated with a particular physical transformation

Properties

These are the properties you will need to set to use either the File or Database TC.

For more details please check the $PEGASUS_HOME/etc/sample.properties file.

pegasus.catalog.transformation Identifies what impelemntation of TC will be used. If relative name is used then
the path org.griphyn.cPlanner.tc is prefixed to the name and used as the class
name to load. The default value if Text. Other supported mode is File

pegasus.catalog.transformation.file The file path where the text based TC is located. By default the path
$PEGASUS_HOME/var/tc.data is used.

Files

$PEGASUS_HOME/var/tc.data is the suggested location for the file corresponding to the Transformation
Catalog

$PEGASUS_HOME/etc/
properties

is the location to specify properties to change what Transformation Catalog
Implementation to use and the implementation related PROPERTIES.

pegasus.jar contains all compiled Java bytecode to run the Pegasus planner.

Environment Variables

PEGASUS_HOME Path to the PEGASUS installation directory.

JAVA_HOME Path to the JAVA 1.4.x installation directory.

CLASSPATH The classpath should be set to contain all necessary PEGASUS files for the execution
environment. To automatically add the CLASSPATH to you environment, in the
$PEGASUS_HOME directory run the script source setup-user-env.csh or source setup-user-
env.sh.

Authors

Gaurang Mehta <gmehta at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

258

Name
pegasus-tc-converter — A client to convert transformation catalog from one format to another format.

Synopsis
pegasus-tc-converter [-Dproperty=value…] [-v] [-q] [-V] [-h]
 [-I fmt] [-O fmt]
 [-N dbusername] [-P dbpassword] [-U dburl] [-H dbhost]
 -i infile[,infile,…] -o outfile

Description

The tc-convert program is used to convert the transformation catalog from one format to another.

Currently, the following formats of transformation catalog exist:

Text This is a easy to read multi line textual format.

A sample entry in this format looks as follows:

tr example::keg:1.0 {
 site isi {
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "installed"
 }
}

File This is a tuple based format which contains 6 columns.

RESOURCE LFN PFN TYPE SYSINFO PROFILES

A sample entry in this format looks as follows

isi example::keg:1.0 /path/to/keg INSTALLED INTEL32::LINUX:fc_4:
 env::JAVA_HOME="/bin/java.1.6"

Database Only MySQL is supported for the time being.

Options

-Dproperty=value The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-I fmt , --iformat fmt The input format of the input files. Valid values for the input format are: File, Text,
and Database.

-O fmt --oformat fmt The output format of the output file. Valid values for the output format are: File, Text, and
Database.

-i infile[,infile,…] --input infile[,infile,…] The comma separated list of input files that need to be converted to a file
in the format specified by the --oformat option.

-o outfile , --output
outfile

The output file to which the output needs to be written out to.

Reference Manual

259

Other Options

-N dbusername , --db-user-name
dbusername

The database user name.

-P dbpassword , --db-user-pwd
dbpassword

The database user password.

-U dburl , --db-url dburl The database url.

-H dbhost , --db-host dbhost The database host.

-v , --verbose Increases the verbosity of messages about what is going on. By default,
all FATAL ERROR, ERROR , CONSOLE and WARNINGS messages are
logged.

-q , --quiet Decreases the verbosity of messages about what is going on. By default,
all FATAL ERROR, ERROR , CONSOLE and WARNINGS messages are
logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner
Software.

-h , --help Displays all the options to the pegasus-tc-converter command.

Example

Text to file format conversion

pegasus-tc-converter -i tc.data -I File -o tc.txt -O Text -v

File to Database(new) format
conversion

pegasus-tc-converter -i tc.data -I File -N mysql_user -P mysql_pwd -U jdbc:mysql://localhost:3306/tc
 -H localhost -O Database -v

Database (username, password,
host, url specified in properties file)
to text format conversion

pegasus-tc-converter -I Database -o tc.txt -O Text -vvvvv

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

260

Name
pegasus-transfer — Handles data transfers in Pegasus workflows.

Synopsis
pegasus-transfer [-h]
 [-l level] [-f inputfile]
 [--max-attempts attempts]

Description

pegasus-transfer takes a list of url pairs, either on stdin or with an input file, determines the correct tool to use for
the transfer and executes the transfer. Some of the protocols pegasus-transfer can handle are GridFTP, SRM, Amazon
S3, HTTP, and local cp/symlinking. Failed transfers are retried.

Options

-h , --help Prints a usage summary with all the available command-line options.

-l level , --loglevel level The debugging output level. Valid values are: debug, info, warning, error.
Default value is info.

-f inputfile , --file inputfile File with input pairs. If not given, stdin will be used.

--max-attempts attempts Maximum number of attempts for retrying failed transfers.

Example
$ pegasus-transfer
file:///etc/hosts
file:///tmp/foo
CTRL+D

Author

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Reference Manual

261

Name
pegasus-version — print or match the version of the toolkit.

Synopsis
pegasus-version [-Dproperty=value] [-m [-q]] [-V] [-f] [-l]

Description

This program prints the version string of the currently active Pegasus toolkit on stdout.

pegasus-version is a simple command-line tool that reports the version number of the Pegasus distribution being used.
In its most basic invocation, it will show the current version of the Pegasus software you have installed:

$ pegasus-version
3.1.0cvs

If you want to know more details about the installed version, i.e. which system it was compiled for and when, use
the long or full mode:

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

Options

-Dproperty=value The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-f , --full The --full mode displays internal build metrics, like OS type and libc version, addition
to the version number. It appends the build time as time stamp to the version. The time
stamp uses ISO 8601 format, and is a UTC stamp.

-l , --long This option is an alias for --full.

-V , --version Displays the version of the Pegasus planner you are using.

--verbose is ignored in this tool. However, to provide a uniform interface for all tools, the option
is recognized and will not trigger an error.

Return Value

The program will usually return with success (0). In match mode, if the internal version does not match the external
installation, an exit code of 1 is returned. If run-time errors are detected, an exit code of 2 is returned, 3 for fatal errors.

Environment Variables

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as
$JAVA_HOME/bin/java.

Example
$ pegasus-version
3.1.0cvs

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

Reference Manual

262

Authors

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

263

Chapter 11. Useful Tips
Migrating From Pegasus 3.1 to Pegasus 4.X

With Pegasus 4.0 effort has been made to move the Pegasus installation to be FHS compliant, and to make workflows
run better in Cloud environments and distributed grid environments. This chapter is for existing users of Pegasus who
use Pegasus 3.1 to run their workflows and walks through the steps to move to using Pegasus 4.0

Move to FHS layout
Pegasus 4.0 is the first release of Pegasus which is Filesystem Hierarchy Standard (FHS) [http://www.pathname.com/
fhs/] compliant. The native packages no longer installs under /opt. Instead, pegasus-* binaries are in /usr/bin/ and
example workflows can be found under /usr/share/pegasus/examples/.

To find Pegasus system components, a pegasus-config tool is provided. pegasus-config supports setting up the
environment for

• Python

• Perl

• Java

• Shell

For example, to find the PYTHONPATH for the DAX API, run:

export PYTHONPATH=`pegasus-config --python`

For complete description of pegasus-config, see the man page.

Stampede Schema Upgrade Tool
Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pegasus-
statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema first
using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Useful Tips

264

 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Existing users running in a condor pool with a non shared
filesystem setup

Existing users that are running workflows in a cloud environment with a non shared filesystem setup have to do some
trickery in the site catalog to include placeholders for local/submit host paths for execution sites when using CondorIO.
In Pegasus 4.0, this has been rectified.

For example, for a 3.1 user, to run on a local-condor pool without a shared filesystem and use Condor file IO for file
transfers, the site entry looks something like this

 <site handle="local-condor" arch="x86" os="LINUX">
 <grid type="gt2" contact="localhost/jobmanager-fork" scheduler="Fork" jobtype="auxillary"/>
 <grid type="gt2" contact="localhost/jobmanager-condor" scheduler="unknown"
 jobtype="compute"/>
 <head-fs>

 <!-- the paths for scratch filesystem are the paths on local site as we execute create dir
 job
 on local site. Improvements planned for 4.0 release.-->
 <scratch>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/submit-host/scratch"/>
 <internal-mount-point mount-point="/submit-host/scratch"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/glusterfs/scratch"/>
 <internal-mount-point mount-point="/glusterfs/scratch"/>
 </shared>
 </storage>

Useful Tips

265

 </head-fs>
 <replica-catalog type="LRC" url="rlsn://dummyValue.url.edu" />
 <profile namespace="env" key="PEGASUS_HOME" >/cluster-software/pegasus/2.4.1</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/cluster-software/globus/5.0.1</profile>

 <!-- profies for site to be treated as condor pool -->
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>

 <!-- to enable kickstart staging from local site-->
 <profile namespace="condor" key="transfer_executable">true</profile>

 </site>

With Pegasus 4.0 the site entry for a local-condor pool can be as concise as the following

 <site handle="condorpool" arch="x86" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

The planner in 4.0 correctly picks up the paths from the local site entry to determine the staging location for the condor
io on the submit host.

Users should read pegasus data staging configuration chapter and also look in the examples directory (share/pegasus/
examples).

New Clients for directory creation and file cleanup
Pegasus 4.0 has new clients for directory creation and cleanup.

• pegasus-create-dir

• pegasus-cleanup

Both these clients are python based wrapper scripts around various protocol specific clients that are used to determine
what client to pick up.

Table 11.1. Clients interfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server

srm-mkdir to create directories against a SRM server.

mkdir to create a directory on the local filesystem

pegasus-s3 to create a s3 bucket in the amazon cloud

scp staging files using scp

imkdir to create a directory against an IRODS server

Table 11.2. Clients interfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove a file against a gridftp/ftp server. In this case a
zero byte file is created

srm-rm to remove files against a SRM server.

rm to remove a file on the local filesystem

Useful Tips

266

Client Used For

pegasus-s3 to remove a file from the s3 bucket.

scp to remove a file against a scp server. In this case a zero
byte file is created.

irm to remove a file against an IRODS server

With Pegasus 4.0, the planner will prefer to run the create dir and cleanup jobs locally on the submit host. The only
case, where these jobs are scheduled to run remotely is when for the staging site, a file server is specified.

Migrating From Pegasus 2.X to Pegasus 3.X
With Pegasus 3.0 effort has been made to simplify configuration. This chapter is for existing users of Pegasus who
use Pegasus 2.x to run their workflows and walks through the steps to move to using Pegasus 3.0

PEGASUS_HOME and Setup Scripts
Earlier versions of Pegasus required users to have the environment variable PEGASUS_HOME set and to
source a setup file $PEGASUS_HOME/setup.sh | $PEGASUS_HOME/setup.csh before running Pegasus to setup
CLASSPATH and other variables.

Starting with Pegasus 3.0 this is no longer required. The above paths are automaticallly determined by the Pegasus
tools when they are invoked.

All the users need to do is to set the PATH variable to pick up the pegasus executables from the bin directory.

$ export PATH=/some/install/pegasus-3.0.0/bin:$PATH

Changes to Schemas and Catalog Formats

DAX Schema

Pegasus 3.0 by default now parses DAX documents conforming to the DAX Schema 3.2 available here [http://
pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on API references.

Starting Pegasus 3.0 , DAX generation API's are provided in Java/Python and Perl for users to use in their DAX
Generators. The use of API's is highly encouraged. Support for the old DAX schema's has been deprecated and will
be removed in a future version.

For users, who still want to run using the old DAX formats i.e 3.0 or earlier, can for the time being set the following
property in the properties and point it to dax-3.0 xsd of the installation.

pegasus.schema.dax /some/install/pegasus-3.0/etc/dax-3.0.xsd

Site Catalog Format

Pegasus 3.0 by default now parses Site Catalog format conforming to the SC schema 3.0 (XML3) available here
[http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-sc-converter that will convert users old site catalog (XML) to the XML3 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML -o sample.sites.xml3 -O XML3

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml3

To use the converted site catalog, in the properties do the following

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML3

2. point pegasus.catalog.site.file to the converted site catalog

http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd

Useful Tips

267

Transformation Catalog Format

Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file /lfs1/software/install/
pegasus/pegasus-3.0.0cvs/etc/sample.tc.text

To use the converted transformation catalog, in the properties do the following

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

Properties and Profiles Simplification
Starting with Pegasus 3.0 all profiles can be specified in the properties file. Profiles specified in the properties file have
the lowest priority. Profiles are explained in the detail in the Profileschapter. As a result of this a lot of existing Pegasus
Properties were replaced by profiles. The table below lists the properties removed and the new profile based names.

Table 11.3. Table 1: Property Keys removed and their Profile based replacement

Old Property Key New Property Key

pegasus.local.env no replacement. Specify env profiles for local site in the
site catalog

pegasus.condor.release condor.periodic_release

pegasus.condor.remove condor.periodic_remove

pegasus.job.priority condor.priority

pegasus.condor.output.stream pegasus.condor.output.stream

pegasus.condor.error.stream condor.stream_error

pegasus.dagman.retry dagman.retry

pegasus.exitcode.impl dagman.post

pegasus.exitcode.scope dagman.post.scope

pegasus.exitcode.arguments dagman.post.arguments

pegasus.exitcode.path.* dagman.post.path.*

pegasus.dagman.maxpre dagman.maxpre

pegasus.dagman.maxpost dagman.maxpost

pegasus.dagman.maxidle dagman.maxidle

pegasus.dagman.maxjobs dagman.maxjobs

pegasus.remote.scheduler.min.maxwalltime globus.maxwalltime

pegasus.remote.scheduler.min.maxtime globus.maxtime

pegasus.remote.scheduler.min.maxcputime globus.maxcputime

pegasus.remote.scheduler.queues globus.queue

Profile Keys for Clustering

The pegasus profile keys for job clustering were renamed. The following table lists the old and the new names for
the profile keys.

Useful Tips

268

Table 11.4. Table 2: Old and New Names For Job Clustering Profile Keys

Old Pegasus Profile Key New Pegasus Profile Key

collapse clusters.size

bundle clusters.num

Transfers Simplification
Pegasus 3.0 has a new default transfer client pegasus-transfer that is invoked by default for first level and second
level staging. The pegasus-transfer client is a python based wrapper around various transfer clients like globus-url-
copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source and destination url and figures out automatically which
underlying client to use. pegasus-transfer is distributed with the PEGASUS and can be found in the bin subdirectory .

Also, the Bundle Transfer refiner has been made the default for pegasus 3.0. Most of the users no longer need to set
any transfer related properties. The names of the profiles keys that control the Bundle Transfers have been changed .
The following table lists the old and the new names for the Pegasus Profile Keys and are explained in details in the
Profiles Chapter.

Table 11.5. Table 3: Old and New Names For Transfer Bundling Profile Keys

Old Pegasus Profile Key New Pegasus Profile Keys

bundle.stagein stagein.clusters | stagein.local.clusters |
stagein.remote.clusters

bundle.stageout stageout.clusters | stageout.local.clusters |
stageout.remote.clusters

Worker Package Staging

Starting Pegasus 3.0 there is a separate boolean property pegasus.transfer.worker.package to enable worker
package staging to the remote compute sites. Earlier it was bundled with user executables staging i.e if
pegasus.catalog.transformation.mapper property was set to Staged .

Clients in bin directory
Starting with Pegasus 3.0 the pegasus clients in the bin directory have a pegasus prefix. The table below lists the old
client names and new names for the clients that replaced them

Table 11.6. Table 1: Old Client Names and their New Names

Old Client New Client

rc-client pegasus-rc-client

tc-client pegasus-tc-client

pegasus-get-sites pegasus-sc-client

sc-client pegasus-sc-converter

tailstatd pegasus-monitord

genstats and genstats-breakdown pegasus-statistics

show-job pegasus-plots

cleanup pegasus-cleanup

dirmanager pegasus-dirmanager

exitcode pegasus-exitcode

rank-dax pegasus-rank-dax

transfer pegasus-transfer

Useful Tips

269

Best Practices For Developing Portable Code
This document lists out issues for the algorithm developers to keep in mind while developing the respective codes.
Keeping these in mind will alleviate a lot of problems while trying to run the codes on the Grid through workflows.

Supported Platforms
Most of the hosts making a Grid run variants of Linux or in some case Solaris. The Grid middleware mostly supports
UNIX and it's variants.

Running on Windows

The majority of the machines making up the various Grid sites run Linux. In fact, there is no widespread deployment
of a Windows-based Grid. Currently, the server side software of Globus does not run on Windows. Only the client
tools can run on Windows. The algorithm developers should not code exclusively for the Windows platforms. They
must make sure that their codes run on Linux or Solaris platforms. If the code is written in a portable language like
Java, then porting should not be an issue.

If for some reason the code can only be executed on windows platform, please contact the pegasus team at pegasus aT
isi dot edu . In certain cases it is possible to stand up a linux headnode in front of a windows cluster running Condor
as it's scheduler.

Packaging of Software
As far as possible, binary packages (preferably statically linked) of the codes should be provided. If for some reason
the codes, need to be built from the source then they should have an associated makefile (for C/C++ based tools) or
an ant file (for Java tools). The building process should refer to the standard libraries that are part of a normal Linux
installation. If the codes require non-standard libraries, clear documentation needs to be provided, as to how to install
those libraries, and make the build process refer to those libraries.

Further, installing software as root is not a possibility. Hence, all the external libraries that need to be installed can
only be installed as non-root in non-standard locations.

MPI Codes
If any of the algorithm codes are MPI based, they should contact the Grid group. MPI can be run on the Grid but the
codes need to be compiled against the installed MPI libraries on the various Grid sites. The pegasus group has some
experience running MPI code through PBS.

Maximum Running Time of Codes
Each of the Grid sites has a policy on the maximum time for which they will allow a job to run. The algorithms catalog
should have the maximum time (in minutes) that the job can run for. This information is passed to the Grid sites while
submitting a job, so that Grid site does not kill a job before that published time expires. It is OK, if the job runs only
a fraction of the max time.

Codes cannot specify the directory in which they should be
run

Codes are installed in some standard location on the Grid Sites or staged on demand. However, they are not invoked
from directories where they are installed. The codes should be able to be invoked from any directory, as long as one
can access the directory where the codes are installed.

This is especially relevant, while writing scripts around the algorithm codes. At that point specifying the relative paths
do not work. This is because the relative path is constructed from the directory where the script is being invoked. A
suggested workaround is to pick up the base directory where the software is installed from the environment or by

Useful Tips

270

using the dirname cmd or api. The workflow system can set appropriate environment variables while launching jobs
on the Grid.

No hard-coded paths
The algorithms should not hard-code any directory paths in the code. All directories paths should be picked up
explicitly either from the environment (specifying environment variables) or from command line options passed to
the algorithm code.

Wrapping legacy codes with a shell wrapper
When wrapping a legacy code in a script (or another program), it is necessary that the wrapper knows where the
executable lives. This is accomplished using an environmental variable. Be sure to include this detail in the component
description when submitting a component for use on the Grid -- include a brief descriptive name like GDA_BIN.

Propogating back the right exitcode
A job in the workflow is only released for execution if its parents have executed successfully. Hence, it is very
important that the algorithm codes exit with the correct error code in case of success and failure. The algorithms should
exit with a status of 0 in case of success, and a non zero status in case of error. Failure to do so will result in erroneous
workflow execution where jobs might be released for execution even though their parents had exited with an error.

The algorithm codes should catch all errors and exit with a non zero exitcode. The successful execution of the algorithm
code can only be determined by an exitcode of 0. The algorithm code should not rely upon something being written
to the stdout to designate success for e.g. if the algorithm code writes out to the stdout SUCCESS and exits with a
non zero status the job would be marked as failed.

In *nix, a quick way to see if a code is exiting with the correct code is to execute the code and then execute echo $?.

$ component-x input-file.lisp
... some output ...
$ echo $?
0

If the code is not exiting correctly, it is necessary to wrap the code in a script that tests some final condition (such as
the presence or format of a result file) and uses exit to return correctly.

Static vs. Dynamically Linked Libraries
Since there is no way to know the profile of the machine that will be executing the code, it is important that dynamically
linked libraries are avoided or that reliance on them is kept to a minimum. For example, a component that requires
libc 2.5 may or may not run on a machine that uses libc 2.3. On *nix, you can use the ldd command to see what
libraries a binary depends on.

If for some reason you install an algorithm specific library in a non standard location make sure to set the
LD_LIBRARY_PATH for the algorithm in the transformation catalog for each site.

Temporary Files
If the algorithm codes create temporary files during execution, they should be cleared by the codes in case of errors
and success terminations. The algorithm codes will run on scratch file systems that will also be used by others. The
scratch directories get filled up very easily, and jobs will fail in case of directories running out of free space. The
temporary files are the files that are not being tracked explicitly through the workflow generation process.

Handling of stdio
When writing a new application, it often appears feasible to use stdin for a single file data, and stdout for a single file
output data. The stderr descriptor should be used for logging and debugging purposes only, never to put data on it. In
the *nix world, this will work well, but may hiccup in the Windows world.

Useful Tips

271

We are suggesting that you avoid using stdio for data files, because there is the implied expectation that stdio data gets
magically handled. There is no magic! If you produce data on stdout, you need to declare to Pegasus that your stdout
has your data, and what LFN Pegasus can track it by. After the application is done, the data product will be a remote
file just like all other data products. If you have an input file on stdin, you must track it in a similar manner. If you
produce logs on stderr that you care about, you must track it in a similar manner. Think about it this way: Whenever
you are redirecting stdio in a *nix shell, you will also have to specify a file name.

Most execution environments permit to connect stdin, stdout or stderr to any file, and Pegasus supports this case.
However, there are certain very specific corner cases where this is not possible. For this reason, we recommend that
in new code, you avoid using stdio for data, and provide alternative means on the commandline, i.e. via --input fn
and --output fn commandline arguments instead relying on stdin and stdout.

Configuration Files
If your code requires a configuration file to run and the configuration changes from one run to another, then this file
needs to be tracked explicitly via the Pegasus WMS. The configuration file should not contain any absolute paths to
any data or libraries used by the code. If any libraries, scripts etc need to be referenced they should refer to relative
paths starting with a ./xyz where xyz is a tracked file (defined in the workflow) or as $ENV-VAR/xyz where
$ENV-VAR is set during execution time and evaluated by your application code internally.

Code Invocation and input data staging by Pegasus
Pegasus will create one temporary directory per workflow on each site where the workflow is planned. Pegasus will
stage all the files required for the execution of the workflow in these temporary directories. This directory is shared by
all the workflow components that executed on the site. You will have no control over where this directory is placed and
as such you should have no expectations about where the code will be run. The directories are created per workflow
and not per job/alogrithm/task. Suppose there is a component component-x that takes one argument: input-file.lisp (a
file containing the data to be operated on). The staging step will bring input-file.lisp to the temporary directory. In
*nix the call would look like this:

$ /nfs/software/component-x input-file.lisp

Note that Pegasus will call the component using the full path to the component. If inside your code/script you invoke
some other code you cannot assume a path for this code to be relative or absolute. You have to resovle it either
using a dirname $0 trick in shell assuming the child code is in the same directory as the parent or construct the path
by expecting an enviornment variable to be set by the workflow system. These env variables need to be explicitly
published so that they can be stored in the transformation catalog.

Now suppose that internally, component-x writes its results to /tmp/component-x-results.lisp. This is not good.
Components should not expect that a /tmp directory exists or that it will have permission to write there. Instead,
component-x should do one of two things: 1. write component-x-results.lisp to the directory where it is run from or
2. component-x should take a second argument output-file.lisp that specifies the name and path of where the results
should be written.

Logical File naming in DAX
The logical file names used by your code can be of two types.

• Without a directory path e.g. f.a, f.b etc

• With a directory path e.g. a/1/f.a, b/2/f.b

Both types of files are supported. We will create any directory structure mentioned in your logical files on the remote
execution site when we stage in data as well as when we store the output data to a permanent location. An example
invocation of a code that consumes and produces files will be

$/bin/test --input f.a --output f.b

OR

$/bin/test --input a/1/f.a --output b/1/f.b

Useful Tips

272

Note

A logical file name should never be an absolute file path, e.g. /a/1/f.a In other words, there should not be
a starting slash (/) in a logical filename.

273

Chapter 12. Glossary

Glossary
A

Abstract Workflow See DAX

C
Concrete Workflow See Executable Workflow

Condor-G A task broker that manages jobs to run at various distributed sites, using
Globus GRAM to launch jobs on the remote sites.http://cs.wisc.edu/condor

Clustering The process of clustering short running jobs together into a larger job. This
is done to minimize the scheduling overhead for the jobs. The scheduling
overhead is only incurred for the clustered job. For example if scheduling
overhead is x seconds and 10 jobs are clustered into a larger job, the
scheduling overhead for 10 jobs will be x instead of 10x.

D
DAGMan The workflow execution engine used by Pegasus.

Directed Acyclic Graph (DAG) A graph in which all the arcs (connections) are unidirectional, and which has
no loops (cycles).

DAX The workflow input in XML format given to Pegasus in which
transformations and files are represented as logical names. It is an execution-
independent specification of computations

Deferred Planning Planning mode to set up Pegasus. In this mode, instead of mapping the job
at submit time, the decision of mapping a job to a site is deferred till a later
point, when the job is about to be run or near to run.

E
Executable Workflow A workflow automatically genetared by Pegasus in which files are represented

by physical filenames, and in which sites or hosts have been selected for
running each task.

F
Full Ahead Planning Planning mode to set up Pegasus. In this mode, all the jobs are mapped before

submitting the workflow for execution to the grid.

G
Globus The Globus Alliance is a community of organizations and individuals

developing fundamental technologies behind the "Grid," which lets people
share computing power, databases, instruments, and other on-line tools

Glossary

274

securely across corporate, institutional, and geographic boundaries without
sacrificing local autonomy.

See Globus Toolkit

Globus Toolkit Globus Toolkit is an open source software toolkit used for building Grid
systems and applications.

GRAM A Globus service that enable users to locate, submit, monitor and cancel
remote jobs on Grid-based compute resources. It provides a single protocol
for communicating with different batch/cluster job schedulers.

Grid A collection of many compute resources , each under different administrative
domains connected via a network (usually the Internet).

GridFTP A high-performance, secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. It is based upon the Internet FTP
protocol, and uses basic Grid security on both control (command) and data
channels.

Grid Service A service which uses standardized web service mechanisms to model
and access stateful resources, perform lifecycle management and query
resource state. The Globus Toolkit includes core grid services for execution
management, data management and information management.

L
Logical File Name The unique logical identifier for a data file. Each LFN is associated with a set

of PFN’s that are the physical instantiations of the file.

M
Metadata Any attributes of a dataset that are explicitly represented in the workflow

system. These may include provenance information (e.g., which component
was used to generate the dataset), execution information (e.g., time of creation
of the dataset), and properties of the dataset (e.g., density of a node type).

Monitoring and Discovery Service A Globus service that implements a site catalog.

P
Physical File Name The physical file name of the LFN.

Partitioner A tool in Pegasus that slices up the DAX into smaller DAX’s for deferred
planning.

Pegasus A system that maps a workflow instance into an executable workflow to run
on the grid.

R
Replica Catalog A catalog that maps logical file names on to physical file names.

Replica Location Service A Globus service that implements a replica catalog

S
Site A set of compute resources under a single administrative domain.

Glossary

275

Site Catalog A catalog indexed by logical site identifiers that maintains information about
the various grid sites. The site catalog can be populated from a static database
or maybe populated dynamically by monitoring tools.

T
Transformation Any executable or code that is run as a task in the workflow.

Transformation Catalog A catalog that maps transformation names onto the physical pathnames of the
transformation at a given grid site or local test machine.

W
Workflow Instance A workflow created in Wings and given to Pegasus in which workflow

components and files are represented as logical names. It is an execution-
independent specification of computations

276

Chapter 13. Pegasus Tutorial Using
Self-contained Virtual Machine

These are the student notes for the Pegasus WMS tutorial on the Virtual Machine that can be downloaded from the
Pegasus Website. They are designed to be used in conjunction with instructor presentation and support.

You will see two styles of machine text here:

Text like this is input that you should type.

Text like this is the output you should get.

For example:

$ date
Wed Jun 24 14:47:59 PST 2011

Downloading and Running the VM using Virtual Box
You will need to install Virtual Box to run the virtual machine on your computer. If you already have one of the tools
installed, use that. Otherwise download the binary versions and install them from the Virtual Box Website [http://
www.virtualbox.org/wiki/Downloads] .

The instructors have tested the image with Virtual Box 3.2.10

Download the VM for Virtual Box use
Download the corresponding disk image.

• Virtual Box Pegasus Image [http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip]

It is around 1.2 GB in size. We recommend using a command line tool like wget to download the image.
Downloading the image using the browser sometimes corrupts the image.

$ wget http://pegasus.isi.edu/wms/download/4.0/Pegasus-4.0.0-Debian-6-x86.vbox.zip

http://pegasus.isi.edu/wms/download/4.0/Pegasus-4.0.0-Debian-6-x86.vbox.zip
 => `Pegasus-4.0.0-Debian-6-x86.vbox.zip'
Resolving pegasus.isi.edu... 128.9.64.219
Connecting to pegasus.isi.edu|128.9.64.219|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1,336,554,492 (1.2G) [application/x-zip]

The Image is zipped. You will need to unzip it.

If you have unzip you can do this directly

$ unzip Pegasus-4.0.0-Debian-6-x86.vbox.zip

After unzipping a folder named Pegasus-4.0.0-Debian-6-x86.vbox will be created that has the vmdk files for the
VM.

Running the VM with Virtual Box
Launch Virtual Box on your machine. Follow the steps to add the vmdk file to Virtual Box and create a virtual machine
inside the Virtual Box

1. In the Menu, click File and select Virtual Media Manager (File > Virtual Media Manager)

2. The Virtual Media Manager Windows opens up.

3. Click on "Add" button to add the Pegasus-4.0.0-Debian-6-x86.vbox/Debian-6-x86.vmdk file that you just
downloaded and unzipped.

http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads
http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip
http://pegasus.isi.edu/wms/download/3.1/Pegasus-3.1.0-Debian-6-x86.vbox.zip

Pegasus Tutorial Using Self-
contained Virtual Machine

277

4. You will now see the Debian-6-x86.vmdk in the list of hard disks with Actual size listed as around 3.0 GB

5. Close the Window for the Virtual Media Manager

We will now create a Virtual Machine in the Virtual Box.

1. In the Menu, click Machine and select New (Machine > New)

2. It will open the New Virtual Machine Wizard. Click Continue

3. In the VM Name and OS Type Window specify the name as PegasusVM-4.0.0.

4. Select the Operating System as Linuxand Version as Debian. Click Continue.

5. Set the base memory to 384 MB . It defaults to 512 MB. Click Continue

6. We now select the Virtual Hard Disk to use with the machine. Select the option box for Use Existing Hard Disk.
Select Debian-6-x86.vmdk from the list . Click Continue

7. Click Done.

8. Now in the Virtual Box , start the PegasusVM-4.0.0 machine.

Mapping and Executing Workflows using Pegasus
In this chapter you will be introduced to planning and executing a workflow through Pegasus WMS locally. You will
then plan and execute a larger Montage workflow on the GRID.

When the virtual machine starts , it will automatically log you in as user tutorial . The password for this account
is pegasus.

After logging on, start a terminal. There is a shortcut on the desktop for the terminal.

$ tutorial@pegasus-vm:$ pwd

/home/tutorial

In general, to run workflows on the Grid you will need to obtain Grid Credentials. The VM already has a user certificate
installed for the pegasus user. To generate the proxy (grid credentials) run the grid-proxy-init command.

$ grid-proxy-init

Your identity: /O=edu/OU=ISI/OU=isi.edu/CN=Tutorial User
Creating proxy .. Done
Your proxy is valid until: Sat Feb 25 00:13:29 2012

All the exercises in this Chapter will be run from the $HOME/pegasus-wms/ directory. All the files that are required
reside in this directory

$ cd $HOME/pegasus-wms

Files for the exercise are stored in subdirectories:

$ ls

config dax

You may also see some other files here.

Creating a DIAMOND DAX
We generate a 4 node diamond dax. There is a small piece of java code that uses the DAX API to generate the DAX.
Open the file $HOME/pegasus-wms/dax/CreateDAX.java in a file editor:

$ vi dax/CreateDAX.java

There is a function Diamond(String site_handle, String pegasus_location) that constructs the DAX. Towards the end
of the function there is some commented out code.

// Add analyze job

Pegasus Tutorial Using Self-
contained Virtual Machine

278

//To be uncommented for exercise 2.1

 Job j4 = new Job("j4", "pegasus", "analyze", "4.0");
 j4.addArgument("-a analyze -T 60 -i ").addArgument(fc1);
 j4.addArgument(" ").addArgument(fc2);
 j4.addArgument("-o ").addArgument(fd);
 j4.uses(fc1, File.LINK.INPUT);
 j4.uses(fc2, File.LINK.INPUT);
 j4.uses(fd, File.LINK.OUTPUT);

 //add job to the DAX
 dax.addJob(j4);

 //analyze job is a child to the findrange jobs
 dax.addDependency("j2", "j4");
 dax.addDependency("j3", "j4");

//End of commented out code for Exercise 2.1

The above snippet of code, adds a job with the ID0000004 to the DAX. It illustrates how to specify

1. the arguments for the job

2. the logical files used by the job

3. the dependencies to other jobs

4. adding the job to the dax

After uncommenting the code, compile and run the CreateDAX program.

$ cd dax

$ javac -classpath `pegasus-config --classpath` CreateDAX.java

$ java -classpath .:`pegasus-config --classpath` CreateDAX local /opt/pegasus/default ./diamond.dax

Let us view the generated diamond.dax.

$ cat diamond.dax

Inside the DAX, you should see three sections.

1. list of input file locations

2. list of executable locations

3. definition of all jobs - each job in the workflow. 4 jobs in total.

4. list of control-flow dependencies - this section specifies a partial order in which jobs are to executed.

Replica Catalog
First lets change to the tutorial base directory.

$ cd $HOME/pegasus-wms

In this exercise you will insert entries into the Replica Catalog. The replica catalog that we will use today is a simple
file based catalog. We also support and recommend the following for production runs

• Globus RLS

• JDBC implementation

A Replica Catalog maintains the LFN to PFN mapping for the input files of your workflow. Pegasus queries it to
determine the locations of the raw input data files required by the workflow. Additionally, all the materialized data
is registered into Replica Catalog for data reuse later on.

Pre Populated Replica Catalog

The instructors have provided a File based Replica Catalog configured for the tutorial exercises. The file is inside
the config directory.

Pegasus Tutorial Using Self-
contained Virtual Machine

279

• Let us see what the file looks like.

$ cat config/rc.data

f.a
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/diamond/f.a
 pool="local"
big_region_20120223_151925_9953.hdr
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/big_region.hdr
 pool="local"
cimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/cimages.tbl
 pool="local"
pimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/pimages.tbl
 pool="local"
region_20120223_151925_9953.hdr
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/region.hdr
 pool="local"
rimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/rimages.tbl
 pool="local"
statfile_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/statfile.tbl
 pool="local"
2mass-atlas-990502s-j1350080.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1350080.fits
 pool="local"
2mass-atlas-990502s-j1350092.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1350092.fits
 pool="local"
2mass-atlas-990502s-j1420186.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1420186.fits
 pool="local"
2mass-atlas-990502s-j1420198.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1420198.fits
 pool="local"
2mass-atlas-990502s-j1430080.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1430080.fits
 pool="local"
2mass-atlas-990502s-j1430092.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1430092.fits
 pool="local"
2mass-atlas-990502s-j1440186.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1440186.fits
 pool="local"
2mass-atlas-990502s-j1440198.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1440198.fits
 pool="local"

pegasus-rc-client (Optional Exercise)

You can use the pegasus-rc-client command to insert , query and delete from the replica catalog.

Before executing any of the pegasus-rc-client exercises lets us remove the pre populated replica catalog.

$ rm $HOME/pegasus-wms/config/rc.data

To execute the diamond dax created in exercise 2.1, we will need to register input file f.a in the replica catalog. The
file f.a resides at /scratch/tutorial/inputdata/diamond/f.a . Let us insert a single entry into the replica catalog.

$ pegasus-rc-client insert f.a \
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/diamond/f.a pool=local

Let us know verify if f.a has been registered successfully by querying the replica catalog using pegasus-rc-client

$ pegasus-rc-client lookup f.a

f.a gsiftp://pegasus-vm/scratch/tutorial/inputdata/diamond/f.a pool="local"

The pegasus-rc-client also allows for bulk insertion of entries. We will be inserting the entries for montage
workflow using the bulk mode. The input data to be used for the montage workflow resides in the /scratch/tutorial/
inputdata/0.2degree directory. We are going to insert entries into the replica catalog that point to the files in this
directory.

Pegasus Tutorial Using Self-
contained Virtual Machine

280

The instructors have provided:

• A file replicas.in, the input data file for the pegasus-rc-client that contains the mappings that need to be populated
in the Replica Catalog. The file is inside the config directory

• Let us see what the file looks like.

$ cat config/rc.in

big_region_20120223_151925_9953.hdr
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/big_region.hdr
 pool="local"
cimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/cimages.tbl
 pool="local"
pimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/pimages.tbl
 pool="local"
region_20120223_151925_9953.hdr
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/region.hdr
 pool="local"
rimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/rimages.tbl
 pool="local"
statfile_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/statfile.tbl
 pool="local"
2mass-atlas-990502s-j1350080.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1350080.fits
 pool="local"
2mass-atlas-990502s-j1350092.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1350092.fits
 pool="local"
2mass-atlas-990502s-j1420186.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1420186.fits
 pool="local"
2mass-atlas-990502s-j1420198.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1420198.fits
 pool="local"
2mass-atlas-990502s-j1430080.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1430080.fits
 pool="local"
2mass-atlas-990502s-j1430092.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1430092.fits
 pool="local"
2mass-atlas-990502s-j1440186.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1440186.fits
 pool="local"
2mass-atlas-990502s-j1440198.fits
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/2mass-atlas-990502s-j1440198.fits
 pool="local"

• Now we are ready to run rc-client and populate the data. Since each of you have an individual file replica catalog,
all the 10 entries should be successfully registered.

$ pegasus-rc-client --insert config/rc.in

#Successfully worked on : 14 lines
#Worked on total number of : 14 lines.

• Now the entries have been successfully inserted into the Replica Catalog. We should query the replica catalog for
a particular lfn.

$ pegasus-rc-client lookup pimages_20120223_151925_9953.tbl

pimages_20120223_151925_9953.tbl
 gsiftp://pegasus-vm/scratch/tutorial/inputdata/0.2degree/pimages.tbl
 pool="local"

The Site Catalog
The site catalog contains information about the layout of your grid where you want to run your workflows. For each
site following information is maintained

Pegasus Tutorial Using Self-
contained Virtual Machine

281

• grid gateways

• head node filesystem

• worker node filesystem

• scratch and shared file systems on the head nodes and worker nodes

• replica catalog URL for the site

• site wide information like environment variables to be set when a job is run.

Pre Populated Site Catalog

The instructors have provided a pre-populated site catalog for use in the tutorial in $HOME/pegasus-wms/config
directory.

Lets see the site catalog for the Pegasus VM. It refers to two sites local and cluster .

$ cat $HOME/pegasus-wms/config/sites.xml3

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/schema/
sc-3.0.xsd" version="3.0">
 <site handle="cluster" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="pegasus-vm/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <grid type="gt2" contact="pegasus-vm/jobmanager-condor" scheduler="Condor"
 jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://pegasus-vm" mount-point="/
home/tutorial/cluster-scratch"/>
 <internal-mount-point mount-point="/home/tutorial/cluster-scratch"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://pegasus-vm" mount-point="/
home/tutorial/cluster-storage"/>
 <internal-mount-point mount-point="/home/tutorial/cluster-storage"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://localhost"/>
 <profile namespace="env" key="GLOBUS_LOCATION" >/opt/globus/default</profile>
 <profile namespace="env" key="MONTAGE_BIN" >.</profile>
 <profile namespace="env" key="JAVA_HOME" >/usr</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/opt/globus/default/lib</profile>
 <profile namespace="env" key="PEGASUS_HOME" >/opt/pegasus/default</profile>
 <profile namespace="pegasus" key="clusters.num" >1</profile>
 <profile namespace="pegasus" key="stagein.clusters" >1</profile>
 </site>
 <site handle="condor-pool" arch="x86" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>
 <profile namespace="pegasus" key="style">condor</profile>
 <profile namespace="condor" key="universe">vanilla</profile>
 <profile namespace="env" key="MONTAGE_BIN">.</profile>
 </site>
 <site handle="local" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="localhost/jobmanager-fork" scheduler="Fork" jobtype="auxillary"/
>
 <grid type="gt2" contact="localhost/jobmanager-fork" scheduler="Fork" jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="file://" mount-point="/home/tutorial/
local-scratch"/>

Pegasus Tutorial Using Self-
contained Virtual Machine

282

 <internal-mount-point mount-point="/home/tutorial/local-scratch"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="file://" mount-point="/home/tutorial/
local-storage"/>
 <internal-mount-point mount-point="/home/tutorial/local-storage"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://localhost"/>
 <profile namespace="env" key="GLOBUS_LOCATION" >/opt/globus/default</profile>
 <profile namespace="env" key="JAVA_HOME" >/usr</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/opt/globus/default/lib</profile>
 <profile namespace="env" key="PEGASUS_HOME" >/opt/pegasus/default</profile>
 </site>
</sitecatalog>

Generating a Site Catalog for OSG

The client pegasus-sc-client can be used to generate a site catalog and transformation catalog for the Open Science
Grid.

$ pegasus-sc-client --vo engage --sc ./engage-osg-sc.xml \
 --source OSGMM --grid OSG -vvvv

2012.02.24 12:19:04.815 PST: [INFO] Adding site GridUNESP_CENTRAL
2012.02.24 12:19:04.847 PST: [INFO] Adding site GRASE-CSE-MAGIC
2012.02.24 12:19:04.848 PST: [INFO] Adding site Purdue-Rossmann
2012.02.24 12:19:04.848 PST: [INFO] Adding site UConn-OSG
2012.02.24 12:19:04.849 PST: [INFO] Adding site USCMS-FNAL-WC1
2012.02.24 12:19:04.849 PST: [INFO] Adding site FNAL_FERMIGRID
2012.02.24 12:19:04.850 PST: [INFO] Adding site LIGO_UWM_NEMO
2012.02.24 12:19:04.850 PST: [INFO] Adding site AGLT2
2012.02.24 12:19:04.851 PST: [INFO] Adding site SPRACE
2012.02.24 12:19:04.851 PST: [INFO] Adding site UCR-HEP
2012.02.24 12:19:04.853 PST: [INFO] Adding site UMissHEP
2012.02.24 12:19:04.853 PST: [INFO] Adding site Purdue-Steele
2012.02.24 12:19:04.853 PST: [INFO] Adding site MWT2
2012.02.24 12:19:04.854 PST: [INFO] Adding site RENCI-Blueridge
2012.02.24 12:19:04.854 PST: [INFO] Adding site CIT_CMS_T2
2012.02.24 12:19:04.855 PST: [INFO] Adding site Firefly
2012.02.24 12:19:04.855 PST: [INFO] Adding site Purdue-RCAC
2012.02.24 12:19:04.857 PST: [INFO] Adding site CIT_CMS_T2__1
2012.02.24 12:19:04.857 PST: [INFO] Adding site FNAL_GPGRID_1
2012.02.24 12:19:04.857 PST: [INFO] Site LOCAL . Creating default entry
2012.02.24 12:19:04.863 PST: [INFO] Loaded 21 sites
2012.02.24 12:19:04.864 PST: Writing out site catalog to /home/tutorial/pegasus-wms/./engage-osg-
sc.xml
2012.02.24 12:19:05.141 PST: Number of SRM Properties retrieved 10
2012.02.24 12:19:05.154 PST: Writing out properties to /home/tutorial/pegasus-wms/./
pegasus.2927071066946861892.properties
2012.02.24 12:19:05.155 PST: [INFO] Time taken to execute is 0.869 seconds
2012.02.24 12:19:05.155 PST: [INFO] event.pegasus.planner planner.version 4.0.0 - FINISHED

Transformation Catalog
The transformation catalog maintains information about where the application code resides on the grid. It also provides
additional information about the transformation as to what system they are compiled for, what profiles or environment
variables need to be set when the transformation is invoked etc.

Pre Populated Transformation Catalog

The instructors have provided a ready transformation catalog (tc.data.text) in the $HOME/pegasus-wms/config
directory

In our case, it contains the locations where the Diamond or Montage code is installed in the Pegasus VM. Let us see
the Transformation Catalog

For each transformation the following information is captured

Pegasus Tutorial Using Self-
contained Virtual Machine

283

1. tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are
optional.)

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally a url (file:/// or http:// or gridftp://) if of type STAGEABLE

3. site - The site identifier for the site where the transformation is available

4. type - The type of transformation. Whether it is Iinstalled ("INSTALLED") on the remote site or is availabe to
stage ("STAGEABLE").

5. arch os, osrelease, osversion - The arch/os/osrelease/osversion of the transformation. osrelease and osversion are
optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
is x86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

6. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site.

$ cat $HOME/pegasus-wms/config/tc.data.text

tr mDiff {
 site local {
 profile env "MONTAGE_HOME" "."
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mDiff"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mFitplane {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mFitplane"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr condor::dagman {
 site local {
 pfn "/usr/bin/condor_dagman"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::analyze:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::findrange:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::preprocess:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"

Pegasus Tutorial Using Self-
contained Virtual Machine

284

 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr mAdd:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mAdd"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mBackground:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mBackground"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mBgModel:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mBgModel"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mConcatFit:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mConcatFit"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mDiffFit:3.3 {
 site local {
 profile env "MONTAGE_HOME" "."
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mDiffFit"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mImgtbl:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mImgtbl"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mJPEG:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mJPEG"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mProjectPP:3.3 {
 site local {
 profile condor "priority" "25"
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mProjectPP"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"

Pegasus Tutorial Using Self-
contained Virtual Machine

285

 }
}

tr mShrink:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mShrink"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

pegasus-tc-client (Optional)

We will use the pegasus-tc-client to add the entry for the transformation dummy into the transformation catalog.

•
$ pegasus-tc-client -a -l diamond::dummy:2.0 \
 -p /opt/pegasus/default/bin/pegasus-keg -r local -t INSTALLED -s x86::LINUX

2011.08.04 12:03:12.555 PDT: Added tc entry sucessfully

Let us try and query for the entry we inserted.

$ pegasus-tc-client -q -P -l diamond::dummy:2.0

tr diamond::dummy:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

Let us try and query the transformation catalog for all the entries in it. Let us see what our transformation catalog
looks like

$ pegasus-tc-client -q -B

tr condor::dagman {
 site local {
 pfn "/usr/bin/condor_dagman"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::analyze:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::dummy:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr diamond::findrange:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }

Pegasus Tutorial Using Self-
contained Virtual Machine

286

}

tr diamond::preprocess:2.0 {
 site local {
 pfn "/opt/pegasus/default/bin/pegasus-keg"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr mAdd:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mAdd"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mBackground:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mBackground"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mBgModel:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mBgModel"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mConcatFit:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mConcatFit"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mDiff {
 site local {
 profile env "MONTAGE_HOME" "."
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mDiff"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mDiffFit:3.3 {
 site local {
 profile env "MONTAGE_HOME" "."
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mDiffFit"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mFitplane {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mFitplane"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mImgtbl:3.3 {

Pegasus Tutorial Using Self-
contained Virtual Machine

287

 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mImgtbl"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mJPEG:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mJPEG"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mProjectPP:3.3 {
 site local {
 profile condor "priority" "25"
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mProjectPP"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

tr mShrink:3.3 {
 site local {
 pfn "gsiftp://pegasus-vm/scratch/tutorial/software/montage/3.3/x86/bin/mShrink"
 arch "x86"
 os "LINUX"
 type "STAGEABLE"
 }
}

Properties
Pegasus Workflow Planner is configured via the use of java properties. The instructors have provided a ready properties
file at $HOME/.pegasusrc .

$ cat $HOME/.pegasusrc

##########################
PEGASUS USER PROPERTIES
##########################

SELECT THE REPLICAT CATALOG MODE AND URL
pegasus.catalog.replica = File
pegasus.catalog.replica.file = ${user.home}/pegasus-wms/config/rc.data

SELECT THE SITE CATALOG MODE AND FILE
pegasus.catalog.site = XML3
pegasus.catalog.site.file = ${user.home}/pegasus-wms/config/sites.xml3

SELECT THE TRANSFORMATION CATALOG MODE AND FILE
pegasus.catalog.transformation = Text
pegasus.catalog.transformation.file = ${user.home}/pegasus-wms/config/tc.data.text

USE DAGMAN RETRY FEATURE FOR FAILURES
dagman.retry=2

CHECK JOB EXIT CODES FOR FAILURE
dagman.post.scope=all

STAGE ALL OUR EXECUTABLES OR USE INSTALLED ONES
pegasus.catalog.transformation.mapper = All

WORK AND STORAGE DIR
pegasus.dir.storage = storage
pegasus.dir.exec = exec

#JOB CATEGORIES

Pegasus Tutorial Using Self-
contained Virtual Machine

288

dagman.projection.maxjobs 2

Planning and Running Workflows Locally
In this exercise we are going to run pegasus-plan to generate a executable workflow from the abstract workflow
(diamond.dax). The Executable workflow contains condor submit files that are submitted locally using pegasus-run

The instructors have provided:

• A dax (diamond.dax) in the $HOME/pegasus-wms/dax directory.

You will need to write some things yourself, by following the instructions below:

• Run pegasus-plan to generate the condor submit files out of the dax.

• Run pegasus-run to submit the workflow locally.

Instructions:

• Let us run pegasus-plan on the diamond dax.

$ cd ~/pegasus-wms

$ pegasus-plan --dax `pwd`/dax/diamond.dax --force \
 --dir dags -s local -o local --nocleanup -v

The above command says that we need to plan the diamond dax locally. The condor submit files are to be generated
in a directory structure whose base is dags. We also are requesting that no cleanup jobs be added as we require the
intermediate data to be saved. Here is the output of pegasus-plan.

2012.02.24 12:21:07.605 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/
dax/diamond.dax - STARTED
2012.02.24 12:21:07.658 PST: [INFO] Generating Stampede Events for Abstract Workflow
2012.02.24 12:21:07.693 PST: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2012.02.24 12:21:07.694 PST: [INFO] event.pegasus.refinement dax.id blackdiamond_0 - STARTED
2012.02.24 12:21:07.707 PST: [INFO] event.pegasus.siteselection dax.id blackdiamond_0 - STARTED
2012.02.24 12:21:07.719 PST: [INFO] event.pegasus.siteselection dax.id blackdiamond_0 -
 FINISHED
2012.02.24 12:21:07.739 PST: [INFO] Grafting transfer nodes in the workflow
2012.02.24 12:21:07.739 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id blackdiamond_0
 - STARTED
2012.02.24 12:21:07.765 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id blackdiamond_0
 - FINISHED
2012.02.24 12:21:07.766 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id blackdiamond_0 -
 STARTED
2012.02.24 12:21:07.771 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id blackdiamond_0 -
 FINISHED
2012.02.24 12:21:07.771 PST: [INFO] event.pegasus.refinement dax.id blackdiamond_0 - FINISHED
2012.02.24 12:21:07.798 PST: [INFO] Generating codes for the concrete workflow
2012.02.24 12:21:08.026 PST: [INFO] Generating codes for the concrete workflow -DONE
2012.02.24 12:21:08.026 PST:

I have concretized your abstract workflow. The workflow has been entered
into the workflow database with a state of "planned". The next step is
to start or execute your workflow. The invocation required is

pegasus-run /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

2012.02.24 12:21:08.026 PST: Time taken to execute is 0.791 seconds
2012.02.24 12:21:08.026 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/
dax/diamond.dax - FINISHED

• Now run pegasus-run as mentioned in the output of pegasus-plan. Do not copy the command below it is just
for illustration purpose.

$ pegasus-run \
 /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

File for submitting this DAG to Condor : blackdiamond-0.dag.condor.sub
Log of DAGMan debugging messages : blackdiamond-0.dag.dagman.out

Pegasus Tutorial Using Self-
contained Virtual Machine

289

Log of Condor library output : blackdiamond-0.dag.lib.out
Log of Condor library error messages : blackdiamond-0.dag.lib.err
Log of the life of condor_dagman itself : blackdiamond-0.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 1.

Your Workflow has been started and runs in base directory given below

cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

*** To monitor the workflow you can run ***

pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

*** To remove your workflow run ***
pegasus-remove /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

Monitoring, Debugging and Statistics
In this section, we are going to list ways to track your workflow, how to debug a failed workflow and how to generates
statistics and plots for a workflow run.

Tracking the progress of the workflow and debugging the
workflows.

We will change into the directory, that was mentioned by the output of pegasus-run command.

$ cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

In this directory you will see a whole lot of files. That should not scare you. Unless things go wrong, you need to look
at just a very few number of files to track the progress of the workflow

• Run the command pegasus-status as mentioned by pegasus-run above to check the status of your jobs. Use
the watch command to auto repeat the command every 2 seconds.

$ watch pegasus-status /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

STAT IN_STATE JOB
Run 03:04 blackdiamond-0
Run 01:00 ##findrange_j2
Run 00:55 ##findrange_j3
Summary: 3 Condor jobs total (R:3)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 3 0 0 3 0 3 0 33.3
Summary: 1 DAG total (Running:1)

Tip

watch does not end with ESC nor (q)uit, but with Ctrl+C.
The above output shows that a couple of jobs are running under the main dagman process. Keep a lookout to track
whether a workflow is running or not. If you do not see any of your job in the output for sometime (say 30 seconds),
we know the workflow has finished. We need to wait, as there might be delay in Condor DAGMan releasing the
next job into the queue after a job has finished successfully.

If output of pegasus-status is empty, then either your workflow has

1. successfully completed

2. stopped midway due to non recoverable error.

We can now run pegasus-analyzer to analyze the workflow.

• Using pegasus-analyzer to analyze the workflow

$ pegasus-analyzer -i /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001

Pegasus Tutorial Using Self-
contained Virtual Machine

290

pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 8 (100.00%)
 # jobs succeeded : 8 (100.00%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 0 (0.00%)

**************************************Done**************************************

• Another way to monitor the workflow is to check the jobstate.log file. This is the output file of the monitoring
daemon that is parsing all the condor log files to determine the status of the jobs. It logs the events seen by Condor
into a more readable form for us.

$ more jobstate.log

1290676248 INTERNAL *** MONITORD_STARTED ***
1290676247 INTERNAL *** DAGMAN_STARTED 339.0 ***
...

In the starting of the jobstate.log, when the workflow has just started running you will see a lot of entries with status
UN_READY. That designates that DAGMan has just parsed in the .dag file and has not started working on any
job as yet. Initially all the jobs in the workflow are listed as UN_READY. After sometime you will see entries in
jobstate.log, that shows a job is being executed etc.

1290676261 create_dir_blackdiamond_0_local SUBMIT 340.0 local - 1
1290676266 create_dir_blackdiamond_0_local EXECUTE 340.0 local - 1
1290676266 create_dir_blackdiamond_0_local JOB_TERMINATED 340.0 local - 1
1290676266 create_dir_blackdiamond_0_local JOB_SUCCESS 0 local - 1
1290676266 create_dir_blackdiamond_0_local POST_SCRIPT_STARTED 340.0 local - 1
1290676271 create_dir_blackdiamond_0_local POST_SCRIPT_TERMINATED 340.0 local - 1
1290676271 create_dir_blackdiamond_0_local POST_SCRIPT_SUCCESS 0 local - 1

The above shows the being submitted and then executed on the grid. In addition it lists that job is being run on the
grid site local (which is your submit machine). The various states of the job while it goes through submission to
execution to post processing are in UPPERCASE.

• Successfully Completed : Let us again look at the jobstate.log. This time we need to look at the last few lines of
jobstate.log

$ tail jobstate.log

1290676542 register_local_2_0 SUBMIT 347.0 local - 8
1290676547 register_local_2_0 EXECUTE 347.0 local - 8
1290676547 register_local_2_0 JOB_TERMINATED 347.0 local - 8
1290676547 register_local_2_0 JOB_SUCCESS 0 local - 8
1290676547 register_local_2_0 POST_SCRIPT_STARTED 347.0 local - 8
1290676552 register_local_2_0 POST_SCRIPT_TERMINATED 347.0 local - 8
1290676552 register_local_2_0 POST_SCRIPT_SUCCESS 0 local - 8
1290676552 INTERNAL *** DAGMAN_FINISHED 0 ***
1290676554 INTERNAL *** MONITORD_FINISHED 0 ***

Looking at the last two lines we see that DAGMan finished, and pegasus-monitord finished successfully with a status
0. This means workflow ran successfully. Congratulations you ran your workflow on the local site successfully. The
workflow generates a final output file f.d that resides in the directory /home/tutorial/local-storage/storage/f.d .

To view the file, you can do the following

$ cat /home/tutorial/local-storage/storage/f.d

--- start f.c1 ----
 --- start f.b1 ----
 --- start f.a ----
 Input File for the Diamond Workflow.--- final f.a ----
 Timestamp Today: 20120227T163628.742-08:00 (1330389388.742;60.000)
 Applicationname: preprocess [v5025] @ 10.0.2.15 (VPN)
 Current Workdir: /home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0001
 Systemenvironm.: i686-Linux 2.6.32-5-686
 Processor Info.: 1 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2635.360

Pegasus Tutorial Using Self-
contained Virtual Machine

291

 Load Averages : 0.669 0.195 0.068
 Memory Usage MB: 1010 total, 536 free, 0 shared, 152 buffered
 Swap Usage MB: 397 total, 397 free
 Filesystem Info: /media/cdrom0 udf,iso9660 7668MB total, 5460MB avail
 Filesystem Info: /media/floppy0 auto 7668MB total, 5460MB avail
 Output Filename: f.b1
 Input Filenames: f.a
 --- final f.b1 ----
 Timestamp Today: 20120227T163744.890-08:00 (1330389464.890;60.000)
 Applicationname: findrange [v5025] @ 10.0.2.15 (VPN)
 Current Workdir: /home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0001
 Systemenvironm.: i686-Linux 2.6.32-5-686
 Processor Info.: 1 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2635.360
 Load Averages : 1.490 0.516 0.186
 Memory Usage MB: 1010 total, 535 free, 0 shared, 152 buffered
 Swap Usage MB: 397 total, 397 free
 Filesystem Info: /media/cdrom0 udf,iso9660 7668MB total, 5460MB avail
 Filesystem Info: /media/floppy0 auto 7668MB total, 5460MB avail
 Output Filename: f.c1
 Input Filenames: f.b1
--- final f.c1 ----
--- start f.c2 ----
 --- start f.b2 ----
 --- start f.a ----
 Input File for the Diamond Workflow.--- final f.a ----
 Timestamp Today: 20120227T163628.742-08:00 (1330389388.742;60.001)
 Applicationname: preprocess [v5025] @ 10.0.2.15 (VPN)
 Current Workdir: /home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0001
 Systemenvironm.: i686-Linux 2.6.32-5-686
 Processor Info.: 1 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2635.360
 Load Averages : 0.669 0.195 0.068
 Memory Usage MB: 1010 total, 536 free, 0 shared, 152 buffered
 Swap Usage MB: 397 total, 397 free
 Filesystem Info: /media/cdrom0 udf,iso9660 7668MB total, 5460MB avail
 Filesystem Info: /media/floppy0 auto 7668MB total, 5460MB avail
 Output Filename: f.b2
 Input Filenames: f.a
 --- final f.b2 ----
 Timestamp Today: 20120227T163750.168-08:00 (1330389470.168;60.000)
 Applicationname: findrange [v5025] @ 10.0.2.15 (VPN)
 Current Workdir: /home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0001
 Systemenvironm.: i686-Linux 2.6.32-5-686
 Processor Info.: 1 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2635.360
 Load Averages : 1.451 0.523 0.189
 Memory Usage MB: 1010 total, 536 free, 0 shared, 152 buffered
 Swap Usage MB: 397 total, 397 free
 Filesystem Info: /media/cdrom0 udf,iso9660 7668MB total, 5459MB avail
 Filesystem Info: /media/floppy0 auto 7668MB total, 5459MB avail
 Output Filename: f.c2
 Input Filenames: f.b2
--- final f.c2 ----
Timestamp Today: 20120227T163906.044-08:00 (1330389546.044;60.000)
Applicationname: analyze [v5025] @ 10.0.2.15 (VPN)
Current Workdir: /home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0001
Systemenvironm.: i686-Linux 2.6.32-5-686
Processor Info.: 1 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2635.360
Load Averages : 1.094 0.608 0.241
Memory Usage MB: 1010 total, 536 free, 0 shared, 152 buffered
Swap Usage MB: 397 total, 397 free
Filesystem Info: /media/cdrom0 udf,iso9660 7668MB total, 5459MB avail
Filesystem Info: /media/floppy0 auto 7668MB total, 5459MB avail
Output Filename: f.d
Input Filenames: f.c1 f.c2

• Unsuccessfully Completed (Workflow execution stopped midway) : Let us again look at the jobstate.log. Again we
need to look at the last few lines of jobstate.log

$ tail jobstate.log

1290677127 stage_in_local_local_0 EXECUTE 352.0 local - 4
1290677127 stage_in_local_local_0 JOB_TERMINATED 352.0 local - 4
1290677127 stage_in_local_local_0 JOB_FAILURE 1 local - 4
1290677127 stage_in_local_local_0 POST_SCRIPT_STARTED 352.0 local - 4
1290677132 stage_in_local_local_0 POST_SCRIPT_TERMINATED 352.0 local - 4
1290677132 stage_in_local_local_0 POST_SCRIPT_FAILURE 1 local - 4
1290677132 INTERNAL *** DAGMAN_FINISHED 1 ***

Pegasus Tutorial Using Self-
contained Virtual Machine

292

1290677134 INTERNAL *** MONITORD_FINISHED 0 ***

Looking at the last two lines we see that DAGMan finished, and pegasus-monitord finished unsuccessfully with a
status 1. We can easily determine which job failed. It is stage_in_local_local_0 in this case. To determine the reason
for failure we need to look at it's kickstart output file which is JOBNAME.out.NNN. where NNN is 000 - NNN

Debugging a failed workflow using pegasus-analyzer
In this section, we will run the diamond workflow but remove the input file so that the workflow fails during execution.
This is to highlight how to use pegasus-analyzer to debug a failed workflow.

First of all lets rename the input file f.a

 $ mv /scratch/tutorial/inputdata/diamond/f.a /scratch/tutorial/inputdata/diamond/f.a.old

 $ cd $HOME/pegasus-wms

We will now repeat exercise 2.4 and 2.5 and submit the workflow again.

Plan and Submit the diamond workflow . Pass --submit to pegasus-plan to submit in case of successful
 planning

$ pegasus-plan --dax `pwd`/dax/diamond.dax --force \
 --dir dags -s local -o local --nocleanup --submit -v

Use pegasus-status to track the workflow and wait it to fail

$ watch pegasus-status /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002

STAT IN_STATE JOB
Run 00:18 blackdiamond-0
Summary: 1 Condor job total (R:1)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 7 0 0 2 0 0 0 0.0
Summary: 1 DAG total (Running:1)

The --long option to pegasus-status of a running workflow gives more detail
[pegasus@pegasus pegasus-wms]$ pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
blackdiamond/run0002

STAT IN_STATE JOB
Run 00:38 blackdiamond-0
Run 00:08 ##stage_in_local_local_0
Summary: 2 Condor jobs total (R:2)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 6 0 0 2 0 1 0 11.1 Running *blackdiamond-0.dag
Summary: 1 DAG total (Running:1)

We can also use --long option to pegasus-status to see the FINAL status of the workflow

$ pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002

(no matching jobs found in Condor Q)
UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 6 0 0 0 0 1 2 11.1 Failure *blackdiamond-0.dag
Summary: 1 DAG total (Failure:1)

We will now run pegasus-analyzer on the failed workflow submit directory to see what job failed.

$ pegasus-analyzer -i $HOME/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002

pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 8 (100.00%)
 # jobs succeeded : 1 (12.50%)

Pegasus Tutorial Using Self-
contained Virtual Machine

293

 # jobs failed : 1 (12.50%)
 # jobs unsubmitted : 6 (75.00%)

******************************Failed jobs' details******************************

=============================stage_in_local_local_0=============================

 last state: POST_SCRIPT_FAILED
 site: local
submit file: stage_in_local_local_0.sub
output file: stage_in_local_local_0.out.002
 error file: stage_in_local_local_0.err.002

-------------------------------Task #1 - Summary--------------------------------

site : local
hostname : pegasus-vm.local
executable : /opt/pegasus/4.0.0/bin/pegasus-transfer
arguments : -
exitcode : 1
working dir : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002

------------------Task #1 - pegasus::transfer - None - stdout-------------------

2012-02-24 12:37:46,439 INFO: Reading URL pairs from stdin
2012-02-24 12:37:46,440 INFO: PATH=/opt/globus/default/bin:/opt/pegasus/default/bin:/usr/bin:/
bin
2012-02-24 12:37:46,440 INFO: LD_LIBRARY_PATH=/opt/globus/default/lib
2012-02-24 12:37:46,444 INFO: wget Version: 1.12 Path: /usr/bin/wget
2012-02-24 12:37:46,447 INFO: globus-version Version: 5.0.2 Path: /opt/globus/default/
bin/globus-version
2012-02-24 12:37:46,454 INFO: globus-url-copy Version: 5.7 Path: /opt/globus/default/
bin/globus-url-copy
2012-02-24 12:37:46,456 INFO: Command'srm-copy'not found in the current environment
2012-02-24 12:37:46,457 INFO: Command'iget'not found in the current environment
2012-02-24 12:37:46,459 INFO: pegasus-s3 Version: N/A Path: /opt/pegasus/default/
bin/pegasus-s3
2012-02-24 12:37:46,460 INFO: Sorting the tranfers based on transfer type and source/destination
2012-02-24 12:37:46,460 INFO:
 --
2012-02-24 12:37:46,460 INFO: Starting transfers - attempt 1
2012-02-24 12:37:46,460 INFO: /bin/cp -f -L"/scratch/tutorial/inputdata/diamond/f.a""/home/
tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0002/f.a"
2012-02-24 12:37:46,461 ERROR: Command'/bin/cp -f -L"/scratch/tutorial/inputdata/diamond/f.a""/
home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0002/f.a"'failed with error code 1
2012-02-24 12:37:56,512 INFO:
 --
2012-02-24 12:37:56,512 INFO: Starting transfers - attempt 2
2012-02-24 12:37:56,512 INFO: /bin/cp -f -L"/scratch/tutorial/inputdata/diamond/f.a""/home/
tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0002/f.a"
2012-02-24 12:37:56,517 ERROR: Command'/bin/cp -f -L"/scratch/tutorial/inputdata/diamond/f.a""/
home/tutorial/local-scratch/exec/tutorial/pegasus/blackdiamond/run0002/f.a"'failed with error code 1
2012-02-24 12:37:56,517 INFO: Stats: no local files in the transfer set
2012-02-24 12:37:56,517 CRITICAL: Some transfers failed! See above, and possibly stderr.

-------------Task #1 - pegasus::transfer - None - Kickstart stderr--------------

/bin/cp: cannot stat `/scratch/tutorial/inputdata/diamond/f.a': No such file or directory
/bin/cp: cannot stat `/scratch/tutorial/inputdata/diamond/f.a': No such file or directory

The above tells us that the stage-in job for the workflow failed, and points us to the stdout of the job. By default, all
jobs in Pegasus are launched via kickstart that captures runtime provenance of the job and helps in debugging. Hence,
the stdout of the job is the kickstart stdout which is in XML.

. the duration of the job the start time for the job the node on which the job ran the stdout/stderr of the job the arguments
with which it launched the job the environment that was set for the job before it was launched. the machine information
about the node that the job ran on Amongst the above information, the dagman.out file gives a coarser grained estimate
of the job duration and start time

Kickstart and Condor DAGMan format and log files

This section explains how to read kickstart output and DAGMan Condor log files.

Pegasus Tutorial Using Self-
contained Virtual Machine

294

Kickstart
Kickstart is a light weight C executable that is shipped with the pegasus worker package. All jobs are launced via
Kickstart on the remote end, unless explicitly disabled at the time of running pegasus-plan.

Kickstart does not work with

1. Condor Standard Universe Jobs

2. MPI jobs

Pegasus automatically disables kickstart for the above jobs.

Kickstart captures useful runtime provenance information about the job launched by it on the remote note, and puts
in an XML record that it writes to it's stdout. The stdout appears in the workflow submit directory as <job>.out.00n .
Some useful information captured by kickstart and logged are as follows

1. the exitcode with which the job it launched exited

2. the duration of the job

3. the start time for the job

4. the node on which the job ran

5. the directory in which the job ran

6. the stdout/stderr of the job

7. the arguments with which it launched the job

8. the environment that was set for the job before it was launched.

9. the machine information about the node that the job ran on

Reading a Kickstart Output File

Lets look at the stdout of our failed job.

$ cat /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002/
stage_in_local_local_0.out.002

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <invocation xmlns="http://pegasus.isi.edu/schema/invocation" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/invocation http://pegasus.isi.edu/schema/
iv-2.1.xsd" version="2.1"
 start="2010-11-29T19:10:23.862-08:00" duration="0.076" transformation="pegasus::pegasus-transfer"
 derivation="pegasus::pegasus-transfer:1.0" resource="local" wf-label="blackdiamond"
 wf-stamp="2010-11-29T18:57:59-08:00" interface="eth0" hostaddr="10.0.2.15" hostname="pegasus-
vm.local"
 pid="5428" uid="501" user="pegasus" gid="501" group="pegasus" umask="0022">

 <mainjob start="2010-11-29T19:10:23.876-08:00" duration="0.063" pid="5429">
 <usage utime="0.040" stime="0.023" minflt="2758" majflt="0" nswap="0" nsignals="0" nvcsw="5"
 nivcsw="20"/>
 <status raw="256"><regular exitcode="1"/></status>
 <statcall error="0">
 <file name="/opt/pegasus/default/bin/pegasus-transfer">23212F7573722F62696E2F656E762070</file>
 <statinfo mode="0100775" size="25314" inode="2022205" nlink="1" blksize="4096" blocks="64"
 mtime="2010-11-23T13:14:52-08:00"
 atime="2010-11-29T19:10:07-08:00" ctime="2010-11-25T00:01:52-08:00" uid="501"
 user="pegasus"
 gid="501" group="pegasus"/>
 </statcall>
 <argument-vector/>
 </mainjob>
 <cwd>/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0002</cwd>
 <usage utime="0.002" stime="0.013" minflt="475" majflt="0" nswap="0" nsignals="0" nvcsw="1"
 nivcsw="5"/>

 <machine page-size="4096">

Pegasus Tutorial Using Self-
contained Virtual Machine

295

 <stamp>2010-12-23T10:56:43.817-08:00</stamp>
 <uname system="linux" nodename="pegasus-vm" release="2.6.32-5-686" machine="i686">
 #1 SMP Fri Dec 10 16:12:40 UTC 2010</uname>
 <linux>
 <ram total="527044608" free="242290688" shared="0" buffer="41041920"/>
 <swap total="417325056" free="417325056"/>
 <boot idle="1597.500">2010-12-23T10:29:16.599-08:00</boot>
 <cpu count="1" speed="2797" vendor="GenuineIntel">Intel(R) Xeon(R) CPU E5462 @ 2.80GHz</cpu>
 <load min1="0.05" min5="0.02" min15="0.00"/>
 <proc total="88" running="1" sleeping="87" vmsize="344793088" rss="123768832"/>
 <task total="101" running="1" sleeping="100"/>
 </linux>
 </machine>

 <statcall error="0" id="stdin">
 <descriptor number="0"/>
 <statinfo mode="0100664" size="142" inode="2250032" nlink="1" blksize="4096" blocks="16"
 mtime="2010-11-29T19:09:20-08:00" atime="2010-11-29T19:10:07-08:00"
 ctime="2010-11-29T19:09:20-08:00"
 uid="501" user="pegasus" gid="501" group="pegasus"/>
 </statcall>

 <statcall error="0" id="stdout">
 <temporary name="/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427/gs.out.awOX6p"
 descriptor="3"/>
 <statinfo mode="0100600" size="762" inode="2054511" nlink="1" blksize="4096" blocks="16"
 mtime="2010-11-29T19:10:23-08:00" atime="2010-11-29T19:10:23-08:00"
 ctime="2010-11-29T19:10:23-08:00"
 uid="501" user="pegasus" gid="501" group="pegasus"/>
 <data>2010-11-29 19:10:23,920 INFO: Reading URL pairs from stdin
2010-11-29 19:10:23,921 INFO: PATH=/usr/local/globus/default/bin:/opt/pegasus/default/bin:/usr/
bin:/bin
2010-11-29 19:10:23,921 INFO: LD_LIBRARY_PATH=/usr/local/globus/default/lib:/usr/java/
jdk1.6.0_20/jre/lib/amd64/
2010-11-29 19:10:23,921 INFO: Executing cp commands
/bin/cp: cannot stat `/scratch/tutorial/inputdata/diamond/f.a': No such file or directory
2010-11-29 19:10:23,932 CRITICAL: Command '/bin/cp -L "/scratch/tutorial/inputdata/
diamond/f.a"
 "/home/tutorial/local-scratch/exec/pegasus/pegasus/blackdiamond/run0002/f.a"'
 failed with error code 1
</data>
 </statcall>

 <statcall error="0" id="stderr">
 <temporary name="/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427/gs.err.oz9MOG"
 descriptor="4"/>
 <statinfo mode="0100600" size="0" inode="2054512" nlink="1" blksize="4096" blocks="8"
 mtime="2010-11-29T19:10:23-08:00" atime="2010-11-29T19:10:23-08:00"
 ctime="2010-11-29T19:10:23-08:00"
 uid="501" user="pegasus" gid="501" group="pegasus"/>
 </statcall>

 <statcall error="2" id="gridstart">
 <!-- ignore above error -->
 <file name="condor_exec.exe"/>
 </statcall>
 <statcall error="0" id="logfile">
 <descriptor number="1"/>
 <statinfo mode="0100644" size="0" inode="2250072" nlink="1" blksize="4096" blocks="8"
 mtime="2010-11-29T19:10:23-08:00"
 atime="2010-11-29T19:10:23-08:00" ctime="2010-11-29T19:10:23-08:00" uid="501" user="pegasus"
 gid="501" group="pegasus"/>
 </statcall>
 <statcall error="0" id="channel">
 <fifo name="/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427/gs.app.qCOCwX"
 descriptor="5" count="0"
 rsize="0" wsize="0"/>
 <statinfo mode="010640" size="0" inode="2054524" nlink="1" blksize="4096" blocks="8"
 mtime="2010-11-29T19:10:23-08:00"
 atime="2010-11-29T19:10:23-08:00" ctime="2010-11-29T19:10:23-08:00" uid="501" user="pegasus"
 gid="501"
 group="pegasus"/>
 </statcall>
 <environment>
 <env key="GLOBUS_LOCATION">/usr/local/globus/default</env>

Pegasus Tutorial Using Self-
contained Virtual Machine

296

 <env key="GRIDSTART_CHANNEL">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427/
gs.app.qCOCwX</env>
 <env key="JAVA_HOME">/usr</env>
 <env key="LD_LIBRARY_PATH">/usr/java/jdk1.6.0_20/jre/lib/amd64/server:/usr/java/jdk1.6.0_20/jre/
lib/amd64:</env>
 <env key="PEGASUS_HOME">/opt/pegasus/default</env>
 <env key="TEMP">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427</env>
 <env key="TMP">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427</env>
 <env key="TMPDIR">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427</env>
 <env key="_CONDOR_ANCESTOR_4843">4862:1291085504:2790807554</env>
 <env key="_CONDOR_ANCESTOR_4862">5427:1291086623:1798288782</env>
 <env key="_CONDOR_ANCESTOR_5427">5428:1291086623:2750667008</env>
 <env key="_CONDOR_HIGHPORT">41000</env>
 <env key="_CONDOR_JOB_AD">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427/.job.ad</
env>
 <env key="_CONDOR_LOWPORT">40000</env>
 <env key="_CONDOR_MACHINE_AD">/opt/condor/local.pegasus/spool/local_univ_execute/
dir_5427/.machine.ad</env>
 <env key="_CONDOR_SCRATCH_DIR">/opt/condor/local.pegasus/spool/local_univ_execute/dir_5427</env>
 <env key="_CONDOR_SLOT">1</env>
 </environment>
 <resource>
 <soft id="RLIMIT_CPU">unlimited</soft>
 <hard id="RLIMIT_CPU">unlimited</hard>
 <soft id="RLIMIT_FSIZE">unlimited</soft>
 <hard id="RLIMIT_FSIZE">unlimited</hard>
 <soft id="RLIMIT_DATA">unlimited</soft>
 <hard id="RLIMIT_DATA">unlimited</hard>
 <soft id="RLIMIT_STACK">unlimited</soft>
 <hard id="RLIMIT_STACK">unlimited</hard>
 <soft id="RLIMIT_CORE">0</soft>
 <hard id="RLIMIT_CORE">0</hard>
 <soft id="RESOURCE_5">unlimited</soft>
 <hard id="RESOURCE_5">unlimited</hard>
 <soft id="RLIMIT_NPROC">unlimited</soft>
 <hard id="RLIMIT_NPROC">unlimited</hard>
 <soft id="RLIMIT_NOFILE">1024</soft>
 <hard id="RLIMIT_NOFILE">1024</hard>
 <soft id="RLIMIT_MEMLOCK">32768</soft>
 <hard id="RLIMIT_MEMLOCK">32768</hard>
 <soft id="RLIMIT_AS">unlimited</soft>
 <hard id="RLIMIT_AS">unlimited</hard>
 <soft id="RLIMIT_LOCKS">unlimited</soft>
 <hard id="RLIMIT_LOCKS">unlimited</hard>
 <soft id="RLIMIT_SIGPENDING">8192</soft>
 <hard id="RLIMIT_SIGPENDING">8192</hard>
 <soft id="RLIMIT_MSGQUEUE">819200</soft>
 <hard id="RLIMIT_MSGQUEUE">819200</hard>
 <soft id="RLIMIT_NICE">0</soft>
 <hard id="RLIMIT_NICE">0</hard>
 <soft id="RLIMIT_RTPRIO">0</soft>
 <hard id="RLIMIT_RTPRIO">0</hard>
 </resource>
</invocation>

Condor DAGMan format and log files etc.

In this exercise we will learn about the DAG file format and some of the log files generated when the DAG runs.

• Now take a look at the DAG file...

$ cat $HOME/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/blackdiamond-0.dag

##
PEGASUS WMS GENERATED DAG FILE
DAG blackdiamond
Index = 0, Count = 1
##
MAXJOBS projection 2

JOB create_dir_blackdiamond_0_local create_dir_blackdiamond_0_local.sub
SCRIPT POST create_dir_blackdiamond_0_local /opt/pegasus/default/bin/pegasus-exitcode
 /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/
create_dir_blackdiamond_0_local.out
RETRY create_dir_blackdiamond_0_local 2

Pegasus Tutorial Using Self-
contained Virtual Machine

297

JOB stage_in_local_local_0 stage_in_local_local_0.sub
SCRIPT POST stage_in_local_local_0 /opt/pegasus/default/bin/pegasus-exitcode
 /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/stage_in_local_local_0.out
RETRY stage_in_local_local_0 2

JOB preprocess_j1 preprocess_j1.sub
SCRIPT POST preprocess_j1 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/preprocess_j1.out
RETRY preprocess_j1 2

JOB findrange_j2 findrange_j2.sub
SCRIPT POST findrange_j2 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/findrange_j2.out
RETRY findrange_j2 2

JOB findrange_j3 findrange_j3.sub
SCRIPT POST findrange_j3 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/findrange_j3.out
RETRY findrange_j3 2

JOB analyze_j4 analyze_j4.sub
SCRIPT POST analyze_j4 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/analyze_j4.out
RETRY analyze_j4 2

JOB stage_out_local_local_2_0 stage_out_local_local_2_0.sub
SCRIPT POST stage_out_local_local_2_0 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/
stage_out_local_local_2_0.out
RETRY stage_out_local_local_2_0 2

JOB register_local_2_0 register_local_2_0.sub
SCRIPT POST register_local_2_0 /opt/pegasus/default/bin/pegasus-exitcode
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/register_local_2_0.out
RETRY register_local_2_0 2

PARENT findrange_j2 CHILD analyze_j4
PARENT preprocess_j1 CHILD findrange_j2
PARENT preprocess_j1 CHILD findrange_j3
PARENT findrange_j3 CHILD analyze_j4
PARENT analyze_j4 CHILD stage_out_local_local_2_0
PARENT stage_in_local_local_0 CHILD preprocess_j1
PARENT stage_out_local_local_2_0 CHILD register_local_2_0
PARENT create_dir_blackdiamond_0_local CHILD analyze_j4
PARENT create_dir_blackdiamond_0_local CHILD findrange_j2
PARENT create_dir_blackdiamond_0_local CHILD preprocess_j1
PARENT create_dir_blackdiamond_0_local CHILD findrange_j3
PARENT create_dir_blackdiamond_0_local CHILD stage_in_local_local_0
##
End of DAG
##

• ... and the dagman.out file.

$ cat $HOME/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/blackdiamond-0.dag.dagman.out

11/25 01:10:47 **
11/25 01:10:47 ** condor_scheduniv_exec.339.0 (CONDOR_DAGMAN) STARTING UP
11/25 01:10:47 ** /opt/condor/7.4.2/bin/condor_dagman
11/25 01:10:47 ** SubsystemInfo: name=DAGMAN type=DAGMAN(10) class=DAEMON(1)
11/25 01:10:47 ** Configuration: subsystem:DAGMAN local:<NONE> class:DAEMON
11/25 01:10:47 ** $CondorVersion: 7.4.2 Mar 29 2010 BuildID: 227044 $
11/25 01:10:47 ** $CondorPlatform: X86_64-LINUX_RHEL5 $
11/25 01:10:47 ** PID = 7844
11/25 01:10:47 ** Log last touched time unavailable (No such file or directory)
11/25 01:10:47 **
11/25 01:10:47 Using config source: /opt/condor/config/condor_config
11/25 01:10:47 Using local config sources:
11/25 01:10:47 /opt/condor/config/condor_config.local
11/25 01:10:47 DaemonCore: Command Socket at <172.16.80.129:40035>
11/25 01:10:47 DAGMAN_DEBUG_CACHE_SIZE setting: 5242880
11/25 01:10:47 DAGMAN_DEBUG_CACHE_ENABLE setting: False
11/25 01:10:47 DAGMAN_SUBMIT_DELAY setting: 0
11/25 01:10:47 DAGMAN_MAX_SUBMIT_ATTEMPTS setting: 6
11/25 01:10:47 DAGMAN_STARTUP_CYCLE_DETECT setting: 0
11/25 01:10:47 DAGMAN_MAX_SUBMITS_PER_INTERVAL setting: 5

Pegasus Tutorial Using Self-
contained Virtual Machine

298

11/25 01:10:47 DAGMAN_USER_LOG_SCAN_INTERVAL setting: 5
11/25 01:10:47 allow_events (DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION, DAGMAN_ALLOW_EVENTS) setting:
 114
11/25 01:10:47 DAGMAN_RETRY_SUBMIT_FIRST setting: 1
11/25 01:10:47 DAGMAN_RETRY_NODE_FIRST setting: 0
11/25 01:10:47 DAGMAN_MAX_JOBS_IDLE setting: 0
11/25 01:10:47 DAGMAN_MAX_JOBS_SUBMITTED setting: 0
11/25 01:10:47 DAGMAN_MUNGE_NODE_NAMES setting: 1
11/25 01:10:47 DAGMAN_PROHIBIT_MULTI_JOBS setting: 0
11/25 01:10:47 DAGMAN_SUBMIT_DEPTH_FIRST setting: 0
11/25 01:10:47 DAGMAN_ABORT_DUPLICATES setting: 1
11/25 01:10:47 DAGMAN_ABORT_ON_SCARY_SUBMIT setting: 1
11/25 01:10:47 DAGMAN_PENDING_REPORT_INTERVAL setting: 600
11/25 01:10:47 DAGMAN_AUTO_RESCUE setting: 1
11/25 01:10:47 DAGMAN_MAX_RESCUE_NUM setting: 100
11/25 01:10:47 DAGMAN_DEFAULT_NODE_LOG setting: null
11/25 01:10:47 ALL_DEBUG setting:
11/25 01:10:47 DAGMAN_DEBUG setting:
....
11/25 01:10:47 Default node log file is:
 </home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/
blackdiamond-0.dag.nodes.log>
11/25 01:10:47 DAG Lockfile will be written to blackdiamond-0.dag.lock
11/25 01:10:47 DAG Input file is blackdiamond-0.dag
11/25 01:10:47 Parsing 1 dagfiles
11/25 01:10:47 Parsing blackdiamond-0.dag ...
11/25 01:10:47 Dag contains 8 total jobs
11/25 01:10:47 Sleeping for 12 seconds to ensure ProcessId uniqueness
11/25 01:10:59 Bootstrapping...
11/25 01:10:59 Number of pre-completed nodes: 0
11/25 01:10:59 Registering condor_event_timer...
11/25 01:11:00 Sleeping for one second for log file consistency
11/25 01:11:01 Submitting Condor Node create_dir_blackdiamond_0_local job(s)...
11/25 01:11:01 submitting: condor_submit -a dag_node_name' '=' 'create_dir_blackdiamond_0_local -
a
+DAGManJobId' '=' '339 -a DAGManJobId' '=' '339 -a submit_event_notes' '=' 'DAG' 'Node:' '
create_dir_blackdiamond_0_local -a +DAGParentNodeNames' '=' '""
 create_dir_blackdiamond_0_local.sub
11/25 01:11:01 From submit: Submitting job(s).
11/25 01:11:01 From submit: Logging submit event(s).
11/25 01:11:01 From submit: 1 job(s) submitted to cluster 340.
11/25 01:11:01 assigned Condor ID (340.0)
11/25 01:11:01 Just submitted 1 job this cycle...
11/25 01:11:01 Currently monitoring 1 Condor log file(s)
11/25 01:11:01 Event: ULOG_SUBMIT for Condor Node create_dir_blackdiamond_0_local (340.0)
11/25 01:11:01 Number of idle job procs: 1
11/25 01:11:01 Of 8 nodes total:
11/25 01:11:01 Done Pre Queued Post Ready Un-Ready Failed
11/25 01:11:01 === === === === === === ===
11/25 01:11:01 0 0 1 0 0 7 0
....
11/25 01:11:06 Currently monitoring 1 Condor log file(s)
11/25 01:11:06 Event: ULOG_EXECUTE for Condor Node create_dir_blackdiamond_0_local (340.0)
11/25 01:11:06 Number of idle job procs: 0
11/25 01:11:06 Event: ULOG_JOB_TERMINATED for Condor Node create_dir_blackdiamond_0_local (340.0)
11/25 01:11:06 Node create_dir_blackdiamond_0_local job proc (340.0) completed successfully.
11/25 01:11:06 Node create_dir_blackdiamond_0_local job completed
11/25 01:11:06 Running POST script of Node create_dir_blackdiamond_0_local...
11/25 01:11:06 Number of idle job procs: 0
11/25 01:11:06 Of 8 nodes total:
11/25 01:11:06 Done Pre Queued Post Ready Un-Ready Failed
11/25 01:11:06 === === === === === === ===
11/25 01:11:06 0 0 0 1 0 7 0
11/25 01:11:11 Currently monitoring 1 Condor log file(s)
11/25 01:11:11 Event: ULOG_POST_SCRIPT_TERMINATED for Condor Node create_dir_blackdiamond_0_local
 (340.0)
11/25 01:11:11 POST Script of Node create_dir_blackdiamond_0_local completed successfully.
11/25 01:11:11 Of 8 nodes total:
11/25 01:11:11 Done Pre Queued Post Ready Un-Ready Failed
11/25 01:11:11 === === === === === === ===
11/25 01:11:11 1 0 0 0 1 6 0
....
11/25 01:15:52 Event: ULOG_POST_SCRIPT_TERMINATED for Condor Node register_local_2_0 (347.0)
11/25 01:15:52 POST Script of Node register_local_2_0 completed successfully.
11/25 01:15:52 Of 8 nodes total:
11/25 01:15:52 Done Pre Queued Post Ready Un-Ready Failed
11/25 01:15:52 === === === === === === ===

Pegasus Tutorial Using Self-
contained Virtual Machine

299

11/25 01:15:52 8 0 0 0 0 0 0
11/25 01:15:52 All jobs Completed!
11/25 01:15:52 Note: 0 total job deferrals because of -MaxJobs limit (0)
11/25 01:15:52 Note: 0 total job deferrals because of -MaxIdle limit (0)
11/25 01:15:52 Note: 0 total job deferrals because of node category throttles
11/25 01:15:52 Note: 0 total PRE script deferrals because of -MaxPre limit (20)
11/25 01:15:52 Note: 0 total POST script deferrals because of -MaxPost limit (20)
11/25 01:15:52 **** condor_scheduniv_exec.339.0 (condor_DAGMAN) pid 7844 EXITING WITH STATUS 0
[p

Removing a running workflow

Sometimes you may want to halt the execution of the workflow or just permanently remove it. You can stop/halt a
workflow by running the pegasus-remove command mentioned in the output of pegasus-run

$ pegasus-remove $HOME/pegasus-wms/dags/tutorial/pegasus/diamond/runXXXX

Job 2788.0 marked for removal

Generating statistics and plots of a workflow run

In this section, we will generate statistics and plots of the diamond workflow we ran using pegasus-statistics and
pegasus-plots

Generating Statistics Using pegasus-statistics

pegasus-statistics generates workflow execution statistics. To generate statistics run the command as shown below

$ cd $HOME/pegasus-wms

$ pegasus-statistics -s all dags/tutorial/pegasus/blackdiamond/run0001/

SUMMARY*
legends

Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total Run - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.

Workflow wall time:
The walltime from the start of the workflow execution
to the end as reported by the DAGMAN.In case of rescue dag the value
is the cumulative of all retries.

Workflow cumulative job wall time:
The sum of the walltime of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the walltime value includes jobs from the sub workflows as well.

Cumulative job walltime as seen from submit side:
The sum of the walltime of all jobs as reported by DAGMan.
This is similar to the regular cumulative job walltime, but includes
job management overhead and delays. In case of job retries the value is
the cumulative of all retries. For workflows having sub workflow jobs

Pegasus Tutorial Using Self-
contained Virtual Machine

300

(i.e SUBDAG and SUBDAX jobs), the walltime value includes jobs
from the sub workflows as well.

Type Succeeded Failed Incomplete Total
 Retries Total Run (Retries Included)
Tasks 4 0 0 4
 || 0 4
Jobs 8 0 0 8
 || 0 8
Sub Workflows 0 0 0 0
 || 0 0

Workflow wall time : 5 mins, 5 secs, (total 305 seconds)

Workflow cumulative job wall time : 4 mins, 0 secs, (total 240 seconds)

Cumulative job walltime as seen from submit side : 4 mins, 0 secs, (total 240 seconds)

Summary : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/
run0001/statistics/summary.txt

Workflow execution statistics : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/
run0001/statistics/workflow.txt

Job instance statistics : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/
run0001/statistics/jobs.txt

Transformation statistics : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/
run0001/statistics/breakdown.txt

Time statistics : /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/
run0001/statistics/time.txt

**

Workflow statistics table

Workflow statistics table contains information about the workflow run like total execution time, job's failed etc.

Table 13.1. Table Workflow Statistics

Workflow runtime 5 min. 5 sec.

Cumulative workflow runtime 4 min. 0 sec.

Total jobs 8

jobs succeeded 8

jobs failed 0

jobs unsubmitted 0

jobs unknown 0

Job statistics table

Job statistics table contains the following details about the jobs in the workflow. A sample table is shown below.

• Job - the name of the job

• Try - number representing the job instance run count

• Site - the site where the job ran

• Kickstart(sec.) - the actual duration of the job in seconds on the remote compute node. In case of retries the value
is the cumulative of all retries.

• Mult - multiplier factor specified by the user

Pegasus Tutorial Using Self-
contained Virtual Machine

301

• Kickstart-Mult - Kickstart time multiplied by the multiplier factor

• CPU-Time - remote cpu time computed as the stime + utime

• Post(sec.) - the postscript time as reported by DAGMan .In case of retries the value is the cumulative of all retries.

• CondorQTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It is an estimate
of the time spent in the condor q on the submit node. In case of retries the value is the cumulative of all retries.

• Resource(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job spent in the remote queue. In case of retries the value is the cumulative of all retries.

• Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . Is always >= kickstart. In case of
retries the value is the cumulative of all retries.

• Seqexec(sec.) - the time taken for the completion of a clustered job. In case of retries the value is the cumulative
of all retries.

• Seqexec-Delay(sec.) - the time difference between the time for the completion of a clustered job and sum of all the
individual tasks kickstart time. In case of retries the value is the cumulative of all retries.

• Exitcode - Exitcode for this job

• Hostname - Name of the host where the job ran, as reported by kickstart

Table 13.2. Table Job Statistics

Job Try Site KickstartMultKickstart-
Mult

CPU-
Time

PostCondorQTimeResourceRuntimeSeqexecSeqexec-
Delay

ExitcodeHostname

analyze_j4 1 local 60.03 1 60.03 59.851 5.0 5.0 - 60.0 - - 0 pegasus-
vm.local

create_dir_blackdiamond_0_local1 local 0.029 1 0.029 0.028 5.0 5.0 - 0.0 - - 0 pegasus-
vm.local

findrange_j2 1 local 60.03 1 60.03 32.398 5.0 5.0 - 60.0 - - 0 pegasus-
vm.local

findrange_j3 1 local 60.03 1 60.03 32.426 5.0 10.0 - 60.0 - - 0 pegasus-
vm.local

preprocess_j11 local 60.03 1 60.03 59.815 5.0 60.00 - 60.0 - - 0 pegasus-
vm.local

register_local_2_01 local 0.242 1 0.242 0.208 5.0 5.0 - 0.0 - - 0 pegasus-
vm.local

stage_in_local_local_01 local 0.06 1 0.06 0.056 5.0 5.0 - 0.0 - - 0 pegasus-
vm.local

stage_out_local_local_2_01 local 0.056 1 0.056 0.052 5.0 5.0 - 0.0 - - 0 pegasus-
vm.local

Logical transformation statistics table

Logical transformation statistics table contains information about each type of transformation in the workflow.

Table 13.3. Table: Logical Transformation Statistics

Transformation Count Succeeded Failed Mean Variance Min Max Total

diamond::analyze:4.0 1 1 0 60.1600 0.0000 60.1600 60.1600 60.1600

diamond::findrange:4.0 2 2 0 60.3100 0.0100 60.2500 60.3700 120.6200

Pegasus Tutorial Using Self-
contained Virtual Machine

302

Transformation Count Succeeded Failed Mean Variance Min Max Total

diamond::preprocess:4.01 1 0 60.4800 0.0000 60.4800 60.4800 60.4800

Generating plots using pegasus-plots

pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ cd $HOME/pegasus-wms

$ pegasus-plots -p all dags/tutorial/pegasus/blackdiamond/run0001/

SUMMARY*

Graphs and charts generated by pegasus-plots can be viewed by opening the generated html file in the
 web browser :
/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/index.html

**

Home Page

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/index.html

Pegasus Tutorial Using Self-
contained Virtual Machine

303

Figure 13.1. Figure: Home Page

Pegasus Tutorial Using Self-
contained Virtual Machine

304

Abstract Worfklow / DAX Image

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/dax_graph/

Pegasus Tutorial Using Self-
contained Virtual Machine

305

Figure 13.2. Figure: Black Diamond DAX Image

Pegasus Tutorial Using Self-
contained Virtual Machine

306

Executable Workflow / DAG Image

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/dag_graph/

Pegasus Tutorial Using Self-
contained Virtual Machine

307

Figure 13.3. Figure: Black Diamond DAG Image

Pegasus Tutorial Using Self-
contained Virtual Machine

308

Gantt Chart of Workflow Execution

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/gantt_chart/

X axis - time in seconds . Each tic is 60 seconds

Y axis - Job Number .

Pegasus Tutorial Using Self-
contained Virtual Machine

309

Figure 13.4. Figure: Gantt Chart of Workflow Execution

Pegasus Tutorial Using Self-
contained Virtual Machine

310

Host over time chart

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/host_chart/

X axis - time in seconds . Each tic is 60 seconds

Y axis - Job Number .

Pegasus Tutorial Using Self-
contained Virtual Machine

311

Figure 13.5. Figure: Gantt Chart of Workflow Execution

Pegasus Tutorial Using Self-
contained Virtual Machine

312

Invocation Beakdown chart

/home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0001/plots/breakdown_chart/

X axis - time (seconds), count (seconds).

Y axis - Runtime (seconds).

Pegasus Tutorial Using Self-
contained Virtual Machine

313

Figure 13.6. Figure: Invocation Breakdown Chart

Pegasus Tutorial Using Self-
contained Virtual Machine

314

Planning and Executing Workflow against a Remote
Resource

In this exercise we are going to run pegasus-plan to generate a executable workflow from the abstract workflow
(montage.dax). The Executable workflow contains condor submit files that are submitted to remote grid resources
using pegasus-run

The instructors have provided:

• A dax (montage.dax) in the $HOME/pegasus-wms/dax/ directory.

You will need to write some things yourself, by following the instructions below:

• Run pegasus-plan to generate the condor submit files out of the dax.

Instructions:

• Let us run pegasus-plan on the montage dax on the tg_ncsa cluster. If multiple sites are available you could provide
the sites using a comma "," separated list like tg_ncsa,viz etc.

$ cd $HOME/pegasus-wms

$ pegasus-plan --dir dags --sites cluster --output local --force \
 --nocleanup --dax `pwd`/dax/montage.dax --submit -v

The above command says that we need to plan the montage dax on the cluster site. The cluster site in the VM is
managed by SGE that is running in the VM. The jobs for this workflow will be submitted to jobmanager-condor in
the VM. The output data needs to be transferred back to the local host. The condor submit files are to be generated
in a directory structure whose base is dags. We also are requesting that no cleanup jobs be added as we require the
intermediate data on the remote host. Here is the output of pegasus-plan.

2012.02.24 12:49:47.783 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/
dax/montage.dax - STARTED
2012.02.24 12:49:47.966 PST: [INFO] Generating Stampede Events for Abstract Workflow
2012.02.24 12:49:48.040 PST: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2012.02.24 12:49:48.041 PST: [INFO] event.pegasus.refinement dax.id montage_0 - STARTED
2012.02.24 12:49:48.058 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - STARTED
2012.02.24 12:49:48.091 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - FINISHED
2012.02.24 12:49:48.118 PST: [INFO] Grafting transfer nodes in the workflow
2012.02.24 12:49:48.118 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 STARTED
2012.02.24 12:49:48.170 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 FINISHED
2012.02.24 12:49:48.173 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 STARTED
2012.02.24 12:49:48.175 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 FINISHED
2012.02.24 12:49:48.175 PST: [INFO] event.pegasus.refinement dax.id montage_0 - FINISHED
2012.02.24 12:49:48.206 PST: [INFO] Generating codes for the concrete workflow
2012.02.24 12:49:48.485 PST: [INFO] Generating codes for the concrete workflow -DONE
2012.02.24 12:49:48.677 PST: Submitting job(s).
2012.02.24 12:49:48.682 PST: 1 job(s) submitted to cluster 21.
2012.02.24 12:49:48.687 PST:
2012.02.24 12:49:48.693 PST:

2012.02.24 12:49:48.703 PST: File for submitting this DAG to Condor :
 montage-0.dag.condor.sub
2012.02.24 12:49:48.711 PST: Log of DAGMan debugging messages :
 montage-0.dag.dagman.out
2012.02.24 12:49:48.720 PST: Log of Condor library output :
 montage-0.dag.lib.out
2012.02.24 12:49:48.727 PST: Log of Condor library error messages :
 montage-0.dag.lib.err
2012.02.24 12:49:48.735 PST: Log of the life of condor_dagman itself :
 montage-0.dag.dagman.log
2012.02.24 12:49:48.744 PST:
2012.02.24 12:49:48.751 PST:

2012.02.24 12:49:48.759 PST:

Pegasus Tutorial Using Self-
contained Virtual Machine

315

2012.02.24 12:49:48.767 PST: Your Workflow has been started and runs in base directory given
 below
2012.02.24 12:49:48.775 PST:
2012.02.24 12:49:48.783 PST: cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/montage/
run0001
2012.02.24 12:49:48.791 PST:
2012.02.24 12:49:48.800 PST: *** To monitor the workflow you can run ***
2012.02.24 12:49:48.808 PST:
2012.02.24 12:49:48.815 PST: pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/
pegasus/montage/run0001
2012.02.24 12:49:48.822 PST:
2012.02.24 12:49:48.827 PST: *** To remove your workflow run ***
2012.02.24 12:49:48.835 PST: pegasus-remove /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
montage/run0001
2012.02.24 12:49:48.843 PST:
2012.02.24 12:49:48.852 PST: Time taken to execute is 1.466 seconds
2012.02.24 12:49:48.852 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/
dax/montage.dax - FINISHED

• If you get any errors above while running pegasus-plan you can add -vvvvv to enable maximum verbosity on
pegasus-run.

The above command submits the workflow to Condor DAGMan/CondorG. After submitting it starts a monitoring
daemon pegasus-monitord that parses the condor log files to update the status of the jobs and push it in a work database.

Monitor the workflow using the commands provided in the output of the pegasus-run command and other commands
explained earlier.

The workflow generates a single output file montage.jpg that resides in the directory /home/tutorial/local-storage/
storage/montage.jpg if it runs successfully

The grid workflow will take time to execute on the VM. On the instructor's MAC Pro Desktop it took about 30 minutes
to run.

Advanced Exercises

Optimizing a workflow by clustering small jobs (To Be Done
offline)

Sometimes a workflow may have too many jobs whose execution time is a few seconds long. In such instances the
overhead of scheduling each job on a grid is too large and the runtime of the entire workflow can be optimized by
using Pegasus clustering techniques. One such technique is to cluster jobs horizontally on the same level into one or
more sequential jobs.

$ cd $HOME/pegasus-wms

$ pegasus-plan --dir `pwd`/dags --sites cluster --output local --nocleanup --force \
 --cluster horizontal --dax `pwd`/dax/montage.dax -v

After clustering the executable workflow will contain 26 jobs compared to 44 in the non clustered mode.

Data Reuse
In the DAX you can specify what output data products you want to track in the replica catalog. This is done by setting
the register flags with the output files for a job. For our tutorial, we only register the final output data products. So
if you were able to execute the diamond or the montage workflow successfully, we can do data reuse. Let us run
pegasus-plan on the diamond workflow again. However, this time we will remove the --force option.

$ cd $HOME/pegasus-wms

$ pegasus-plan --dax `pwd`/dax/diamond.dax --dir `pwd`/dags -s local -o local --nocleanup -v

2011.07.29 13:22:13.022 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
diamond.dax - STARTED
2011.07.29 13:22:13.113 PDT: [INFO] Generating Stampede Events for Abstract Workflow

Pegasus Tutorial Using Self-
contained Virtual Machine

316

2011.07.29 13:22:13.196 PDT: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2011.07.29 13:22:13.198 PDT: [INFO] event.pegasus.refinement dax.id blackdiamond_0 - STARTED
2011.07.29 13:22:13.222 PDT: [INFO] event.pegasus.reduce dax.id blackdiamond_0 - STARTED
2011.07.29 13:22:13.223 PDT: [INFO] Nodes/Jobs Deleted from the Workflow during reduction
2011.07.29 13:22:13.223 PDT: [INFO] analyze_j4
2011.07.29 13:22:13.223 PDT: [INFO] findrange_j2
2011.07.29 13:22:13.223 PDT: [INFO] findrange_j3
2011.07.29 13:22:13.224 PDT: [INFO] preprocess_j1
2011.07.29 13:22:13.224 PDT: [INFO] Nodes/Jobs Deleted from the Workflow during reduction - DONE
2011.07.29 13:22:13.224 PDT: [INFO] event.pegasus.reduce dax.id blackdiamond_0 - FINISHED
2011.07.29 13:22:13.224 PDT: [INFO] event.pegasus.siteselection dax.id blackdiamond_0 - STARTED
2011.07.29 13:22:13.246 PDT: [INFO] event.pegasus.siteselection dax.id blackdiamond_0 - FINISHED
2011.07.29 13:22:13.317 PDT: [INFO] Grafting transfer nodes in the workflow
2011.07.29 13:22:13.318 PDT: [INFO] event.pegasus.generate.transfer-nodes dax.id blackdiamond_0 -
 STARTED
2011.07.29 13:22:13.419 PDT: [INFO] Adding stage out jobs for jobs deleted from the workflow
2011.07.29 13:22:13.421 PDT: [INFO] The leaf file f.d is already at the output pool local
2011.07.29 13:22:13.421 PDT: [INFO] event.pegasus.generate.transfer-nodes dax.id blackdiamond_0 -
 FINISHED
2011.07.29 13:22:13.424 PDT: [INFO] event.pegasus.generate.workdir-nodes dax.id blackdiamond_0 -
 STARTED
2011.07.29 13:22:13.426 PDT: [INFO] event.pegasus.generate.workdir-nodes dax.id blackdiamond_0 -
 FINISHED
2011.07.29 13:22:13.426 PDT: [INFO] event.pegasus.generate.cleanup-wf dax.id blackdiamond_0 -
 STARTED
2011.07.29 13:22:13.428 PDT: [INFO] event.pegasus.generate.cleanup-wf dax.id blackdiamond_0 -
 FINISHED
2011.07.29 13:22:13.428 PDT: [INFO] event.pegasus.refinement dax.id blackdiamond_0 - FINISHED
2011.07.29 13:22:13.518 PDT: [INFO] Generating codes for the concrete workflow
2011.07.29 13:22:13.927 PDT: [INFO] Generating codes for the concrete workflow -DONE
2011.07.29 13:22:13.927 PDT:

The executable workflow generated contains only a single NOOP job.
It seems that the output files are already at the output site.
To regenerate the output data from scratch specify --force option.

pegasus-run /home/tutorial/pegasus-wms/dags/tutorial/pegasus/blackdiamond/run0003

2011.07.29 13:22:13.927 PDT: Time taken to execute is 1.387 seconds
2011.07.29 13:22:13.927 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
diamond.dax - FINISHED

You can increase the debug level to see how pegasus deletes the jobs bottom up of the workflow. Pass -vvvv to
pegasus-plan command.

Hierarchal Workflows
Pegasus 4.0 allows you to create workflows of workflows i.e your workflow can contain dax jobs that refer to the sub-
workflows. In this exercise, we will execute a workflow super-diamond that will execute two diamond workflows.

Let us look at superdiamond.dax in the dax directory

$ cat $HOME/pegasus-wms/dax/superdiamond.dax

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2010-11-25T08:42:30-08:00 -->
<!-- generated by: pegasus [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/dax-3.2.xsd"
 versi
on="3.2" name="superdiamond" index="0" count="1">

<!-- Section 1: Files - Acts as a Replica Catalog (can be empty) -->

 <file name="f.a">
 <pfn url="file:///scratch/tutorial/inputdata/diamond/f.a" site="local"/>
 </file>

 <file name="black-1.dax">

Pegasus Tutorial Using Self-
contained Virtual Machine

317

 <pfn url="/home/tutorial/pegasus-wms/dax/black-1.dax" site="local"/>
 </file>

 <file name="black-2.dax">
 <pfn url="/home/tutorial/pegasus-wms/dax/black-2.dax" site="local"/>
 </file>

<!-- Section 2: Executables - Acts as a Transformaton Catalog (can be empty) -->

<!-- Section 3: Transformations - Aggregates executables and Files (can be empty) -->

<!-- Section 4: Job's, DAX's or Dag's - Defines a JOB or DAX or DAG (Atleast 1 required) -->

 <dax id="d1" file="black-1.dax" >
 <argument>-s local --force -o local</argument>
 </dax>

 <dax id="d2" file="black-2.dax" >
 <argument>-s local --force -o local</argument>
 </dax>

<!-- Section 5: Dependencies - Parent Child relationships (can be empty) -->

 <child ref="d2">
 <parent ref="d1"/>
 </child>

</adag>

Now let us submit this super diamond workflow

$ pegasus-plan --dax `pwd`/dax/superdiamond.dax --force --submit \
 --dir dags -s local -o local --nocleanup -v

2011.07.29 13:23:35.646 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
superdiamond.dax - STARTED
2011.07.29 13:23:35.717 PDT: [INFO] Generating Stampede Events for Abstract Workflow
2011.07.29 13:23:35.772 PDT: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2011.07.29 13:23:35.774 PDT: [INFO] event.pegasus.refinement dax.id superdiamond_0 - STARTED
2011.07.29 13:23:35.789 PDT: [INFO] event.pegasus.siteselection dax.id superdiamond_0 - STARTED
2011.07.29 13:23:35.798 PDT: [INFO] event.pegasus.siteselection dax.id superdiamond_0 - FINISHED
2011.07.29 13:23:35.842 PDT: [INFO] Grafting transfer nodes in the workflow
2011.07.29 13:23:35.842 PDT: [INFO] event.pegasus.generate.transfer-nodes dax.id superdiamond_0 -
 STARTED
2011.07.29 13:23:35.918 PDT: [INFO] event.pegasus.generate.transfer-nodes dax.id superdiamond_0 -
 FINISHED
2011.07.29 13:23:35.922 PDT: [INFO] event.pegasus.generate.workdir-nodes dax.id superdiamond_0 -
 STARTED
2011.07.29 13:23:35.929 PDT: [INFO] event.pegasus.generate.workdir-nodes dax.id superdiamond_0 -
 FINISHED
2011.07.29 13:23:35.929 PDT: [INFO] event.pegasus.generate.cleanup-wf dax.id superdiamond_0 -
 STARTED
2011.07.29 13:23:35.931 PDT: [INFO] event.pegasus.generate.cleanup-wf dax.id superdiamond_0 -
 FINISHED
2011.07.29 13:23:35.932 PDT: [INFO] event.pegasus.refinement dax.id superdiamond_0 - FINISHED
2011.07.29 13:23:35.995 PDT: [INFO] Generating codes for the concrete workflow
2011.07.29 13:23:36.130 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
black-1.dax - STARTED
2011.07.29 13:23:36.161 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
black-2.dax - STARTED
2011.07.29 13:23:36.488 PDT: [INFO] Generating codes for the concrete workflow -DONE
2011.07.29 13:23:36.489 PDT: [INFO] Generating code for the cleanup workflow
2011.07.29 13:23:36.626 PDT: [INFO] Generating code for the cleanup workflow -DONE
2011.07.29 13:23:36.829 PDT: Submitting job(s).
2011.07.29 13:23:36.839 PDT: 1 job(s) submitted to cluster 23.
2011.07.29 13:23:36.845 PDT:
2011.07.29 13:23:36.850 PDT:

2011.07.29 13:23:36.856 PDT: File for submitting this DAG to Condor :
 superdiamond-0.dag.condor.sub
2011.07.29 13:23:36.862 PDT: Log of DAGMan debugging messages :
 superdiamond-0.dag.dagman.out

Pegasus Tutorial Using Self-
contained Virtual Machine

318

2011.07.29 13:23:36.867 PDT: Log of Condor library output :
 superdiamond-0.dag.lib.out
2011.07.29 13:23:36.874 PDT: Log of Condor library error messages :
 superdiamond-0.dag.lib.err
2011.07.29 13:23:36.880 PDT: Log of the life of condor_dagman itself :
 superdiamond-0.dag.dagman.log
2011.07.29 13:23:36.886 PDT:
2011.07.29 13:23:36.892 PDT:

2011.07.29 13:23:36.898 PDT:
2011.07.29 13:23:36.915 PDT: Your Workflow has been started and runs in base directory given
 below
2011.07.29 13:23:36.920 PDT:
2011.07.29 13:23:36.926 PDT: cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/superdiamond/
run0001
2011.07.29 13:23:36.933 PDT:
2011.07.29 13:23:36.938 PDT: *** To monitor the workflow you can run ***
2011.07.29 13:23:36.944 PDT:
2011.07.29 13:23:36.951 PDT: pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
superdiamond/run0001
2011.07.29 13:23:36.957 PDT:
2011.07.29 13:23:36.962 PDT: *** To remove your workflow run ***
2011.07.29 13:23:36.968 PDT: pegasus-remove /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
superdiamond/run0001
2011.07.29 13:23:36.974 PDT:
2011.07.29 13:23:36.980 PDT: Time taken to execute is 1.821 seconds
2011.07.29 13:23:36.980 PDT: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
black-1.dax - FINISHED

You can track the workflow using the pegasus-status command

$ watch pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/superdiamond/run0001

After the workflow has completed you will see the black-1-f.d and black-2-f.d in the storage directory

$ ls -lh /home/tutorial/local-storage/storage/black-*

-rw-r--r-- 1 pegasus pegasus 3.6K Nov 29 21:36 /home/tutorial/local-storage/storage/black-1-f.d
-rw-r--r-- 1 pegasus pegasus 3.6K Nov 29 21:41 /home/tutorial/local-storage/storage/black-2-f.d

Directory Structure For the Hierarchal Workflows

Pegasus ensures that each of the workflows have their own submit directory and execution directories.

The table below lists the submit directories for all the workflows in this exercise

Table 13.4. Table: Submit Directory Structure for Hierarchal Workflows

superdiamond (the outer level workflow) /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
superdiamond/run0001

black-1 (the first sub workflow) /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
superdiamond/run0001/black-1_d1

black-2 (the second sub workflow) /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
superdiamond/run0001/black-2_d2

The table below lists the execution directories (one per workflow) in this exercise

Table 13.5. Table: Execution Directory Structure for Hierarchal Workflows

superdiamond (the outer level workflow) /home/tutorial/local-scratch/exec/tutorial/pegasus/
superdiamond/run0001

black-1 (the first sub workflow) /home/tutorial/local-scratch/exec/tutorial/pegasus/
superdiamond/run0001/black-1_d1

black-2 (the second sub workflow) /home/tutorial/local-scratch/exec/tutorial/pegasus/
superdiamond/run0001/black-2_d2

Pegasus Tutorial Using Self-
contained Virtual Machine

319

Running Workflow without a Shared File System
Pegasus has the ability to run workflows on clusters which do not have a shared file system. This capability is easily
exposed through a property 'pegasus.data.configuration'.

When the compute nodes do not have a shared file system, all input files, executable have to be staged to the compute
node to run a job successfully. This staging of files can be done in one of two ways which are as follows.

The option is also useful when you want to run workflows on clusters which would not allow you install anything
on the compute nodes.

For additional information visit pegasus-lite section in running workflows page.

CondorIO

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

To run a workflow in this mode we set pegasus.data.configuration=condorio. In this mode moving of any input/
executable files to the execute node is handle by Condor scheduler.

$ cd $HOME/pegasus-wms

$ pegasus-plan -Dpegasus.data.configuration=condorio --dir `pwd`/dags --sites condor-pool --output
 local --nocleanup --force \
 --dax `pwd`/dax/montage.dax --submit -v

2012.02.24 14:33:09.312 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
montage.dax - STARTED
2012.02.24 14:33:09.484 PST: [INFO] Generating Stampede Events for Abstract Workflow
2012.02.24 14:33:09.547 PST: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2012.02.24 14:33:09.550 PST: [INFO] event.pegasus.refinement dax.id montage_0 - STARTED
2012.02.24 14:33:09.562 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - STARTED
2012.02.24 14:33:09.594 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - FINISHED
2012.02.24 14:33:09.633 PST: [INFO] event.pegasus.cluster dax.id montage_0 - STARTED
2012.02.24 14:33:09.655 PST: [INFO] event.pegasus.cluster dax.id montage_0 - FINISHED
2012.02.24 14:33:09.655 PST: [INFO] Grafting transfer nodes in the workflow
2012.02.24 14:33:09.655 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 STARTED
2012.02.24 14:33:09.707 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 FINISHED
2012.02.24 14:33:09.710 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 STARTED
2012.02.24 14:33:09.716 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 FINISHED
2012.02.24 14:33:09.717 PST: [INFO] event.pegasus.refinement dax.id montage_0 - FINISHED
2012.02.24 14:33:09.742 PST: [INFO] Generating codes for the concrete workflow
2012.02.24 14:33:10.029 PST: [INFO] Generating codes for the concrete workflow -DONE
2012.02.24 14:33:10.216 PST: Submitting job(s).
2012.02.24 14:33:10.221 PST: 1 job(s) submitted to cluster 132.
2012.02.24 14:33:10.228 PST:
2012.02.24 14:33:10.235 PST:

2012.02.24 14:33:10.243 PST: File for submitting this DAG to Condor :
 montage-0.dag.condor.sub
2012.02.24 14:33:10.251 PST: Log of DAGMan debugging messages :
 montage-0.dag.dagman.out
2012.02.24 14:33:10.259 PST: Log of Condor library output :
 montage-0.dag.lib.out
2012.02.24 14:33:10.267 PST: Log of Condor library error messages :
 montage-0.dag.lib.err
2012.02.24 14:33:10.276 PST: Log of the life of condor_dagman itself :
 montage-0.dag.dagman.log
2012.02.24 14:33:10.283 PST:
2012.02.24 14:33:10.291 PST:

2012.02.24 14:33:10.299 PST:
2012.02.24 14:33:10.307 PST: Your Workflow has been started and runs in base directory given
 below
2012.02.24 14:33:10.315 PST:

Pegasus Tutorial Using Self-
contained Virtual Machine

320

2012.02.24 14:33:10.323 PST: cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/montage/run0003
2012.02.24 14:33:10.331 PST:
2012.02.24 14:33:10.340 PST: *** To monitor the workflow you can run ***
2012.02.24 14:33:10.348 PST:
2012.02.24 14:33:10.355 PST: pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
montage/run0003
2012.02.24 14:33:10.363 PST:
2012.02.24 14:33:10.371 PST: *** To remove your workflow run ***
2012.02.24 14:33:10.379 PST: pegasus-remove /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
montage/run0003
2012.02.24 14:33:10.387 PST:
2012.02.24 14:33:10.396 PST: Time taken to execute is 1.422 seconds
2012.02.24 14:33:10.396 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
montage.dax - FINISHED

You can track the workflow using the pegasus-status command

$ watch pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/montage/run0003

The workflow generates a single output file montage.jpg that resides in the directory /home/tutorial/local-storage/
storage/montage.jpg, if it runs successfully.

Non Shared FS mode

Pegasus can also run workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers take place between the worker node and a staging/data coordination site. The staging
site server can be a file server on the head node of a cluster or a separate machine.

To run a workflow in this mode we set pegasus.data.configuration=nonsharedfs. You will also need to specify the
--staging-site option for pegasus-plan.

$ cd $HOME/pegasus-wms

$ pegasus-plan -Dpegasus.data.configuration=nonsharedfs --dir `pwd`/dags --sites condor-pool --
staging-site local --output local --nocleanup --force \
 --dax `pwd`/dax/montage.dax --submit -v

2012.02.24 14:26:16.770 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
montage.dax - STARTED
2012.02.24 14:26:16.933 PST: [INFO] Generating Stampede Events for Abstract Workflow
2012.02.24 14:26:17.001 PST: [INFO] Generating Stampede Events for Abstract Workflow -DONE
2012.02.24 14:26:17.002 PST: [INFO] event.pegasus.refinement dax.id montage_0 - STARTED
2012.02.24 14:26:17.018 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - STARTED
2012.02.24 14:26:17.053 PST: [INFO] event.pegasus.siteselection dax.id montage_0 - FINISHED
2012.02.24 14:26:17.093 PST: [INFO] event.pegasus.cluster dax.id montage_0 - STARTED
2012.02.24 14:26:17.119 PST: [INFO] event.pegasus.cluster dax.id montage_0 - FINISHED
2012.02.24 14:26:17.120 PST: [INFO] Grafting transfer nodes in the workflow
2012.02.24 14:26:17.121 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 STARTED
2012.02.24 14:26:17.181 PST: [INFO] event.pegasus.generate.transfer-nodes dax.id montage_0 -
 FINISHED
2012.02.24 14:26:17.183 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 STARTED
2012.02.24 14:26:17.190 PST: [INFO] event.pegasus.generate.workdir-nodes dax.id montage_0 -
 FINISHED
2012.02.24 14:26:17.190 PST: [INFO] event.pegasus.refinement dax.id montage_0 - FINISHED
2012.02.24 14:26:17.215 PST: [INFO] Generating codes for the concrete workflow
2012.02.24 14:26:17.543 PST: [INFO] Generating codes for the concrete workflow -DONE
2012.02.24 14:26:17.713 PST: Submitting job(s).
2012.02.24 14:26:17.719 PST: 1 job(s) submitted to cluster 88.
2012.02.24 14:26:17.725 PST:
2012.02.24 14:26:17.733 PST:

2012.02.24 14:26:17.738 PST: File for submitting this DAG to Condor :
 montage-0.dag.condor.sub
2012.02.24 14:26:17.744 PST: Log of DAGMan debugging messages :
 montage-0.dag.dagman.out
2012.02.24 14:26:17.755 PST: Log of Condor library output :
 montage-0.dag.lib.out
2012.02.24 14:26:17.763 PST: Log of Condor library error messages :
 montage-0.dag.lib.err
2012.02.24 14:26:17.770 PST: Log of the life of condor_dagman itself :
 montage-0.dag.dagman.log
2012.02.24 14:26:17.780 PST:

Pegasus Tutorial Using Self-
contained Virtual Machine

321

2012.02.24 14:26:17.787 PST:

2012.02.24 14:26:17.795 PST:
2012.02.24 14:26:17.802 PST: Your Workflow has been started and runs in base directory given
 below
2012.02.24 14:26:17.807 PST:
2012.02.24 14:26:17.815 PST: cd /home/tutorial/pegasus-wms/dags/tutorial/pegasus/montage/run0004
2012.02.24 14:26:17.823 PST:
2012.02.24 14:26:17.829 PST: *** To monitor the workflow you can run ***
2012.02.24 14:26:17.836 PST:
2012.02.24 14:26:17.843 PST: pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
montage/run0004
2012.02.24 14:26:17.851 PST:
2012.02.24 14:26:17.860 PST: *** To remove your workflow run ***
2012.02.24 14:26:17.868 PST: pegasus-remove /home/tutorial/pegasus-wms/dags/tutorial/pegasus/
montage/run0004
2012.02.24 14:26:17.875 PST:
2012.02.24 14:26:17.884 PST: Time taken to execute is 1.455 seconds
2012.02.24 14:26:17.885 PST: [INFO] event.pegasus.parse.dax dax.id /home/tutorial/pegasus-wms/dax/
montage.dax - FINISHED

You can track the workflow using the pegasus-status command.

$ watch pegasus-status -l /home/tutorial/pegasus-wms/dags/tutorial/pegasus/montage/run0004

The workflow generates a single output file montage.jpg that resides in the directory /home/tutorial/local-storage/
storage/montage.jpg, if it runs successfully.

