Pegasus 4.3 User Guide

Pegasus 4.3 User Guide

Table of Contents

U 1 110 [T o PP 1
OVEIVIEW AN FEAIUINES ...ttt ettt ettt et et et e et e e e eaeaaenns 1
WOTKEIOW GallErY ..o e e e e e et 2
ADOUL ThiS DOCUIMENT ... ettt ettt ettt e ettt et e et et ee e ens 2

220 U (o - PP 3
011 011 o o P 3
(€T g To IS = (<o PRSPPI 3
Generating the WOrKIIOW ... e e e 3
INfOrMELION CalalOgS ... uinitititit ettt e e e e e et et e 5

THE St CalalOg .. v vttt e e e et e aas 5

The Transformation CatalOogcueuinieititi e e eaeaen 6

The REPICA CalAlOog .. .vve it e e et 7
CONfIQUIING PEOASUSeuiiiiiii i e e et e et et et e e e e aeaan 7
Planning the WOrKEIOW e 7
SUBbMItEING the WOTKEIOW e e e e e 9
Monitoring the WOTKEIOW e 9
Debugging the WOrKflOW ..o 10
(00 1= o g To IS S 1o PP 10
WOrKFIOW D@ShDOBIT ... ettt e ettt e e e aaenas 12
L0000 11 o 17

B INSEAIBIION .ttt 18
(= =0 (U115 1 (=< PPN 18
OPtiONAl SO VAN ...ttt e e et 18
01V (0117 o 18
Native Packages (RPM/DEB)u.ue e 19

RHEL / CentOS / SCIENtIfIC LINUX ..vuiutietiees et eea e 19
[o1 o PN 19
Pegasus from Tarballs ... 19

4, Creating WOrTKI OWS e 20
ADSIract WOTKFIOWS (DA X)) .ttt a e 20
Data Discovery (RepliCa Catalog)uvuviniiiiie e e e 22

Il e e 23
R X ettt e 23
(D1 o1 (o) VPP 24
B 3 O 24
REPIICA LOCAION SEIVICE .. vttt aas 24
R C Lttt e 25
Resource Discovery (Sit€ Cafalog)uvuiuieiiiii e e e 26
KM L e e 26
D PP 28
Site Catalog Client PegasUS-SC-ClHENTiuiriti i e 30
Site Catalog Converter PegasUS-SC-CONVEITETiuiuiriritiritatetet ettt et re e reeeieneneaaanns 30
Executable Discovery (Transformation Catalog)c.oveviriiiieiiiiii e 31
MultiLine Text based TC (TEXL) ...vviiiiii it 31
Singleline Text based TC (FIlE)oviiiiii i e 32
Database TC (Dat@iaSe)cvvreiiiiii ettt 33
TC Client PegasUSTC-ClIENt e e e 33
TC Converter Client Pegasus-tC-CONVEITESiuirit ittt e e e aaaaans 34

5. RUNNING WOTKEIOWS .. oo aaeas 35
Executable WOTKFIOWS (DAG) . ..viviiiiiii et e e e e a e aaaas 35
MapPIiNg REFINEMENT SEEPSt e aaeaan 36

DELA REUSE ...ttt 37
S (S = 1o o 38
N oo J @ 1 (=4 oo PPN 40
Addition of Data Transfer and Registration NOGESoviviriiiiiiiiiiie s 40
Addition of Create Dir and ClEanUP JODSouiuiritiii e aas 42
(@0a 0L T o1 1o P 43

Pegasus 4.3 User Guide

Data Staging CONfIGUIBLTIONc.ueie ettt et et ettt et e eene e 44
Shared File SYStom ... 45

NON Shared FIIESYSIEIM ...t et 46
Condor Pool Without a Shared FilESyStemo e 48
POOBSUSLITE ...t 49
PEOBSUS-PIAN ...t 49
BaSIC PrO D TIES .ottt 50
PEOASUS.NIOIMEt e 51
CatalOg PrOPEITIES ...ttt et 51

Data Staging CONfIQUIBITIONueeeiiee ettt et eenas 56

6. EXECULION ENVIFOMIMENTS ...\ttt ettt et ettt ettt et et e et et e e et e e et eenees 58
LOCAINOSE ...t ettt e 58
CONAOT POOL ...t e e 58
GlIBINS .t e 60
(600707 (o] { O PP PTPPPIN 60
INFRESIFUCIUNE CIOUDS ... et ettt et e enenas 62
AMBZON EC2Z ... e 63
FULUPEGTTT ...ttt ettt et e neeaes 64
Remote Cluster using GIobUS GRAM 64
Remote Cluster using CREAMUCE ... 65
LoCaAl ClUStEr USING GlITEviiete et ettt 66
ChanQES 10 JODSie et 67
Remote Cluster using BOSCO and SSH SUDMISSIONSuiuittititititeeiees e e e e e 68
CAMPUS CIUSLEN ..ttt ettt et ettt ettt et ettt ettt et e e e e 69
KO D .ttt 69
Open Science Grid Using glideinWIMS ...t 70
.. 70

7. SUBMIt DIrECLONY DELAIS ... ettt et et ettt 71
LB OUL ..ttt 71
Condor DAGMAN FIlE ...t e 72
Sample Condor DAG File ... 72
KICKSIAT XIML RECOIttt et eae s 73
Reading a Kickstart QUIPUL Fileoieei e 74
JODSEALELOG FlE ..t e 75
Pegasus Workflow Job States and DElGYSvuirienieiiii e 77
BraiNAUMP il .ot e 77
Pegasus StaliC.oP FlE 78
8. Monitoring, DebUgQING @N0 SEALISHICS vveeeeeee e 80
WOTKFIOW SEBEUS ... ettt ettt et et et enen e 80
0150 2 U = (PP 80
PEOASUS-ANBIYZEN ..ottt et et 81

8150 2 SN (= 1110 PP 82
Resubmitting failed WOrKFIOWSieie e 82
PLOtEING @NO SEALISHICS ... et ettt e et et 82
PEOASUS-SEALISHICS ... ettt ettt et e 82
PEOASUS PIOLS .ttt et e 87
DashDOBITo e 92
WOrKFIOW D@SHDOBIT ..ottt e e 92

9. EXaMPIE WOTKFIOWS ...t e e et et et 98
Gl EXAMPIES .ttt ettt 98
BIACK DIGIMONGttt 98
NASA/TPAC MONEAGE ...ttt et ettt e ens 100
ROSEI AL . ..ttt 100
CONAOr EXAMPIES . ..ottt et et 100
Black DIiamond - CONTOMOuiieiticee et a e 100

LOCaAl SNEll EXAMPIES ...t 101
BIaCK DIGMOMNG ... ettt et ettt et et 101
NOLIFICAONS EXBMPIE ... e e 101
WOrKFIOW Of WOIKFIOWS ...t e 101
GAlACHC PLaNE ...t 101

Pegasus 4.3 User Guide

10. REFEIENCE MBNUELottt et 103
(0] 0= 1= PSPPI 103
PEOASUS.NIOIMIEt e 103

[IoTor: | B I = v o £ =P PP PRPR 104

SITE DIFECOMIES ..ttt et ettt 105
Schema File LOCaLTON PrOPErtiESt 107
Database Drivers For All Relational Catalogsuvuieeniriiieieiee e 108
CatalOg PrOPEITIES ..ottt 111
Replica SEleCtion PrOPErtiEScuiiee e 118

Site SElECtioN PrOPEItIES ... 120

Data Staging COoNfiQUIBLTIONeue ettt et e e 123
Transfer Configuration PrOPErtiESoueuieii e 124
Gridstart And EXItCOOE ProPEItiEScuieiitii et 129
Interface To Condor And Condor DagMaNceeuieieieieee e 131
MONITOFTNG PrOPEITIES ... v ettt 133

JOD ClUSLENING PrOPEITIES ...ttt e 135
LOQUING PrOPEITIES ...ttt e et 137
MiSCEIANEOUS PrOPEIMIESttt e 139

PO S e 143
Profile StrUCtUre HEBOINGt e 143
Profile NAMESPACES et e 144
SOUICES FOr PrOfIlES ... 150
Profiles Conflict RESOIULIONieit e 152
Details of Profile Handlingooiuirii e 153
REDIICA SEIECHION ...t 153
CONFIGUIBLTION ...ttt et et et ettt ettt et e e e 154
Supported REPIICA SEIECLOISoveeet e 154

JOD ClIUSLEITNG ettt et et et 155
OVBIVIBIW ettt ettt et et 156

(Dt B I =0 = £ PP 168
Data Staging COonfigUIBITIONeue ettt et aes 168

Local Versus REMOLE TranSfErSc.eiie e 173
Symlinking AgQainst INPUE Datavuieeieeee e 173
Addition of Separate Data Movement Nodes to Executable Workflowcocooiiiinnnn. 174
OULPUL MBPPEISttt e ettt ettt et e e e e nees 175
Executable Used for Transfer JoDS ..o 176
Executables used for Directory Creation and Cleanup JODSc.oeiiviiiniiiiiiicieen 176
CredentialS SEAOING vueeee e e 177
Staging of EXECULBDIES 178
Staging of Pegasus WOrker PaCkagevueieiiii e 179
Using AmMazon S3 @S @ StagiNG SITE ... vt 180
TRODS Qa8 BCCESS ... et ettt ettt ettt et ettt ettt a s 180
Hierarchical WOPKFIOWS 181
INEFOAUCTION ...t et 181
Specifying a DAX Job in the DAX ... 182
Specifying @a DAG Job in the DAX ... 183

File Dependencies ACroSS DAX JODScuiuiieii e 183
Recursion in Hierarchal WOrkflOWSoouieiiii e 184
EXBMIPIE e 185
NOUTICAHIONS ... et et ettt e 185
Specifying Notifications in the DAX ... 185
Notify File created by Pegasus in the submit direCtoryoovvviiiiiiiiiiieieeeeeas 186
Configuring pegasus-monitord for NOtIfiCatioNSovvieiii i, 187
Default NOtifiCation SCIPLSc. e 188
IMIOMITOTTIIG ettt et ettt et et et et et e ettt et e 189
PEJASUS-MONITONT ...ttt ettt ettt et et ettt et et ettt e e nenes 189
Overview of the Stampede Database SChemaLo.vveviiiiiii e 190

AP RE I NICE ...t 192
DAX XML SCREMA ...ttt e e e e e e 192

DAX GENEIAOr APl ... 202

Pegasus 4.3 User Guide

DAX Generator without @ Pegasus DAX APl ... 208
CoMMANG LINE TOOIS .ottt et ettt 208
L USEFUL TIPS ettt ettt et e e 294
Migrating From Pegasus 3.1 10 PEOASUS 4.Xeuiuiit ettt et 294
MOVE 1O FHS TAYOUL ...t et 294
Stampede Schema Upgrade TOOIo e 294
Existing users running in a condor pool with anon shared filesystem setupcocoevvennnen. 295

New Clients for directory creation and file cleanup ..o, 296
Migrating From Pegasus 2.X 10 PEgASUS 3.Xuerieiiiiiiie et et 297
PEGASUS HOME and SEtUP SCHPLSttt ettt e eeaes 297
Changes to Schemas and Catalog FOrMELSuveieieitiiie e 297
Properties and Profiles SImplificationo 298
Transfers SIMPIITICAHON ... e 299
ClIentS in DIN AIFECLOMY ... et 299

Best Practices For Developing Portable CoOeovuiuiiieiiiee e 300
SUPPOITEd PLEIfOIMS ... et 300
Packaging Of SOFtWEIEc.iie e 300

IMIPE COUES ...ttt e et e 300
Maximum RUnning Time Of COUESvuieiit i 300
Codes cannot specify the directory in which they shouldberun..............c.oois 300

NO hard-coded PathScee e 301
Wrapping legacy codes with @ Shell WIapPercuvuiie e 301
Propogating back the right eXitCOUEvuieii e 301

Static vs. Dynamically Linked Librariescoouieiiiiii e 301
TEMPOTAY FIlES ..ot 301
HaNdliNG OF SEAIO ...oeeiee e e e 301
CoNfIQUIALION FTES ... et 302

Code Invocation and input data staging by Pegasusc.vvviiriiiiiiiii e 302
Logical File naming iN DAX ... e 302

12. Funding, citing, and anonymous USBgE SEALISHICS ... vuiveie et 304
Citing Pegasus in ACAJEMIC WOTKS ... e 304
UsSage SatiStiCS COBCHION ...ttt et naenes 304
PUN 08 .. 304
OVBIVIBIW ettt ettt et et 304
CONFIGUIBLTION ...ttt et et et et et et ettt et e e e 304
MELHCS CONECIEA ... et ees 304

L3, GlOSSAIY .ttt ettt 307
AL TUIOMA VM e e 310
INEFOAUCTION ... e e et et ettt et et e eas 310
VIPEUBIBOX ettt ettt e e et 310
INSEAIT VIFTUBIBOX ...ttt et et et 310
DOWNIOAA VIM TIMBOE ...t e ettt e enenas 310
Create Virtual MaChing ... e 310
Terminating the VM ... e 314
AMBZON EC2 ... e 314
Launching the VIM ..o 314
Logging iNt0 the VM ..o 321
Shutting dOWN the VIV L. e 321

U (1= g o E PSPPI 323
GELEING SEAMEO ...ttt e e 323
Launching the VIM ..o 323
Terminating the VM ..o e 323

vi

List of Figures

2.1, DIiamond WOTKFIOWvinie e e e e 4
2.2. DI@MONG DAG ..ttt 8
2.3. Dashboard HOME Pageo e e e 13
2.4. Dashboard WOrkflOW Pageouiuiiii i e 14
2.5. Dashboard Job DESCIIPLiON Pagviii ittt 14
2.6. Dashboard INVOCEEION PagEouiiieitit e e e e e e 15
2.7. Dashboard StatistiCS Pageeeii i e 15
2.8. Dashboard Plots - JOb DiStriBULIONoueiei e 16
2.9. Dashboard PIOtS - TimMeE Chartc.euiuiiiii e e aeaes 16
2.10. Dashboard Plots - WOrkflow Gantt Chartoouvuieiiiiie e 17
4.0, SaMPLE WOTKEIOW .o 21
4.2. Schema Image of the Site Catalog XML4 ... oot e aaaas 27
4.3. Schema Image of the Site Catalog XML 3 ...t 29
5.1. BIack DIi@mOnd DAGuiiniiiiiiitiee et 35
5.2. WOIKFIOW DAt REUSEttt et ettt ettt ettt et e e e eeaenas 37
5.3, WOTKFIOW SIt€ SEIECHIONttt ettt et ens 40
5.4. Addition of Data Transfer Nodes to the WOrkflowccviiiiiiiii e 41
5.5. Addition of Data Registration Nodes to the Workflow ..o 42
5.6. Addition of Directory Creation and File Removal JobScoiiiiii e 43
5.7. Final EXecutable WOrKFIOWo a4
5.8. Shared File SyStamM SEIUD . ..vvii it aas 46
5.9. NON Shared FIlESyStEmM SEIUDvviti e e et e e anaaas 47
5.10. Condor Pool Without a Shared FileSystemc.ouiiirii i 48
5.11. Workflow Running in NonShared Filesystem Setup with PegasusL ite launching compute jobs............... 49
6.1. The distributed resources appear to be part of a Condor POOL.coviriiiiii e 59
6.2. Cloud SamMPIE St LAy OULieieieieie ittt e e e et et e e e e 62
6.3, AMBZON EC2 ... 63
6.4. Grid SAMPIE SItE LayOUL .. . v.veei ittt aas 64
8.1, PEYASUSPIOL INTEX PAOE .. v v ettt ettt e e aaa 88
8.2, DAX GraN e e 88
8.3, DAG GBI ettt 89
S -0 1L 17 o P 89
8.5. HOSE OVEN tIME Charteeie et 90
8.8, TIME ChaIT ... et e 91
8.7. BreakOWN Chalte ittt et ettt 92
8.8. Dashboard HOME Pageo e e e 93
8.9. Dashboard WOrkflOwW Pagec.ouiiiii e 94
8.10. Dashboard Job DESCIiPtiON PagEv ittt e e e e e 94
8.11. Dashboard INVOCAHION PagEo e et 95
8.12. Dashboard StatiStiCS Page vttt 95
8.13. Dashboard Plots - JOb DiStriBULIONoueie e 96
8.14. Dashboard PlOtS - Time Chartouuieii i e enas 96
8.15. Dashboard Plots - WOrkflow Gantt Chartoouveiuiiiiiiie e 97
10.1. ClUStENiNG DY ClUSIEIS.SIZE ... vttt ettt ettt e e e e e e e a e e 157
10.2. Clustering Dy CIUSEEIS.MUMuit e e e e e e et e e e e e e e es 159
10.3. ClUSIENiNG DY UMM Lottt e ettt e aaaas 161
10.4. Label-based CIUSENINGouiiii e e e e e e 163
10.5. RECUISIVE ClUSIEIING .t vttt ettt ettt ettt e e e e e et e et et et et e e e e e e e e e e e e e e e e e anananas 165
10.6. Shared File SYSIEIM SEIUD ...uvuiniii i et e e e e 169
10.7. NON Shared FilESyStEM SEIUDouviii it e e e aaaes 170
10.8. Condor Pool Without a Shared FilesyStemiiii e 172
10.9. Default Transfer Case : Input Data To Workflow Specific Directory on Shared File System 175
10.10. Planning Of @ DAX JOb ...ouiuiiiii e e 181
10.11. Planning Of @ DAG JObuiuiniiii e e 181
10.12. Recursion in Hierarchal WOrKFIOWSouiniii e 184
10.13. Execution Time-line for Hierarchal WOrkflowso, 185
10.14. Stampede DataDase SChEMAovitit it e e e e 191

vii

Pegasus 4.3 User Guide

AL VirtualBoX WEICOME SCIEENttt et 310
A.2. Create New Virtual Machine Wizard ..ot e 311
A3 VM NAME GNO OS T8 -ttt ettt ettt et et ettt e 311
F N 1V =1 o RPN 312
AL ViIrtUal HArd DiSK ...eeeiiie e e e 312
ALB. SUMMEAY ettt ettt et e e e e et aas 313
A.7. Welcome Screen with new virtual Maching ... 313
ALB. LOGIN SCIBEN ...ttt e e 314
A.9. AWS Management CONSOIE ... uie ettt 315
A.10. EC2 Management CONSOIEueuieeit et ettt et ettt et ettt e nns 315
A.1L Locating the TULOTTEl VIM ... et eenas 316
A.12. Request INStaNCeS WiIZard: SEED Lcvenieieiee e ettt 317
A.13. Request INStaNCeS WiIZard: SEED 2cvieiieie et 317
A.14. Request INStanCes WiIzZard: SEED 3v it 318
A.15. Request INStanCeS WiIZard: SEED 4v e 318
A.16. Request INStanCesS WiIzard: SEED 5viiiie e 319
A.17. Request INStaNCeS WiIZard: SEED 6cvuvnieieieei ettt 319
A.18. Request INStaNCeS WiIZard: SEED 7cvieie et 320
AL19. RUNNING INSEBNCES ...ttt ettt e ettt et et et et et et n et enenes 321
A.20. TEIMINGLE INSLANCE ... et ettt et ettt e et e e eenas 322
A2L YES, TEMUNAIE INSIANCE vttt ettt ettt et et et et et et et e et et et eneaas 322

viii

List of Tables

5.1. Table 1: Key Value Pairs that are currently generated for the site selector temporary file that is generated

N the NONJAVACEIIOUL.t e et ettt en e e 38
5.2. Table2: Basic Properties that Need t0 be SEviieieii 50
7.1. Table 1: The job lifecycle when executed as part of the workflow ... 76
7.2. Table 2: Information Captured in Braindump Fileooiiiiiiiii e 77
8.1, WOIKFIOW SEBEISHICS ...t ettt ettt et et et e et ettt et et e et e et e e e eenes 85
ST o oI - 1= 1Tt 86
8.3. TranSfOrMELioN SEALISHICS ... vueteiiet et e e ettt 87
8.4. Invocation statistics By hOSt PEr Qayvviniiii 87
10.1. Table 1: Useful ENVIronment SEHiNGSoviritiritit it eaeaen 144
10.2. Table 2: Useful GIObUS RSL INSIIUCLIONSvuiiitiitee et aee e 145
10.3. Table 3: RSL Instructions that are not permissibleccooiiiii s 145
10.4. Table 4: Useful Condor COMMENGScuuninitiiee et a e e 146
10.5. Table 5: Condor commands prohibited in condor Profiles..........cc.ovviiiiiiiiii s 146
10.6. Table 6: Useful dagman Commands that can be associated at aper job basis...........cccovvviiiiiiiinnn.n. 147
10.7. Table 7: Useful dagman Commands that can be specified in the propertiesfile.ol. 148
10.8. Table 8: Useful pegasus Profil€s.t e 149
10.9. Table : Pegasus Profiles that can be associated with jobsinthe DAX for PMCcocooviiiiiiiiininnnnn. 166
10.10. Property Variations for pegasus.transfer.* .remote.SiteSc.vviiiiiiiiiii e 173
10.11. Pegasus Profile Keys For the Cluster Transfer REfiNercovviiiiiiiiiiiiicc e 174
10.12. Transfer Clients interfaced to by pegasuS-transiero.vvviiiiiiiii e 176
10.13. Clients interfaced t0 by pegasuS-Create-airouiiiiiii e 177
10.14. Clients interfaced to by PegasUS-ClEANUDcuirir ittt aaaas 177
10.15. Transformation Mappers SUPPOEd iN PEJASUSviiiiiie e 179
10.16. Options inherited from parent WOrkflowoooiiii 182
10.17. Table 1. Invoke Element attributes and Meaning.c.ovvuiiiiiiiiii s 186
0 PP 194
20,00, et 196
20,20, et 199
0 20 PP 199
11.1. Clients interfaced t0 by pegasUS-Create-aircvuiuiii e 296
11.2. Clients interfaced t0 by pegasuUS-ClEANUDc.oviiiiii e 296
11.3. Table 1. Property Keys removed and their Profile based replacementcccooeiiiiiiiiiiiiiiiennne, 298
11.4. Table 2: Old and New Names For Job Clustering Profile Keysccoiviiiiiiiiiiiiie 299
11.5. Table 3: Old and New Names For Transfer Bundling Profile Keys..........cooviiiiiiiiiiiiiiiens 299
11.6. Table 1: Old Client Names and their NeW NaIMESc.iiieiiiii e e 299
12.1. Common Data Sent By Pegasus WMS ClIENESovitirii i 305
12.2. Metrics Data Sent by pegasus-plano.iuiiii 305
12.3. Error Message Sent by pegasus-Planouiuiriii e 306

Chapter 1. Introduction

Overview and Features

Pegasus WM S [http://pegasus.isi.edu] is aconfigurable system for mapping and executing abstract application work-
flows over a wide range of execution environment including a laptop, a campus cluster, a Grid, or acommercia or
academic cloud. Today, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science Grid, the TeraGrid, and
many campus clusters. One workflow can run on asingle system or across a heterogeneous set of resources. Pegasus
can run workflows ranging from just a few computational tasks up to 1 million.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computation-
al resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution environment or the particulars of the low-level spec-
ifications required by the middieware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current
cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description
of the abstract workflow in XML format.

Pegasus allows researchers to translate complex computational tasks into workflows that link and manage ensembles
of dependent tasks and related data files. Pegasus automatically chains dependent tasks together, so that a single
scientist can complete complex computations that once required many different people. New users are encouraged to
explore the tutorial chapter to become familiar with how to operate Pegasus for their own workflows. Users create
and run a sample project to demonstrate Pegasus capabilities. Users can also browse the Useful Tips chapter to aid
them in designing their workflows.

Pegasus has a number of features that contribute to its useability and effectiveness.
« Portability / Reuse

User created workflows can easily be run in different environments without alteration. Pegasus currently runswork-
flows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus, and
many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.

* Performance
The Pegasus mapper can reorder, group, and prioritize tasksin order to increase the overall workflow performance.
 Scalability

Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few computational tasks up to 1 million. The number of resources
involved in executing a workflow can scale as needed without any impediments to performance.

¢ Provenance

By default, all jobsin Pegasus are launched via the kickstart process that captures runtime provenance of the job
and helps in debugging. The provenance data is collected in a database, and the data can be summaries with tools
such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

» Data Management

Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to
aworkflow as auxilliary jobs by the Pegasus planner.

« Reliability

Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer
helps the user to debug the workflow in case of non-recoverable failures.

e Error Recovery

http://pegasus.isi.edu
http://pegasus.isi.edu

Introduction

When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by
providing workflow-level checkpointing, by re-mapping portions of theworkflow, by trying alternative datasources
for staging data, and, when all elsefails, by providing a rescue workflow containing a description of only the work
that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have
enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance)
including the locations of data used and produced, and which software was used with which parameters.

¢ Operating Environments
Pegasus workflows can be deployed across a variety of environments:
* Local Execution

Pegasus can run aworkflow on asingle computer with Internet access. Running in alocal environment is quicker
to deploy as the user does not need to gain access to muliple resources in order to execute a workfow.

¢ Condor Pools and Glideins

Condor is a specialized workload management system for compute-intensive jobs. Condor queues workflows,
schedules, and monitors the execution of each workflow. Condor Pools and Glideins are tools for submitting
and executing the Condor daemons on a Globus resource. As long as the daemons continue to run, the remote
machine running them appears as part of your Condor pool. For a more complete description of Condor, see the
Condor Project Pages [http://www.cs.wisc.edu/condor/description.html]

e Grids

Pegasus WMS is entirely compatible with Grid computing. Grid computing relies on the concept of distributed
computations. Pegasus apportions pieces of aworkflow to run on distributed resources.

¢ Clouds

Cloud computing uses a network as a means to connect a Pegasus end user to distributed resources that are based
in the cloud.

Workflow Gallery

Pegasus is curently being used in a broad range of applications. To review example workflows, see the Example
Workflows chapter. To see additional details about the workflows of the applications see the Gallery of Workflows
[http://pegasus.isi.edu/workflow_gallery/].

Wearealwayslooking for new applicationswilling to leverage our workflow technologies. If you areinterested please
contact us at pegasus at isi dot edu.

About this Document

This document is designed to acquaint new users with the capabilities of the Pegasus Workflow Management System
(WMS) and to demonstrate how WMS can efficiently provide a variety of ways to execute complex workflows on
distributed resources. Readers are encouraged to take the tutorial to acquaint themselves with the components of the
Pegasus System. Readers may al so want to navigate through the chapters to acquaint themsel ves with the components
on a deeper level to understand how to integrate Pegasus with your own data resources to resolve your individual
computational challenges.

http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://pegasus.isi.edu/workflow_gallery/
http://pegasus.isi.edu/workflow_gallery/

Chapter 2. Tutorial

Introduction

Thistutorial will take you through the steps of creating and running a simple workflow using Pegasus. Thistutorial is
intended for new users who want to get a quick overview of Pegasus concepts and usage. The tutorial coversthe cre-
ating, planning, submitting, monitoring, debugging, and generating statistics for a simple diamond-shaped workflow.
More information about the topics covered in this tutorial can be found in later chapters of this user's guide.

All of the steps in this tutorial are performed on the command-line. The convention we will use for command-line
input and output is to put things that you should type in bold, monospace font, and to put the output you should get
in anormal weight, monospace font, like this:

[user @ost dir]$ you type this
you get this

Where [user @ost dir] $ istheterminal prompt, the text you should typeis “you type this”, and the
output you should get is"you get thi s". The terminal prompt will be abbreviated as $. Because some of the
outputs are long, we don’t always include everything. Where the output is truncated we will add an éllipsis ... to
indicate the omitted output.

If you are having trouble with this tutorial, or anything else related to Pegasus, you can contact the Pegasus
Usersmailing list at <pegasus- user s@ si . edu> to get help.

Getting Started

In order to reduce the amount of work required to get started we have provided severa virtual machines that contain
all of the software required for this tutorial. Virtual machine images are provided for VirtualBox, Amazon EC2 and
FutureGrid. Information about deploying the tutorial VM on these platforms is in the appendix. Please go to the
appendix for the platform you are using and follow the instructions for starting the VM found there before continuing
with thistutorial.

Advanced Users: In the case that you want to install Pegasus and Condor and go through the tutorial on your own
machineinstead of using one of thevirtual machines, thetutoria filesareavailableinthedoc/ t ut or i al directory of
the Pegasus source distribution. These fileswill need to be modified in several placesto fix the pathsto the usershome
directory (whichisassumedtobe/ home/ t ut ori al). Itisassumed that Pegasuswasinstalled from the RPM, so the
path to the Pegasusinstall isassumed to be/ usr . Condor should beinstalled in the "Personal Condor" configuration.
You will aso need a passwordless ssh key to enable SCP file transfers to/from localhost. Getting everything set up
correctly can be tricky, so we recommend getting started with one of the VMs if you are not familiar with Condor
and UNIX.

The remainder of this tutorial will assume that you have aterminal open to the directory where the tutoria files are
installed. If you are using one of the tutorial VMsthese files are located in the tutorial user's home directory / home/
tutorial.

Generating the Workflow

We will be creating and running a simple diamond-shaped workflow that |ooks like this:

Tutorial

Figure 2.1. Diamond Wor kflow

preprocess

findrange

findrange

f.e1 f.c2

analyze

In this diagram, the ovals represent computational jobs, the dog-eared squares are files, and the arrows are dependen-
cies.

Pegasusreadsworkflow descriptionsfrom DAX files. Theterm“DAX” isshort for “ Directed Acyclic Graphin XML".
DAX isan XML file format that has syntax for expressing jobs, arguments, files, and dependencies.

In order to createaDAX it isnecessary to write code for aDAX generator. Pegasus comeswith Perl, Java, and Python
libraries for writing DAX generators. In thistutorial we will show how to use the Python library.

The DAX generator for the diamond workflow isin thefilegener at e_dax. py. Look at the file by typing:

$ nore generate_dax. py

Tutorial

Tip

We will be using the nor e command to inspect severa filesin this tutorial. nor e is a pager application,
meaning that it splits text files into pages and displays the pages one at atime. Y ou can view the next page
of afile by pressing the spacebar. Type 'h' to get help on using nor e. When you are done, you can type
'q to close thefile.

The code has 5 sections:

1. A few system libraries and the Pegasus.DAX3 library are imported. The search path is modified to include the
directory with the Pegasus Python library.

2. The name for the DAX output fileis retrieved from the arguments.
3. A new ADAG object is created. Thisisthe main object to which jobs and dependencies are added.

4. Jobs and files are added. The 4 jobs in the diagram above are added and the 6 files are referenced. Arguments are
defined using strings and File objects. The input and output files are defined for each job. This is an important
step, as it allows Pegasus to track the files, and stage the data if necessary. Workflow outputs are tagged with
“transfer=true”.

5. Dependencies are added. These are shown as arrows in the diagram above. They define the parent/child relation-
ships between the jobs. When the workflow is executing, the order in which the jobs will be run is determined by
the dependenci es between them.

Generate aDAX file named di anond. dax by typing:

$./generate_dax. py di anond. dax
Creating ADAG ..

Addi ng preprocess job...

Adding | eft Findrange job...

Addi ng right Findrange job...

Addi ng Anal yze job...

Addi ng control flow dependencies...
Witing di anond. dax

The di anond. dax file should contain an XML representation of the diamond workflow. You can inspect it by
typing:

$ nore di anond. dax

Information Catalogs

There are three information catalogs that Pegasus uses when planning the workflow. These are the Site Catalog,
Transformation Catalog, and Replica Catal og.

The Site Catalog

The site catalog describes the sites where the workflow jobs are to be executed. Typically the sitesin the site catalog
describe remote clusters, such as PBS clusters or Condor pools. In this tutorial we assume that you have a Personal
Condor pool running on localhost. If you are using one of the tutorial VMs this has already been setup for you.

Thesitecatalogisinsi t es. xm :
$ nore sites.xn
<l-- The local site contains information about the submt host -->

<l-- The arch and os keywords are used to match binaries in the transformation catal og -->
<site handl e="local " arch="x86_64" os="LI NUX">

Tutorial

<!-- These are the paths on the submt host were Pegasus stores data -->
<l-- Scratch is where tenporary files go -->
<directory type="shared-scratch" path="/home/tutorial/run">
<file-server operation="all" url="file:///hone/tutorial/run"/>
</directory>
<l-- Storage is where pegasus stores output files -->
<directory type="Il ocal -storage" path="/hone/tutorial/outputs">
<file-server operation="all" url="file:///hone/tutorial/outputs"/>

</directory>

<l-- This profile tells Pegasus where to find the user's private key for SCP transfers -->
<profil e namespace="env" key="SSH PRI VATE_KEY">/ hone/tutorial/.ssh/id_rsa</profile>
</site>

There are two sites defined in the site catalog: “local” and “ PegasusVM”. The “local” siteis used by Pegasusto learn
about the submit host where the workflow management system runs. The “PegasusVM” site is the persona Condor
pool running on your (virtual) machine. In this case, the local site and the PegasusVM site refer to the same machine,
but they are logically separate as far as Pegasusis concerned.

The local site is configured with a “storage” file system that is mounted on the submit host (indicated by the file://
URL). Thisfile system is where the output data from the workflow will be stored. When the workflow is planned we
will tell Pegasus that the output siteis“local”.

The PegasusVM siteis configured with a“ scratch” file system accessible via SCP (indicated by the scp:// URL). This
file system is where the working directory will be created. When we plan the workflow we will tell Pegasus that the
execution siteis “PegasusVM”.

The local site also has an environment variable called SSH_PRIVATE_KEY that tells Pegasus where to find the
private key to use for SCP transfers. If you are running this tutorial on your own machine you will need to set up
a passwordless ssh key and add it to authorized_keys. If you are using the tutorial VM this has already been set up
for you.

Pegasus supports many different file transfer protocols. In this case the site catalog is set up so that input and output
files are transferred to/from the PegasusVM site using SCP. Since both the local site and the PegasusVM site are
actually the same machine, this configuration will just SCP files to/from local host, which is just a complicated way
to copy thefiles.

Finaly, the PegasusVM site is configured with two profiles that tell Pegasus that it is a plain Condor pool. Pegasus
supports many ways of submitting tasks to aremote cluster. In this configuration it will submit vanilla Condor jobs.

The Transformation Catalog

The transformation catalog describes al of the executables (caled “transformations’) used by the workflow. This
description includes the site(s) where they are located, the architecture and operating system they are compiled for,
and any other information required to properly transfer them to the execution site and run them.

For thistutorial, the transformation catalog isin thefilet c. dat :
$ nore tc.dat

This is the transformation catalog. It lists information about each of the
executabl es that are used by the workflow.

tr preprocess {
site PegasusVM {
pfn "/home/tutorial/bin/preprocess"
arch "x86_64"
os "linux"
type "I NSTALLED'

Tutorial

Thet c. dat file contains information about three transformations: preprocess, findrange, and analyze. These three
transformationsarereferenced in thediamond DA X. Thetransformation catal og indicatesthat all threetransformations
areinstalled on the PegasusVM site, and are compiled for x86_64 Linux.

The actual executable files are located in the bi n directory. All three executables are actually symlinked to the same
Python script. This script is just an example transformation that sleeps for 30 seconds, and then writes its own name
and the contents of all itsinput filesto all of its output files.

The Replica Catalog

Thefinal catalogisthe ReplicaCatalog. Thiscatal og tellsPegasuswhereto find each of theinput filesfor theworkflow.

All files in a Pegasus workflow are referred to in the DAX using their Logical File Name (LFN). These LFNs are
mapped to Physical File Names (PFNs) when Pegasus plans the workflow. This level of indirection enables Pegasus
to map abstract DAXes to different execution sites and plan out the required file transfers automatically.

The Replica Catalog for the diamond workflow isinther c. dat file:

$ nore rc. dat

This is the replica catalog. It lists information about each of the
input files used by the workfl ow

The format is:
LFN PFN pool =" SI TE"

f.a file:///hone/tutorial/input/f.a pool ="1 ocal "

This replica catalog contains only one entry for the diamond workflow’s only input file. This entry has an LFN of
“f.a" with a PFN of “file:///home/tutorial/input/f.a" and the file is stored on the local site, which implies that it will
need to be transferred to the PegasusVM site when the workflow runs. The Replica Catalog uses the keyword "pool"
to refer to the site. Don't be confused by this: the value of the pool variable should be the name of the site where the
fileislocated from the Site Catalog.

Configuring Pegasus

In addition to the information catalogs, Pegasus takes a configuration file that specifies settings that control how it
plans the workflow.

For the diamond workflow, the Pegasus configuration fileisrelatively simple. It only contains settingsto help Pegasus
find the information catalogs. These settings arein the pegasus. conf file:

$ nore pegasus. conf

This tells Pegasus where to find the Site Catal og

pegasus. cat al og. si te=XM.3

pegasus. catal og.site.fil e=sites.xnl

This tells Pegasus where to find the Replica Catal og

pegasus. catal og. replica=File

pegasus. catal og. replica.file=rc. dat

This tells Pegasus where to find the Transfornmation Catal og

pegasus. cat al og. t r ansf or mat i on=Text
pegasus. catal og. transformation. file=tc. dat

Planning the Workflow

The planning stage iswhere Pegasus mapsthe abstract DA X to one or more execution sites. The planning step includes:
1. Adding ajob to create the remote working directory

2. Adding stage-in jobs to transfer input data to the remote working directory

3. Adding cleanup jobs to remove data from the remote working directory when it is no longer needed

4. Adding stage-out jobs to transfer data to the final output location asit is generated

Tutorial

5. Adding registration jobs to register the data in areplica catalog

6. Task clustering to combine several short-running jobsinto asingle, longer-running job. Thisis done to make short-
running jobs more efficient.

7. Adding wrappersto the jobs to collect provenance information so that statistics and plots can be created when the
workflow is finished

Thepegasus- pl an command isused to plan aworkflow. Thiscommand takes quite afew arguments, so we created
apl an_dax. sh wrapper script that has al of the arguments required for the diamond workflow:

$ nmore pl an_dax. sh

The script invokes the pegasus- pl an command with arguments for the configuration file (- - conf), the DAX
file (- d), the submit directory (- - di r), the execution site (- - si t es), the output site (- 0) and two extra arguments
that prevent Pegasus from removing any jobs from the workflow (- - f or ce) and that prevent Pegasus from adding
cleanup jobs to the workflow (- - nocl eanup).

Top plan the diamond workflow invoke the pl an_dax. sh script with the path to the DAX file:

$./plan_dax. sh di anmond. dax
2012. 07.24 21:11:03. 256 EDT:

I have concretized your abstract workflow The workflow has been entered
into the workfl ow database with a state of "planned". The next step is to
start or execute your workflow. The invocation required is:

pegasus-run /honme/tutorial/submt/tutorial/pegasus/di anond/ run0001

2012.07.24 21:11:03.257 EDT: Time taken to execute is 1.103 seconds

Note the line in the output that starts with pegasus- r un. That is the command that we will use to submit the
workflow. The path it contains is the path to the submit directory where al of thefiles required to submit and monitor
the workflow are stored.

Thisiswhat the diamond workflow looks like after Pegasus has finished planning the DAX:

Figure 2.2. Diamond DAG

create_dir_diamond_0_hpcc

l \
stage_in_local_hpcc_0 |

preprocess_ID000001

Y
findrange_ID000002 findrange_|DO00003

\ l

analyze_|D000O04

l

stage_out_local_hpcc_2_0

For thisworkflow the only jobs Pegasus needs to add are a directory creation job, a stage-in job (for f.a), and a stage-
out job (for f.d). No registration jobs are added because all the filesin the DAX are marked register="false", and no
cleanup jobs are added because we passed the - - nocl eanup argument to pegasus- pl an.

Tutorial

Submitting the Workflow

Once the workflow has been planned, the next step is to submit it to DAGMan/Condor for execution. This is done
using the pegasus- r un command. This command takes the path to the submit directory as an argument. Run the
command that was printed by the pl an_dax. sh script:

$ pegasus-run submit/tutorial/pegasus/di anond/ run0001

File for submtting this DAG to Condor . di anond- 0. dag. condor . sub
Log of DAGWan debuggi ng nmessages : di anond- 0. dag. dagnman. out
Log of Condor I|ibrary output : di anond- 0. dag. | i b. out
Log of Condor library error messages : di anond-0.dag.lib.err
Log of the |ife of condor_dagman itself : di anond- 0. dag. dagnan. | og

Submi tting job(s).
1 job(s) submtted to cluster 19.

Your Workfl ow has been started and runs in base directory given bel ow
cd submit/tutorial/pegasus/di amond/ run0001

*** To monitor the workflow you can run ***

pegasus-status -1 submit/tutorial/pegasus/di anond/ run0001

*** To renmove your workflow run ***
pegasus-renove submt/tutorial/pegasus/di anond/ run0001

Monitoring the Workflow

After the workflow has been submitted you can monitor it using the pegasus- st at us command:

$ pegasus-status submit/tutorial/pegasus/di anond/ run0001
STAT | N_STATE JOB

Run 01:48 dianond-0

Run 00: 05 | -findrange_| DOO00002

Run 00: 05 \ _findrange_| DO0O00003

Summary: 3 Condor jobs total (R 3)

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %ONE
2 0 0 3 0 3 0 37.5

Summary: 1 DAG total (Running:1)

This command shows the workflow (diamond-0) and the running jobs (in the above output it shows the two findrange
jobs). It aso gives statistics on the number of jobs in each state and the percentage of the jobs in the workflow that
have finished successfully.

Use thewat ch command to continuously monitor the workflow:

$ watch pegasus-status submit/tutorial/pegasus/di anond/run0001

Y ou should see all of the jobsin the workflow run one after the other. After afew minutes you will see:

(no matching jobs found in Condor Q

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %DONE
0 0 0 0 0 8 0 100.0

Summary: 1 DAG total (Success:1)

That means the workflow is finished successfully. You cantypect r | - ¢ to terminate thewat ch command.

If theworkflow finished successfully you should seetheoutput filef . d intheout put directory. Thisfilewascreated
by the various transformations in the workflow and shows all of the executables that were invoked by the workflow:

$ nore output/f.d

/ home/ tutorial/bin/anal yze:

/ home/ tutorial/bin/findrange:

/ home/ tutorial/bin/preprocess:

This is the input file of the dianond workfl ow

Tutorial

/ home/ tutorial/bin/findrange:
/ home/ tut ori al / bi n/ preprocess:
This is the input file of the dianond workfl ow

Remember that the example transformations in this workflow just print their name to al of their output files and then
copy all of their input files to their output files.

Debugging the Workflow

In the case that one or more jobs fails, then the output of the pegasus- st at us command above will have a non-
zero value in the FAI LURE column.

Y ou can debug thefailureusing thepegasus- anal yzer command. Thiscommand will identify the jobsthat failed
and show their output. Because the workflow succeeded, pegasus- anal yzer will only show some basic statistics
about the number of successful jobs:

$ pegasus-anal yzer subnmit/tutorial/pegasus/di anond/run0001
pegasus-anal yzer: initializing...

****************************Sun-nary***************************

Total jobs 7 (100.00%
j obs succeeded 7 (100.00%
jobs failed : 0 (0.00%
jobs unsubnmitted : 0 (0.00%

If the workflow had failed you would see something like this:

$ pegasus-anal yzer subnit/tutorial/pegasus/di amond/ run0002
pegasus-anal yzer: initializing...

**************************Summry*************************************

Total jobs 7 (100.00%
j obs succeeded 2 (28.57%
jobs failed 1 (14.29%
jobs unsubmitted : 4 (57.14%

kkkkkkkkkkkkkkkkkkkk**Fqj | ad] ODS' det @i | S** %%k %k kkkkkkokkkokkkkkokkkokkkk

preprocess_| D0000001

| ast state: POST_SCRI PT_FAI LED
site: PegasusVM
submt file: preprocess_I DOO0O0001. sub
output file: preprocess_I DOO0O0001. out. 003
error file: preprocess_| DO000001. err. 003

----------------------- Task #1 - SUMMBIY-----------cccmmmmmm o

site . PegasusVM

host nanme : i p-10- 252- 31- 58. us- west - 2. conput e. i nt er nal
executable : /home/tutorial/bin/preprocess

argunents : -i f.a -0 f.bl -0 f.b2

exitcode : -128

working dir : -
------------- Task #1 - preprocess - |1DO000001 - stderr---------------

FATAL: The main job specification is invalid or mssing.

Inthisexample | removed thebi n/ pr epr ocess executable and re-planned/re-submitted the workflow (that iswhy
the command has run0002). The output of pegasus- anal yzer indicates that the preprocess task failed with an
error message that indicates that the executable could not be found.

Collecting Statistics

The pegasus- st ati sti cs command can be used to gather statistics about the runtime of the workflow and its
jobs. The-s al | argument tells the program to generate al statistics it knows how to calculate:

10

Tutorial

$ pegasus-statistics —s all submit/tutorial/pegasus/di anond/ run0001

KKK KKK KKK KKKk Kk kkkkkkkxk % GUMMARY ¥ ¥ ¥ F** sk kkkkkkkkkkkkkkkk Kk k k%

| egends

Workfl ow summary:

Summary of the workflow execution. It shows total

tasks/j obs/sub workflows run, how many succeeded/failed etc.
I'n case of hierarchical workflow the cal culation shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not conpleted etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total Run - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cunulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wal ltime fromthe start of the workfl ow execution to the
end as reported by the DAGVAN. In case of rescue dag the val ue
is the cumul ative of all retries.

Wor kf | ow cumul ative job wall tine:
The sumof the walltine of all jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workflow jobs (i.e SUBDAG and SUBDAX
jobs), the walltime value includes jobs fromthe sub workflows
as wel | .

Cunrul ative job walltime as seen fromsubnmit side:
The sumof the walltine of all jobs as reported by DAGVan.
This is simlar to the regular cunulative job walltine, but
i ncl udes job managenent overhead and delays. In case of job
retries the value is the cumulative of all retries. For workflows
havi ng sub workfl ow jobs (i.e SUBDAG and SUBDAX jobs), the
wal I 'time val ue includes jobs fromthe sub workflows as well.

B R R T S T T i R R R

Type Succeeded Failed |Inconplete Total Retries Total Run
Tasks 4 0 0 4 I] O 4

Jobs 7 0 0 7 || © 7

Sub Workf | ows 0 0 0 0 Il © 0

Wor kfl ow wal | tine: 3 mins, 25 secs, (205 s)
Wor kf | ow cumul ative job wall tine: 2 mins, 0 secs, (120 s)

Currul ative job walltime as seen fromsubnit side: 2 mins, 0 secs, (120 s)

Summary: submit/tutorial/pegasus/di anond/ run0001/stati stics/sumary.txt

hkkk ok kk k k%

The output of pegasus- st ati sti cs contains many definitions to help users understand what all of the values
reported mean. Among these are the total wall time of the workflow, which is the time from when the workflow was
submitted until it finished, and the total cumulative job wall time, which is the sum of the runtimes of all the jobs.

The pegasus-stati sti cs command also writes out several reportsin the st ati sti cs subdirectory of the
workflow submit directory:

$ I's submit/tutorial/pegasus/di anond/ run0001/ stati stics/

br eakdown. csv j obs. t xt summary. t xt time. txt
breakdown. t xt summary-tine.csv time-per-host.csv workfl ow csv
j obs. csv sunmary. csv tinme.csv wor kf | ow. t xt

Thefile br eakdown. t xt , for example, has min, max, and mean runtimes for each transformation:

$ nore submit/tutorial/pegasus/di anond/ run0001/ st ati stics/breakdown. t xt

| egends

Transformation - nanme of the transformation.

Count - the nunber of tinmes the invocations corresponding to
the transformati on was executed.

11

Tutorial

Succeeded - the count of the succeeded invocations correspondi ng

to the transfornation

Fail ed - the count of the failed invocations corresponding to

the transformation.

M n(sec) - the minimuminvocation runtime val ue corresponding to

the transformation.

Max(sec) - the maxi muminvocation runtime val ue corresponding to

the transformation.

Mean(sec) - the mean of the invocation runtinme corresponding to

the transformation.

Total (sec) - the cunul ative of invocation runtime corresponding to

the transformation.

alf 5ba03-a827-4d0a- 8d59- 9941cbf bd83d (di anond)

Transf or mati on Count Succeeded Failed Mn Max Mean Tot al
anal yze 1 1 0 30.008 30.008 30.008 30.008
dagman: : post 7 7 0 5.0 6.0 5.143 36.0
findrange 2 2 0 30.009 30.014 30.011 60.023
pegasus: : di rmanager 1 1 0 0.194 0.194 0.194 0.194
pegasus: :transfer 2 2 0 0.248 0.411 0.33 0. 659
preprocess 1 1 0 30.025 30.025 30.025 30. 025
Al

Transf or mati on Count Succeeded Failed Mn Max Mean Tot al
anal yze 1 30.008 30.008 30.008 30.008
dagman: : post 7 5.0 6.0 5.143 36.0
findrange 2 30.009 30.014 30.011 60.023

0.194 0.194 0.194 0.194
0. 248 0.411 0.33 0. 659
30.025 30.025 30.025 30.025

pegasus: : di rmanager 1
pegasus: :transfer 2
preprocess 1

PR NN R
ocooooo

In this case, because the example transformation sleeps for 30 seconds, the min, mean, and max runtimes for each of
the analyze, findrange, and preprocess transformations are all close to 30.

Workflow Dashboard

The Virtual Box image is also bundled with the Pegasus Service bundle.This is available as a separate project in
Github [https://github.com/pegasus-isi/pegasus-service]. The pegasus-service-server is developed in Python and uses
the Flask framework to implement the web interface. The users can then connect to this server using a browser to
monitor/debug workflows.

Note

The workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.

Currently, only the Virtual Box Tutorial image for 4.3.0 has the dashboard enabled. It is not enabled in the
EC2 and FutureGrid image.
By default, the server is configured to listen on all network interfaces on port 5000. A user can view the dashboard
on http://<IP_ADDRESS>:5000/

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service-server.

To access the workflow dashboard, in the Virtual BOX VM you can launch firefox by clicking the globe icon in the
top menu of the desktop. The home page for the dashboard is accessible at http://localhost:5000

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed. The home page lists only the top level workflows
(Pegasus supports hierarchical workflowsi.e. workflows within aworkflow). The rows in the table are color coded

¢ Green: indicates workflow finished successfully.

¢ Red: indicates workflow finished with afailure.

» Blue: indicates aworkflow is currently running.

12

https://github.com/pegasus-isi/pegasus-service
https://github.com/pegasus-isi/pegasus-service

Tutorial

Figure 2.3. Dashboard Home Page

"

Workflow Listing

Successful: 1 Running: 1

) ‘
| 8 Running W Failed @ Successful

Show results for:

- search:
Workflow Label < Submit Directory & State & Submitted On -

diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0003 Running Tue, 12 Nov 2013 14:39:22

diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0002 Failed Tue, 12 Nov 2013 14:11:11

diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0001 Successful Tue, 12 Nov 2013 14:05:49
Showing 1 to 3 of 3 entries F D ravi

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page a so displays pie charts showing the distribution of jobs based on status.

In addition, the details page displays atab listing al sub-workflows and their statuses. Additional tabs exist which list
information for al running, failed, and successful jobs.

Theinformation displayed for ajob depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

13

Tutoria

Figure 2.4. Dashboard Workflow Page

A | Workflow
Label diamond
Type root-wf
Progress Successful
Submit Host localhost.localdomain
User tutorial
Submit Directory /home/tutori it/tutorial diamond/run0001
‘Wall Time 3 mins 56 secs
Cumulative Wall Time 2 mins 2 secs
Job Status (Entire Workflow) Job Status (Per Workflow)

Unsubmitted: 0
F—\ Failed: 0

L ‘Successful: 7

8 unsubmited @ Failed Bl Successtul

Charts Statistics

Show ‘ entries

Job Name - Time Taken s
analyze 1D0000004 30 secs
create_dir_diamond_0_PegasusVM 0secs
findrange_|D0000002 30 secs
findrange_I|D0000003 30 secs
preprocess_1D0000001 30 secs
stage_in_local_PegasusVM_0_0 0 secs
stage_out_local_PegasusVM_2_0 0 secs

Showing 1 to 7 of 7 entries

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

Thejob details page a so showstab'sfor failed, and successful task invocations (Pegasus allows usersto group multiple
smaller task'sinto asingle job i.e. ajob may consist of one or more tasks)

Figure 2.5. Dashboard Job Description Page
=

M | Workflow | Job

Job Details
Label preprocess_ID0000001
Type Compute
Exit Code 0
Stdout Preview Preview
Stdout File preprocess_[D0000001.out.000
Stderr Preview Preview
Stderr File preprocess [D0000001.erT.000

m Successful

scarcr: [

Invocations - Time Taken &
1D0000001 30 secs

Showing 1 to 1 of 1 entries

14

Tutorial

Thetask invocation detail s page provides task specific information like task name, exit code, duration etc. Task details
differ from job details, as they are more granular in nature.

Figure 2.6. Dashboard Invocation Page

M | Workflow | Job | Task
Task Label ID0000001
Transformation preprocess

Executable /home/tutorial/bin/transformation.py
Arguments -ifa-ofbl-ofb2
Exit Code 0
Start Time Tue, 12 Nov 2013 14:07:08

Remote Duration 30 secs

Remote CPU Time 0 secs

The dashboard al so has web pages for workflow statistics and workflow charts, which graphically rendersinformation
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.
1. Workflow level statistics
2. Job breakdown statistics

3. Job specific statistics

Figure 2.7. Dashboard Statistics Page

M | Workflow | Statistics

Workflow Wall Time 3 mins 56 secs
Workflow Cumulative Job Wall Time 2 mins 2 secs
Cumulative Job Walltime as seen from Submit Side 2 mins
Workflow Retries 0

~ Workflow Statistics ‘

This Workflow

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 0 4
Jobs 7 0 0 7 0 7
Sub Workflows 0 0 0 0 0 0

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 0 4
Jobs 7 0 0
Sub Workflows 0 0 0 0 0 0

=
o
~

+ Job Breakdown Statistics

+ Job Statistics

The Charts page shows the following charts.
1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

15

Tutorial

Figure 2.8. Dashboard Plots - Jab Distribution

Invocation Distribution by Count

preprocess: 1 - » analyze: 1

\
pegasus::transfer: 2 \\
pegasus::dirmanager: 1

dagman::post: 7

P
findrange: 2 ~

| B analyze BB dagman:post @ findrange @ pegasus:dirmanager @l pegasus:transter Wl preprocess |

By Count By Time

The time chart shown bel ow shows the number of jobs/invocations in the workflow and their total runtime

Figure 2.9. Dashboard Plots - Time Chart

Time Chart by Jobs

2013-01-24 17: 20 secs

Runtime (secs)

2013-01-24 17

BB runtime [l Count

@By Jobs (By Invocations

The workflow gantt chart lays out the execution of the jobs in the workflow over time.

wnoy

16

Tutorial

Figure 2.10. Dashboard Plots - Workflow Gantt Chart

M | Workflow | Charts

Workflow Execution Gantt Chart

10 20 30 40 50 60 70 80 90 100 10 120 130 140 150 160 170 180 190 200 210 220 230 240
Timeline (Seconds)

| . Jon |

Conclusion

Congratulations! Y ou have completed the tutorial.

If you used Amazon EC2 or FutureGrid for this tutorial make sure to terminate your VM. Refer to the appendix for
more information about how to do this.

Refer to the other chaptersin this guide for more information about creating, planning, and executing workflowswith
Pegasus.

Please contact the Pegasus Users Mailing list at <pegasus- user s@ si . edu> if you need help.

17

Chapter 3. Installation

Prerequisites

Pegasus has afew dependencies:

¢ Java 1.6 or higher. Check with:

java -version

java version "1.6.0_07"

Java(TM 2 Runtinme Environnment, Standard Edition (build 1.6.0_07-164)
Java Hot Spot(TM dient VM (build 1.6.0_07-87, mi xed node, sharing)

¢ Python 2.4 or higher. Check with:

python -v
Pyt hon 2.6.2

e HTCondor (formerly Condor) 7.8 or higher. See http://www.cs.wisc.edu/htcondor/ for more information. Y ou
should be ableto run condor _q and condor _st at us.

Optional Software

¢ Globus4.0 or higher. Globusisonly needed if you want to run against grid sites or use GridFTP for datatransfers.
See http://www.globus.org/ for more information. Check Globus Installation

echo $GLOBUS_LCOCATI ON
/ path/to/ gl obus/install

Make sure you source the Globus environment
GLOBUS_LOCATI ON et c/ gl obus-user-env. sh
Check the setup by running:#

gl obus-version
5.2

0
Environment

To use Pegasus, you need to have the pegasus-* toolsin your PATH. If you have installed Pegasus from RPM/DEB
packages. the tools will be in the default PATH, in /usr/bin. If you have installed Pegasus from binary tarballs or
source, add the bin/ directory to your PATH.

Exanpl e for bourne shells:

export PATH=/ sone/install/pegasus-4. 3.0/ bin: $PATH

Note

Pegasus 4.x is different from previous versions of Pegasusin that it does not require PEGASUS HOME to
be set or sourcing of any environtment setup scripts.

If you want to use the DAX APIs, you might also need to set your PY THONPATH, PERL5LIB, or CLASSPATH.
The right setting can be found by using pegasus-config:

export PYTHONPATH=" pegasus-config --python’
export PERL5LI B="pegasus-config --perl"
export CLASSPATH=" pegasus-config --classpath’

18

http://www.cs.wisc.edu/htcondor/
http://www.globus.org/

Installation

Native Packages (RPM/DEB)

The preferred way to install Pegasus is with native (RPM/DEB) packages. It is recommended that you also install
HTCondor (formerly Condor) (yum [http://research.cs.wisc.edu/htcondor/yum/], debian [http://research.cs.wisc.edu/
htcondor/debian/]) from native packages.

RHEL / CentOS / Scientific Linux

Add the Pegasus repository to yum downloading the Pegasus repos file and adding it to / et ¢/ yum r epos. d/ .
For RHEL 5 based systemes:

wget -O /etc/yumrepos. d/ pegasus.repo http://downl oad. pegasus. i si . edu/ wrs/ downl oad/ r hel / 5/
pegasus. r epo

For RHEL 6 based systems:

wget -O /etc/yumrepos. d/ pegasus.repo http://downl oad. pegasus. i si . edu/ wrs/ downl oad/ r hel / 6/
pegasus. r epo

Search for, and install Pegasus:

yum sear ch pegasus

pegasus. x86_64 : Workfl ow managenent system for Condor, grids, and clouds
yuminstall pegasus

Runni ng Transacti on

Installing : pegasus

Instal | ed:

pegasus :4.3.0-1

Conpl et e!

Debian

To be ableto install and upgrade from the Pegasus apt repository, you will have to trust the repository key. Y ou only
need to add the repository key once:

gpg --keyserver pgp.nit.edu --recv-keys 81C2A4AC
gpg -a --export 81C2A4AC | apt-key add -

Add the Pegasus apt repository to your / et ¢/ apt / sour ces. | i st file:
deb http://downl oad. pegasus. i si . edu/ wrs/ downl oad/ debi an wheezy main
Install Pegasus with apt-get :

apt-get update

apt-get install pegasus

Pegasus from Tarballs

The Pegasus prebuild tarballs can be downloaded from the Pegasus Download Page [http://pegasus.isi.edu/down-
loads].

Use these tarballs if you already have HTCondor installed or prefer to keep the HTCondor installation separate from
the Pegasus installation.

¢ Untar the tarball
tar zxf pegasus-*.tar.gz
« include the Pegasus bin directory in your PATH

export PATH=/ pat h/ t o/ pegasus- 4. 3. 0: $PATH

19

http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads

Chapter 4. Creating Workflows
Abstract Workflows (DAX)

The DAX isadescription of an abstract workflow in XML format that is used as the primary input into Pegasus. The
DAX schema is described in dax-3.4.xsd [http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd] The docu-
mentation of the schema and its elements can be found in dax-3.4.html [http://pegasus.isi.edu/wms/docs/schemas/
dax-3.4/dax-3.4.html].

A DAX can be created by al users with the DAX generating API in Java, Perl, or Python format

Note
We highly recommend using the DAX API.

Advanced users who can read XML schema definitions can generate a DAX directly from a script
The sample workflow below incorporates some of the elementary graph structures used in all abstract workflows.
« fan-out, scatter, and diverge all describe the fact that multiple siblings are dependent on fewer parents.
The example shows how the Job 2 and 3 nodes depend on Job 1 node.
« fan-in, gather, join, and conver ge describe how multiple siblings are merged into fewer dependent child nodes.
The example shows how the Job 4 node depends on both Job 2 and Job 3 nodes.
« serial execution implies that nodes are dependent on one another, like pearls on a string.

« parallel execution implies that nodes can be executed in parallel

20

http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html

Creating Workflows

Figure 4.1. Sample Workflow

Required
Input

Job 2 Job 3

findrange findrange

Job 4

analyse

The example diamond workflow consists of four nodes representing jobs, and are linked by six files.

* Required input files must be registered with the Replica catalog in order for Pegasusto find it and integrate it into
the workflow.

« Leaf filesareaproduct or output of aworkflow. Output files can be collected at alocation.

e The remaining files al have lines leading to them and originating from them. These files are products of some
job steps (lines leading to them), and consumed by other job steps (lines leading out of them). Often, these files
represent intermediary results that can be cleaned.

There are two main ways of generating DAX's

1. Using aDAX generating API in Java, Perl or Python.

Note: We recommend this option.
2. Generating XML directly from your script.

Note: This option should only be considered by advanced users who can also read XML schema definitions.

One example for aDAX representing the example workflow can look like the following:

21

Creating Workflows

<?xm version="1.0" encodi ng="UTF-8"?>
<!-- generated: 2010-11-22T22:55:08Z -->
<adag xm ns="http://pegasus.isi.edu/ schema/ DAX"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM-Schera- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/ DAX http://pegasus. i si.edu/ schema/

dax- 3. 2. xsd"
versi on="3. 2" nane="di anond" index="0" count="1">
<l-- part 2: definition of all jobs (at |east one) -->
<j ob namespace="di anbnd" nane="preprocess" version="2.0" id="1D000001">
<argument >-a preprocess -T60 -i <file name="f.a" /> -0 <file name="f.bl" /> <file nanme="f.b2" /
></ ar gunent >
<uses nane="f.b2" |ink="output" register="false" transfer="false" />
<uses nane="f.bl" |ink="output" register="false" transfer="false" />
<uses nane="f.a" |ink="input" />
</j ob>
<j ob namespace="di anond" nane="fi ndrange" version="2.0" id="1D000002">
<argument>-a findrange -T60 -i <file nane="f.bl" /> -0 <file nane="f.cl" /></argunent>
<uses nane="f.bl" |ink="input" register="false" transfer="fal se" />
<uses nane="f.cl" |link="output" register="false" transfer="false" />
</j ob>
<j ob namespace="di anond" nane="fi ndrange" version="2.0" id="1D000003">
<argument>-a findrange -T60 -i <file nane="f.b2" /> -0 <file nane="f.c2" /></argunent>
<uses nane="f.c2" |link="output" register="false" transfer="false" />
<uses nane="f.b2" |ink="input" register="false" transfer="fal se" />
</j ob>
<j ob namespace="di anond" nane="anal yze" version="2.0" id="1D000004" >
<argument >-a anal yze -T60 -i <file name="f.cl" /> <file nane="f.c2" /> -0 <file nane="f.d" /></
ar gunent >
<uses nane="f.c2" |link="input" register="false" transfer="fal se" />
<uses nane="f.d" |ink="output" register="false" transfer="true" />
<uses nane="f.cl" link="input" register="false" transfer="fal se" />
</j ob>
<l-- part 3: list of control-flow dependencies -->

<child ref="1D000002">
<parent ref="1D000001" />

</ child>

<child ref="1D000003">
<parent ref="1D000001" />

</ child>

<child ref="1D000004" >
<parent ref="1D000002" />
<parent ref="1D000003" />

</ child>

</ adag>

The example workflow representation in form of a DAX requires external catalogs, such as transformation catalog
(TC) to resolve the logical job names (such as diamond::preprocess:2.0), and a replica catalog (RC) to resolve the
input filef . a. The above workflow defines the four jobsjust like the example picture, and the files that flow between
the jobs. The intermediary files are neither registered nor staged out, and can be considered transient. Only the final

result filef . d is staged out.

Data Discovery (Replica Catalog)

The Replica Catalog keeps mappings of logical file ids/names (LFN's) to physical file ids/names (PFN's). A single
LFN can map to several PFN's. A PFN consists of a URL with protocol, host and port information and apath to afile.
Along with the PFN one can also store additional key/value attributes to be associated with a PFN.

Pegasus supports the following implementations of the Replica Catal og.
1. File(Default)

2. Regex

3. Directory

4. Databasevia JDBC

5. Replica L ocation Service

* RLS

22

Creating Workflows

File

Regex

« LRC

6. MRC

In this mode, Pegasus queries afile based replica catalog. Thefileformat isasimple multicolumn format. It is neither
transactionally safe, nor advised to usefor production purposesin any way. Multiple concurrent instanceswill conflict
with each other. The site attribute should be specified whenever possible. The attribute key for the site attribute is
" pool".

LFN PFN

LFN PFN a=b [..]

LFN PFN a="b" [..]

"LEN w LWS" "PFN w LWS" [..]

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equal sign, it must be
quoted and escaped. The same conditions apply for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be quoted. The LFN sentiments about quoting apply.

Thefile mode is the Default mode. In order to use the File mode you have to set the following properties
1. pegasus.catalog.replica=File

2. pegasus.catalog.replicafile=<path to the replica catalog file>

In this mode, Pegasus queries afile based replica catalog. Thefileformat isasimple multicolumn format. It is neither
transactionally safe purposesin any way. Multiple concurrent instances will conflict with each other. The site attribute
should be specified whenever possible. The attribute key for the site attributeis " pool" .

In addition users can specifiy regular expression based LFN's. A regular expression based entry should be qualified
with an attribute named 'regex’. The attribute regex when set to true identifies the catalog entry as aregular expression
based entry. Regular expressions should follow Javaregular expression syntax.

For example, consider areplica catalog as shown below.

Entry 1 refers to an entry which does not use a resular expressions. This entry would only match a file named 'f.d,
and nothing else.

Entry 2 referes to an entry which uses a regular expression. In this entry f.a referes to files having name as f<any-
character>ai.e. fag, f.a, fOa, etc.

#1

f.a file:///Volunes/data/input/f.a pool ="local"

#2

f.a file:///Volunes/datal/input/f.a pool="Iocal" regex="true"

Regular expression based entries al so support substitutions. For example, consider the regular expression based entry
shown below.

Entry 3 will match files with name alpha.csv, aphatxt, alphaxml. In addition, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being looked up is apha.csv, the PFN for the file would be generated as file:///Vol-
umes/data/input/csv/apha.csv. Similary if the file being lookedup was alpha.csv, the PFN for the file would be gen-
erated as file:///V olumes/datalinput/xml/alphaxml i.e. The section [0], [1] will be replaced. Section [0O] refers to the
entire string i.e. aphacsv. Section [1] refers to a partial match in the input i.e. csv, or txt, or xml. Users can utilize
as many sections as they wish.

#3

23

Creating Workflows

al pha\. (csv|txt|xm) file:///Volunes/data/input/[1]/[0] pool ="l ocal " regex="true"

Directory

In this mode, Pegasus does a directory listing on an input directory to create the LFN to PFN mappings. The directory
listing is performed recursively, resulting in deep L FN mappings. For example, if aninput directory $input is specified
with the following structure

$i nput
$input/f.1
$input/f.2

$i nput / D1

$i nput/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally

f.1 file://$input/f.1 pool="1ocal"
f.2 file://$input/f.2 pool="1ocal"
D1/f.3 file://$input/Dl/f.3 pool ="Iocal "

Users can optionally specify additional properties to configure the behavior of thisimplementation.
1. pegasus.catalog.replica.directory.site to specify a site attribute other than local to associate with the mappings.

2. pegasus.catalog.replica.directory.flat.Ifn to specify whether you want deep LFN's to be constructed or not. If not
specified, value defaults to falsei.e. deep Ifn's are constructed for the mappings.

3. pegasus.catalog.replica.directory.url.prefix to associate aURL prefix for the PFN's constructed. If not specified,
the URL defaultsto file://

Tip

pegasus-plan has --input-dir option that can be used to specify an input directory on the command line.
This allows you to specify a separate replica catal og to catalog the locations of output files.

JDBCRC

In thismode, Pegasus queriesa SQL based replicacatalog that is accessed viaJDBC. The sgl schema& rsquor;sfor this
catalog can befound at SPEGASUS_HOM E/sgl directory. Youwill havetoinstall the schemainto either PostgreSQL
or MySQL by running the appropriate commands to load the two schemas cr eate-X X-init.sgl and create-XX-rc.sql
where XX is either my (for MySQL) or pg (for PostgreSQL)

To use IDBCRC, the user additionally needs to set the following properties
1. pegasus.catalog.replica JDBCRC
2. pegasus.catalog.replica.db.driver mysgl

3. pegasus.catalog.replica.db.url=<j dbc url to the database> e.g jdbc:nysql://data-
base- host . i si . edu/ dat abase- nanme

4. pegasus.catalog.replica.db.user=<dat abase user>
5. pegasus.catalog.replica.db.password=<dat abase passwor d>

Users can use the command line client pegasus-rc-client to interface to query, insert and remove entries from the
JDBCRC backend.

Replica Location Service

Replica Location Service (RLS) is a distributed replica catalog, that ships with Globus. There is an index service
called Replica Location Index (RLI) to which 1 or more Loca Replica Catalog (LRC) report. Each LRC can contain
all or asubset of mappings.

24

Creating Workflows

RLS

LRC

MRC

Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

In this mode, Pegasus queries the central RLI to discover in which LRC& rsquor;s the mappings for a LFN reside.
It then queries the individual LRC& rsquor;s for the PFN’s. To use this mode the following properties need
to be set:

1. pegasus.catalog.replica=RLS

2. pegasus.catalog.replicaurl=<url to the gl obus LRC>

This mode is availabe If the user does not want to query the RLI (Replica Location Index), but instead wishes to
directly query asingle Local Replica Catalog. To use the LRC mode the follow properties need to be set

1. pegasus.catalog.replica=LRC
2. pegasus.catalog.replicaurl=<ur|l to the gl obus LRC

Details about Globus Replica Catalog and LRC can be found at http://www.globus.org/toolkit/data/rls/

Note

Replica Location Service is no longer officially supported by Globus.

In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid.
Touseit set

1. pegasus.catalog.replica=MRC

Each associated replica catalog can be configured via properties as follows.

The user associates avariable name referred to as [value] for each of the catalogs, where [value] isany legal identifier
(concretely [A-Za-Z][_A-Za-z0-9]*) For each associated replica catal ogs the user specifies the following properties

« pegasus.catalog.replica.mrc.[value] - specifies the type of replica catalog.

« pegasus.catalog.replica.mrc.[value].key - specifies a property name key for a particular catalog
For example, to query two Ircs at the same time specify the following:

« pegasus.catalog.replicamrc.lrcl=LRC

¢ pegasus.catalog.replicamrc.irclurl=<url to the 1st gl obus LRC

* pegasus.catalog.replicamrc.lrc2=LRC

¢ pegasus.catalog.replicamrc.Irc2.url=<url to the 2nd globus LRC>

In the above examplelrcl and Irc2 are any valid identifier names and url is the property key that needed to be
specified.

Replica Catalog Client pegasus-rc-client

The client used to interact with the Replica Catal ogs is pegasus-rc-client. The implementation that the client talks to
is configured using Pegasus properties.

25

http://www.globus.org/toolkit/data/rls/
http://www.globus.org/toolkit/data/rls/

Creating Workflows

Lets assume we create afile f.ain your home directory as shown below.

$ date > $HOME/f. a

We now need to register thisfilein the File replicacatalog located in $HOM E/r ¢ using the pegasus-rc-client. Replace
the gsiftp://url with the appropriate parameters for your grid site.

$ rc-client -Dpegasus.catal og.replica=File -Dpegasus.catalog.replica.file=$HOVE/rc insert \
f.a gsiftp://sonehost:port/path/to/filel/f.a pool=local

You may first want to verify that the file registeration is in the replica catalog. Since we are using a File catalog we
can look at the file SHOME/rc to view entries.

$ cat $HOWE/ rc

file-based replica catal og: 2010-11-10T17:52: 53. 405-07: 00
f.a gsiftp://sonehost:port/path/to/filel/f.a pool=local

The above line shows that entry for file f.a was made correctly.

Y ou can also use the pegasus-r c-client to look for entries.

$ pegasus-rc-client -Dpegasus.catal og.replica=File -Dpegasus.catal og.replica.file=$HOVE/ rc | ookup
LFN f.a

f.a gsiftp://sonehost:port/path/to/filelf.a pool=local

Resource Discovery (Site Catalog)

XML4

The Site Catalog describes the compute resources (which are often clusters) that we intend to run the workflow up-
on. A site is a homogeneous part of a cluster that has at least a single GRAM gatekeeper with a jobmanager -fork
andjobmanager-<scheduler> interface and at least one gridftp server along with a shared file system. The GRAM
gatekeeper can be either WS GRAM or Pre-WS GRAM . A site can also be a condor pool or glidein pool with a shared
file system.

The Site Catalog can be described as an XML . Pegasus currently supports two schemas for the Site Catalog:

1. XML 4(Default) Corresponds to the schema described here [http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/
sc-4.0.html].

2. XML 3(Deprecated) Corresponds to the schema described here [http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/
sc-3.0.html]

Thisis the default format for Pegasus 4.2. This format allows defining filesystem of shared as well aslocal type on
the head node of the remote cluster as well as on the backend nodes

26

http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html

Creating Workflows

Figure 4.2. Schema Image of the Site Catalog XML 4

Each site supports watous
(usually twa) jobmanagers,

L.
=
=
m
=
=

o
]

=ite

Describes a single site -a i
q - replica-catalog

=
&

---------------------------- -._‘:? -1
0.
Each site may report to
roultiple LRCs,
--iEpruﬁIE E_
____________ 'n'.‘:,.]
0.«

Sdrinistrative prafile
defaults associaked with a
site,

Below is an example of the XML4 site catalog

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/workflows/scratch">
<file-server operation="all" url="file:///tnp/workflows/scratch"/>
</directory>
<directory type="l ocal -storage" path="/tnp/workfl ows/ out puts">
<file-server operation="all" url="file:///tnp/workfl ows/outputs"/>
</directory>
</site>

<site handl e="condor_pool" arch="x86_64" os="LI NUX">

<grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" schedul er="PBS"
j obtype="auxillary"/>
<grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" schedul er="PBS" jobtype="conpute"/>
<directory type="shared-scratch" path="/lustre">
<file-server operation="all" url="gsiftp://smarty.isi.edu/lustre"/>

</directory>
<replica-catalog type="LRC' url="rlsn://smarty.isi.edu"/>

</site>

<site handl e="staging_site" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/data">
<file-server operation="put" url="scp://obelix.isi.edu/data"/>
<file-server operation="get" url="http://obelix.isi.edu/data"/>
</directory>
</site>

</sitecatal og>

Described below are some of the entriesin the site catalog.

27

Creating Workflows

XML3

1. site- A siteidentifier.

2. Directory - Info about filesystems Pegasus can use for storing temporary and long-term files. There are severd

configurations:

« shared-scratch - This describe a scratch file systems. Pegasus will use this to store intermediate data between
jobs and other temporary files.

« local-storage- Thisdescribesthe storagefile systems (long term). Thisisthe directory Pegasuswill stage output
filesto.

« local-scratch - This describe the scratch file systems available locally on a compute node. This parameter is not
commonly used and can be left unset in most cases.

For each of the directories, you can specify access methods. Allowed methods are put, get, and all which means
both put and get. For each mehod, specify a URL including the protocol. For example, if you want share datavia
http using the /var/www/staging directory, you can use scp://hostname/var/www for the put element and http://
hostname/staging for the get element.

. arch,os,0srelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,

OSVERSION and GLIBC are optiona
ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AlX, PPC.

OS can have one of thefollowing valuesLINUX,SUNOS,MACOSX. Thedefault valuefor sysinfoif none specified
isX86::LINUX

. replica-catalog - URL for alocal replicacatalog (LRC) to register your filesin. Only used for RLSimplementation

of the RC. Thisis optional

5. Profiles- One or many profiles can be attached to a pool.

One example is the environments to be set on aremote pool.

To use this site catal og the follow properties need to be set:

1. pegasus.catalog.sitefilee<path to the site catalog file>

Warning

Thisformat is now deprecated in favor of the XML4 format. If you are till using the File format you should
convert it to XML4 format using the client pegasus-sc-converter

Thisis the default format for Pegasus 3.0. This format allows defining filesystem of shared as well aslocal type on
the head node of the remote cluster as well as on the backend nodes

28

Creating Workflows

Figure 4.3. Schema Image of the Site Catalog XML 3

D L]
Each site suppoits various
(usually two) jobmanagers,

head-fs [

L

site - worker-fs

Describes a single site

1
! L]
I 0.
\ Each site may report to
v multiple LR Cs,
1
1 I_E ——————
L -, profile)

o o o e = 1

| S _'*? —

0.

Administrative profile
defaults associated with a
site,

Below is an example of the XML3 site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://pegasus. i si.edu/ schema/sitecatal og
http://pegasus.isi.edu/ schema/sc-3.0.xsd" version="3.0">
<site handle="isi" arch="x86" os="LINUX" osrel ease="" osversion= glibc="">
<grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" schedul er ="PBS"

wn

<grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" schedul er ="PBS"
<head- f s>
<scrat ch>
<shar ed>

<file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu

nmount - poi nt ="/ nfs/scratch01" />
<i nternal - mount - poi nt nount - poi nt ="/ nfs/scratch01"/>
</ shar ed>
</ scratch>
<st or age>
<shar ed>

<file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu

nount - poi nt ="/ export s/ storage0l"/>
<i nt ernal - mount - poi nt nount - poi nt ="/ export s/ st orage01"/ >
</ shar ed>
</ st or age>
</ head- f s>
<replica-catalog type="LRC' url="rlsn://smarty.isi.edu"/>
<profil e namespace="env" key="PEGASUS HOVE" >/nfs/vdt/pegasus</profile>
<profil e namespace="env" key="CGLOBUS_LOCATI ON' >/vdt/ gl obus</profile>
</site>
</sitecatal og>

Described below are some of the entriesin the site catal og.

1. site- A siteidentifier.

j obtype="auxillary"/

j obtype="conpute"/>

29

Creating Workflows

2. replica-catalog - URL for alocal replicacatalog (LRC) to register your filesin. Only used for RLSimplementation
of the RC. Thisis optional

3. File Systems - Info about filesystems mounted on the remote clusters head node or worker nodes. It has several
configurations

« head-fs/scratch - This describe the scratch file systems (temporary for execution) available on the head node
« head-fs/storage - This describes the storage file systems (long term) available on the head node

« worker-fs/scratch - This describe the scratch file systems (temporary for execution) available on the worker
node

« worker-fs/storage - This describes the storage file systems (long term) available on the worker node

Each scratch and storage entry can contain two sub entries,

* SHARED for shared file systems like NFS, LUSTRE etc.

« LOCAL for local file systems (loca to the node/machine)

Each of the filesystems are defined by used a file-server element. Protocol defines the protocol uses to access the
files, URL defines the url prefix to obtain the files from and mount-point is the mount point exposed by the file

server.

Along with this an internal-mount-point needs to defined to access the files directly from the machine without any
file servers.

4. arch,os,0srelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optiona

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AlX, PPC.

OS can have one of thefollowing valuesLINUX,SUNOS,MACOSX. Thedefault valuefor sysinfoif none specified
isX86::LINUX

5. Profiles- One or many profiles can be attached to a pool.
One example is the environments to be set on aremote pool.
To use this site catalog the follow properties need to be set:

1. pegasus.catalog.sitefile=<path to the site catalog fil e>

Site Catalog Client pegasus-sc-client

The pegasus-sc-client can be used to generate asite catal og for Open Science Grid (OSG) by querying their Monitoring
Interface likes VORS or OSGMM. See pegasus-sc-client --help for more details

Site Catalog Converter pegasus-sc-converter

Pegasus 4.2 by default now parses Site Catal og format conforming to the SC schema 4.0 (XM L4) available here [http://
pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd] and is explained in detail in the Catalog Properties section of
Running Workflows.

Pegasus 4.2 comes with a pegasus-sc-converter that will convert users old site catalog (XML3) to the XML4 format.
Sample usageis given below.

$ pegasus-sc-converter -i sanple.sites.xm -1 XM.3 -0 sanple.sites.xm 4 -O XM.4

2010. 11. 22 12: 55: 14. 169 PST: Witten out the converted file to sanple.sites.xm 4

To use the converted site catal og, in the properties do the following:

30

http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd

Creating Workflows

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML

2. point pegasus.catalog.site.file to the converted site catalog

Executable Discovery (Transformation Cataloq)

The Transformation Catalog maps logical transformations to physical executables on the system. It also provides
additional information about the transformation asto what system they are compiled for, what profiles or environment
variables need to be set when the transformation isinvoked etc.

Pegasus currently supports two implementations of the Transformation Catalog
1. Text: A multiline text based Transformation Catalog (DEFAULT)

2. File: A simple multi column text based Transformation Catalog

3. Database: A database backend (MySQL or PostgreSQL) viaJDB

In this guide we will look at the format of the Multiline Text based TC.

MultiLine Text based TC (Text)

The multileline text based TC isthe new default TC in Pegasus. Thisformat allows you to define the transformations

The file is read and cached in memory. Any modifications, as adding or deleting, causes an update of the memory
and hence to the file underneath. All queries are done against the memory representation. The file sample.tc.text in
the etc directory contains an example

tr exanple::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

profile env "APP_HOME" "/tnp/ nyscratch”
profile env "JAVA HOME" "/opt/javall.6"

site isi {
profile env "HELLo0" "WORLD"
profile condor "FOO' "bar"
profile env "JAVA HOME" "/bin/java.1.6"
pfn "/path/tol/ keg"
arch "x86"
os "linux"
osrel ease "fc"
osversion "4"
type "I NSTALLED"

si

te wind {
profile env "CPATH' "/usr/cpath"
profile condor "universe" "condor"
pfn "file:///path/tol keg"
arch "x86"
os "linux"
osrel ease "fc"
osversion "4"
type " STAGEABLE"
}
}

The entriesin this catalog have the following meaning

1. tr tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are op-
tional.)

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally aurl (file:/// or http:// or gridftp://) if of type STAGEABLE

31

Creating Workflows

. site- The site identifier for the site where the transformation is available

. type - The type of transformation. Whether it is linstalled ("INSTALLED") on the remote site or is availabe to

stage ("STAGEABLE").

. arch, os, osrelease, osver sion - The arch/os/osrel ease/osversion of the transformation. osrel ease and osversion are

optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
isx86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

. Profiles- One or many profiles can be attached to atransformation for all sites or to atransformation on aparticular

site.

To use thisformat of the Transformation Catalog you need to set the following properties

1

2.

pegasus.catalog.transfor mation=Text

pegasus.catalog.transformation.filee<pat h to the transformation catalog file>

Singleline Text based TC (File)

Warning

This format is now deprecated in favor of the multiline TC. If you are till using the single line TC you
should convert it to multiline using the tc-converter client.

The format of thethis TC is as follows.

#site logicaltr physicaltr type system profiles(NS::KEY="VALUE")

sitel sys::date:1.0 /usr/bin/date |NSTALLED I NTEL32::LINUX: FC4.2:3.6 ENV::PATH="/usr/
bi n"; PEGASUS_HOVE="/usr/| ocal / pegasus"

The system and profile entries are optional and will use default valuesif not specified. The entries in the file format
have the following meaning:

1

2.

site- A siteidentifier.

logicaltr - The logical transformation name. The format is NAMESPACE::NAME:VERSION where NAMES-
PACE and NAME are optional.

. physicaltr - The physical transformation path or URL.

If the transformation type is INSTALLED then it needs to be an absolute path to the executable. If the type is
STAGEABLE then the path needsto beaHTTP, FTP or gsiftp URL

. type - The type of transformation. Can have on of two values

¢ INSTALLED: This meansthat the transformation is installed on the remote site

¢ STAGEABLE: This means that the transformation is available as a static binary and can be staged to aremote
site.

. system - The system for which the transformation is compiled.

The formation of the sytem is ARCH::0S:0SVERSION:GLIBC where the GLIBC and OS VERSION are op-
tional. ARCH can have one of the following values INTEL32, INTEL64, SPARCV7, SPARCV9, AlX, AMD64.
OS can have one of the following values LINUX,SUNOS. The default value for system if none specified is
INTEL32::LINUX

. Profiles- Theprofilesassociated with the transformation. For indepth information about profilesand their priorities

read the Profile Guide.

32

Creating Workflows

The format for profiles is NS:KEY="VALUE" where NS is the namespace of the profile eg.
Pegasus,condor,DAGMan,env,globus. The key and value can be any strings. Remember to quote the value with
double quotes. If you need to specify several profilesyou can do it in severa ways

¢ NSL:KEY1="VALUEl" KEY2="VALUE2";NS2::KEY3="VALUE3" KEY4="VALUE4"

Thisisthe most optimized form. Multiple key values for the same namespace are separated by acomma”," and
different namespaces are separated by asemicolon ;"

e NS1:KEY1="VALUE1";NS1::KEY2="VALUE2";NS2::KEY 3="VALUE3";NS2::KEY 4="VALUE4"
You can also just repeat the triple of NS::KEY="VALUE" separated by semicolons for a simple format;
To use thisformat of the Transformation Catalog you need to set the following properties
1. pegasus.catalog.transformation=File

2. pegasus.catalog.transformation.filee<path to the transfornmati on catalog fil e>

Database TC (Database)

The database TC alows you to use arelational database. To use the database TC you need to have installed aMySQL
or PostgreSQL server. The schemafor the databaseisavailablein SPEGASUS HOME/sql directory. Y ou will haveto
install the schemainto either PostgreSQL or MySQL by running the appropriate commands to load the two scheams
create-XX-init.sql and create-XX-tc.sql where XX is either my (for MySQL) or pg (for PostgreSQL)

To use the Database TC you need to set the following properties

1. pegasus.catalog.transformation.db.driver=MySQL | Postgres

2. pegasus.catalog.transformation.db.url=<j dbc url to the databse>
3. pegasus.catalog.transformation.db.user=<dat abase user >

4. pegasus.catalog.transformation.db.password=<dat abase passwor d>

TC Client pegasus-tc-client

We need to map our declared transformations (preprocess, findranage, and analyze) from the example DAX above
to asimple "mock application” name "keg" ("canonical example for the grid") which reads input files designated by
arguments, writes them back onto output files, and produces on STDOUT a summary of where and when it was run.
Keg ships with Pegasus in the bin directory. Run keg on the command line to see how it works.

$ keg -0 /dev/fd/1

Ti mest anp Today: 20040624T054607-05: 00 (1088073967.418; 0. 022)
Applicationnane: keg @10.10.0.11 (VPN

Current Workdir: /home/uni que-name

Systemenvi ronm : i686-Linux 2.4.18-3

Processor Info.: 1 x Pentiumlll (Coppermine) @797.425

Qut put Filename: /dev/fd/1

Now we need to map all 3 transformations onto the "keg" executable. We place these mappingsin our File transfor-
mation catalog for site clusl.

Note

In earlier version of Pegasus users had to define entries for Pegasus executables such as transfer, replica
client, dirmanager, etc on each site as well as site "local". Thisis no longer required. Pegasus versions 2.0
and later automatically pick up the pathsfor these binariesfrom the environment profile PEGASUS HOME
set in the site catalog for each site.

A single entry needs to be on one line. The above exampleisjust formatted for convenience.

33

Creating Workflows

Alternatively you can al so use the pegasus-tc-client to add entriesto any implementation of the transformation catal og.
The following example shows the addiition the last entry in the File based transformation catalog.

$ pegasus-tc-client -Dpegasus.catal og.transformati on=Text \

- Dpegasus. catal og. transfornmation.fil e=$HOME/tc -a -r clusl -I black::analyze:1.0 \

-p gsiftp://clusl.comopt/nfs/vdt/pegasus/bin/keg -t STAGEABLE -s | NTEL32::LINUX \

-e ENV:: KEY3="VALUE3"

2007.07.11 16:12:03.712 PDT: [INFQ Added tc entry sucessfully

To verify if the entry was correctly added to the transformation catalog you can use the pegasus-tc-client to query.

$ pegasus-tc-client -Dpegasus.catal og.transfornmation=File \
- Dpegasus. catal og.transformation.fil e=$HOVE/ tc -q -P -1 bl ack::analyze:1.0

#RESI D LTX PFN TYPE SYSI NFO

clusl bl ack: : anal yze: 1.0 gsiftp://clusl. com opt/nfs/vdt/pegasus/bin/keg
STAGEABLE | NTEL32: : LI NUX

TC Converter Client pegasus-tc-converter

Pegasus 3.0 by default now parses afile based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sanple.tc.data -1 File -o sanple.tc.text -O Text
2010.11.22 12:53:16. 661 PST: Successfully converted Transformation Catalog fromFile to Text

2010.11.22 12:53: 16. 666 PST: The output transfomation catalog is in file /Ifsl/software/install/
pegasus/ pegasus- 3. 0. Ocvs/ et c/ sanpl e. tc. t ext

To use the converted transformation catal og, in the properties do the following:
1. unset pegasus.catal og.transformation or set pegasus.catal og.transformation to Text

2. point pegasus.catal og.transformation.file to the converted transformation catal og

Chapter 5. Running Workflows
Executable Workflows (DAG)

The DAG is an executable (concrete) workflow that can be executed over avariety of resources. When the workflow
tasks are mapped to multiple resources that do not share a file system, explicit nodes are added to the workflow for
orchestrating data. transfer between the tasks.

When you take the DAX workflow created in Creating Workflows, and plan it for asingle remote grid execution, here
asite with handle hpcc, and plan the workflow without clean-up nodes, the following concrete workflow is built:

Figure5.1. Black Diamond DAG

create_dir_diamond_0_hpee

l \
stage_in_local_hpcc_0 |

/

preprocess_|D000001

LN

findrange_ID000002 findrange_ID0O0O0003

\ l

analyze_|D0OD0004

l

stage_out_local_hpec_2_0

Planning augmentsthe original abstract workflow with ancillary tasksto facility the proper execution of the workflow.
These tasks include:

« the creation of remote working directories. These directories typically have name that seeks to avoid conflicts with
other simultaneously running similar workflows. Such tasks use ajob prefix of creat e_di r .

« thestage-in of input files before any task which requires these files. Any file consumed by atask needsto be staged
to the task, if it does not already exist on that site. Such tasks use ajob prefix of st age_i n.If multiplefilesfrom
various sources need to be transferred, multiple stage-in jobs will be created. Additional advanced options permit
to control the size and number of these jobs, and whether multiple compute tasks can share stage-in jobs.

« theoriginal DAX job is concretized into a compute task in the DAG. Compute jobs are a concatination of the job's
name and id attribute from the DAX file.

« the stage-out of data products to a collecting site. Data products with their transfer flag set to f al se will not be
staged to the output site. However, they may still be digible for staging to other, dependent tasks. Stage-out tasks
use ajob prefix of st age_out .

35

Running Workflows

 If computejobsrun at different sites, an intermediary staging task with prefix st age_i nt er isinserted between
the compute jobs in the workflow, ensuring that the data products of the parent are available to the child job.

« theregistration of data products in areplica catalog. Data products with their register flag set to f al se will not
be registered.

« the clean-up of transient files and working directories. These steps can be omitted with the --no-cleanup option
to the planner.

The" Reference Manual" Chapter details more about when and how staging nodes are inserted into the workflow.

The DAG will befound in filedi anond- 0. dag, constructed from the name and index attributes found in the root
element of the DAX file.

PEGASUS WVB GENERATED DAG FI LE
DAG di anond
Index = 0, Count =1

JOB create_dir_dianond_0O_hpcc create_dir_di anond_0_hpcc. sub
SCRI PT POST create_dir_di anond_0_hpcc /opt/ pegasus/ def aul t/bi n/ pegasus-exitcode
create_dir_di anond_0_hpcc. out

JOB stage_in_|local _hpcc_0 stage_in_| ocal _hpcc_0. sub
SCRI PT POST stage_i n_| ocal _hpcc_0 /opt/pegasus/ def aul t/bi n/ pegasus- exi t code
stage_i n_| ocal _hpcc_0. out

JOB preprocess_| DO0O0001 preprocess_| DO00001. sub
SCRI PT POST preprocess_| DO00001 /opt/ pegasus/ def aul t/ bi n/ pegasus-exitcode preprocess_| DO00001. out

JOB findrange_| D0O00002 fi ndrange_| DO00002. sub
SCRI PT POST fi ndrange_| DO00002 /opt/ pegasus/ def aul t/ bi n/ pegasus-exi tcode findrange_I DO00002. out

JOB findrange_| D0O0O0003 fi ndrange_| DO00003. sub
SCRI PT POST fi ndrange_| DO0O0003 / opt/ pegasus/ def aul t/ bi n/ pegasus-exi tcode fi ndrange_I DO00003. out

JOB anal yze_| D000004 anal yze_| DO00004. sub
SCRI PT POST anal yze_| D0O00004 / opt/ pegasus/ def aul t/ bi n/ pegasus- exi t code anal yze_| D0O00004. out

JOB stage_out_| ocal _hpcc_2_0 stage_out_| ocal _hpcc_2_0. sub
SCRI PT POST stage_out _| ocal _hpcc_2_0 /opt/ pegasus/ defaul t/bi n/ pegasus-exi t code
stage_out _| ocal _hpcc_2_0. out

PARENT fi ndrange_| D0O00002 CHI LD anal yze_| D0O00004

PARENT fi ndrange_| D0O00003 CHI LD anal yze_| D0O00004

PARENT pr eprocess_| D0O00001 CHI LD fi ndrange_| DO00002

PARENT pr eprocess_| D0O00001 CHI LD fi ndrange_| DO0O0003

PARENT anal yze_| DO00004 CHI LD stage_out _| ocal _hpcc_2_0
PARENT stage_i n_|l ocal _hpcc_0 CHI LD preprocess_| DO00001
PARENT create_dir_di anond_0_hpcc CHI LD fi ndrange_| DO00002
PARENT create_dir_di anond_0_hpcc CHI LD fi ndrange_| DO0O0003
PARENT creat e_dir_di anond_0_hpcc CHI LD preprocess_| DO00001
PARENT create_dir_di anmond_0_hpcc CHI LD anal yze_| D0O00004
PARENT create_dir_di amond_0_hpcc CHI LD stage_i n_| ocal _hpcc_0

End of DAG

The DAG file declares al jobs and links them to a Condor submit file that describes the planned, concrete job. In the
same directory as the DAG file are al Condor submit files for the jobs from the picture plus a number of additional
helper files.

The various instructions that can be put into a DAG file are described in Condor's DAGMAN documentation [http://
www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html].The constituents of the submit directory
are described in the "Submit Directory Details'chapter

Mapping Refinement Steps

During the mapping process, the abstract workflow undergoes a series of refinement steps that convertsit to an exe-
cutable form.

36

http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html

Running Workflows

Data Reuse

The abstract workflow after parsing is optionally handed over to the Data Reuse Module. The Data Reuse Algorithm
in Pegasus attempts to prune al the nodes in the abstract workflow for which the output files exist in the Replica
Catalog. It also attempts to cascade the deletion to the parents of the deleted node for e.g if the output files for the
leaf nodes are specified, Pegasus will prune out al the workflow as the output files in which a user is interested in
already exist in the Replica Catal og.

The Data Reuse Algorithm works in two passes

First Pass - Determine all the jobs whose output files exist in the Replica Catalog. An output file with the transfer
flag set to false is treated equivalent to the file existing in the Replica Catalog , if the output file is not an input to
any of the children of the job X.

Second Pass - The agorithm removes the job whose output files exist in the Replica Catalog and tries to cascade the
deletion upwards to the parent jobs. We start the breadth first traversal of the workflow bottom up.

(It is already marked for deletion in Pass 1
oR
(ALL of it's children have been marked for deletion
AND
Node's output files have transfer flags set to fal se

)
Tip
The Data Reuse Algorithm can be disabled by passing the --for ce option to pegasus-plan.

Figure5.2. Workflow Data Reuse

fa fa fa

l l DY
¢

-

i

Aa

f.out foout f.out

File f.d exists somewhere.
Abstract Workflow Reuse it.

Mark Jobs D and B to delete Delete Job D and Job B

37

Running Workflows

Site Selection

The abstract workflow is then handed over to the Site Selector modul e where the abstract jobsin the pruned workflow
are mapped to the various sites passed by auser. Thetarget sitesfor planning are specified on the command line using
the --sites option to pegasus-plan. If not specified, then Pegasus picks up al the sites in the Site Catalog as candidate
sites. Pegasus will map a compute job to asite only if Pegasus can

« find an INSTALLED executable on the site
¢ OR find a STAGEABLE executable that can be staged to the site as part of the workflow execution.
Pegasus supports variety of site selectors with Random being the default
* Random
The jobswill be randomly distributed among the sites that can execute them.
* RoundRobin

Thejobswill be assigned in around robin manner amongst the sites that can execute them. Since each site cannot
execute every type of job, the round robin scheduling is done per level on asorted list. The sorting ison the basis
of the number of jobs a particular site has been assigned in that level so far. If ajob cannot be run on the first
sitein the queue (due to no matching entry in the transformation catal og for the transformation referred to by the
job), it goes to the next one and so on. This implementation defaults to classic round robin in the case where all
the jobs in the workflow can run on all the sites.

e Group

Group of jobs will be assigned to the same site that can execute them. The use of the PEGASUS profile key
group in the DAX, associates ajob with a particular group. The jobs that do not have the profile key associated
with them, will be put in the default group. The jobs in the default group are handed over to the "Random" Site
Selector for scheduling.

o Heft

A version of the HEFT processor scheduling algorithm is used to schedule jobs in the workflow to multiple grid
sites. Theimplementation assumes default data communication costs when jobs are not scheduled on to the same
site. Later on this may be made more configurable.

Theruntimefor thejobsis specified in the transformation catal og by associating the pegasuspr ofilekey runtime
with the entries.

The number of processorsin asiteis picked up from the attribute idle-nodes associated with the vanillajobman-
ager of the sitein the site catalog.

* NonJavaCallout

Pegasus will callout to an external site selector.In this mode a temporary file is prepared containing the job
information that is passed to the site selector as an argument while invoking it. The path to the site selector is
specified by setting the property pegasus.site.selector.path. The environment variables that need to be set to run
the site selector can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary file
contains information about the job that needs to be scheduled. It contains key value pairs with each key value
pair being on anew line and separated by a=.

The following pairs are currently generated for the site selector temporary file that is generated in the NonJava
Cadlout.

Table 5.1. Table 1: Key Value Pairs that are currently generated for the site selector
temporary filethat is generated in the NonJavaCallout.

!pr !Valup |
S50

Running Workflows

version

isthe version of the site selector api,currently 2.0.

transformation

isthe fully-qualified definition identifier for the trans-
formation (TR) namespace::name:version.

derivation isthefully qualified definition identifier for the deriva-
tion (DV), namespace::name:version.

job.level isthe job's depth in the tree of the workflow DAG.

job.id isthejob's D, as used in the DAX file.

resource.id isapool handle, followed by whitespace, followed by a
gridftp server. Typically, each gridftp server isenumer-
ated once, so you may have multiple occurances of the
same site. There can be multiple occurances of thiskey.

input.Ifn is an input LFN, optionally followed by a whitespace
and file size. There can be multiple occurances of this
key,one for each input LFN required by the job.

wf.name label of the dax, as found in the DAX's root element.
wf.index isthe DA X index, that isincremented for each
partition in case of deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being used .e.g
condor

vo.name is the name of the virtual organization that is running
thisworkflow. It is currently set to NONE

Vo.group unused at present and is set to NONE.

Tip

The site selector to use for site selection can be specified by setting the property pegasus.selector .site

39

Running Workflows

Figure5.3. Workflow Site Selection

—

\
rorei”

fd

Legend

—
'l
@
ia
T
hd
[
?
— ——
Y P Unmapped Job
- .oh Mapped to Site A

Reduced Workflow Workflow after Site

.oh Mapped to Site B
Selection

O Stage-in Job

Job Clustering

After site selection, the workflow is optionally handed for to the job clustering module, which clusters jobs that are
scheduled to the same site. Clustering is usualy done on short running jobs in order to reduce the remote execution
overheads associated with ajob. Clustering is described in detail in the Reference Manual chapter.

Tip
The job clustering is turned on by passing the --cluster option to pegasus-plan.

Addition of Data Transfer and Registration Nodes

After job clustering, the workflow is handed to the Data Transfer module that adds data stage-in , inter site and stage-
out nodes to the workflow. Data Stage-in Nodes transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the staging site associated with the job. The staging site for ajob
isthe execution site if running in a sharedfs mode, else it is the one specified by --staging-site option to the planner.
In case, multiple locations are specified for the same input file, the location from where to stage the datais selected
using a Replica Selector . Replica Selection is described in detail in the Replica Selection section of the Reference
Manual. More details about staging site can be found in the data staging configuration chapter.

The process of adding the data stage-in and data stage-out nodesis handled by Transfer Refiners. All datatransfer jobs
in Pegasus are executed using pegasus-transfer . The pegasus-transfer client isapython based wrapper around various
transfer clientslike globus-url-copy, s3cmd, irods-transfer, scp, wget, cp, In . It looks at source and destination url and

40

Running Workflows

figures out automatically which underlying client to use. pegasus-transfer is distributed with the PEGASUS and can
be found in the bin subdirectory . Pegasus Transfer Refiners are are described in the detail in the Transfers section of
the Reference Manual. The default transfer refiner that is used in Pegasusisthe Bundle Transfer Refiner, that bundles
data stage-in nodes and data stage-out nodes on the basis of certain pegasus profile keys associated with the workflow.

Figure5.4. Addition of Data Transfer Nodesto the Wor kflow

&)

fip
f.a
f.d f.e
Legend
O Unmapped Job
.lnb Mapped to Site A
f.out ..loh Mapped to Site B
O Stage-in Job

fip

oo

fd

o

Workflow after Site
Selection Workflow with Data Transfer . Stage-Out Job
Nodes Inter-Site Transfer
Job

Data Registration Nodes may also be added to the final executable workflow to register the location of the output files
on the final output site back in the Replica Catalog . An output file is registered in the Replica Catalog if the register
flag for the fileis set to true in the DAX.

41

Running Workflows

Figure5.5. Addition of Data Registration Nodesto the Workflow

(&)

fd

==
@)
@i

fd

Legend
O Unmapped Job
..lnb Mapped to Site A

..loh Mapped to Site B|

. O Stage-in Job
. Stage-Out Job
. Inter-Site Transfer
Job

Workflow with Data Stage out Workflow with Registration @ Registration Job

Job that registers the
Jobs to final output site generated data

The data staged-in and staged-out from adirectory that is created on the head node by a create dir job in the workflow.
In the vanilla case, the directory is visible to al the worker nodes and compute jobs are launched in this directory
on the shared filesystem. In the case where there is no shared filesystem, users can turn on worker node execution,
where the data is staged from the head node directory to a directory on the worker node filesystem. This feature will
be refined further for Pegasus 3.1. To use it with Pegasus 3.0 send email to pegasus-support at isi.edu.

Tip

The replica selector to use for replica selection can be specified by setting the property
pegasus.selector.replica

Addition of Create Dir and Cleanup Jobs

After the datatransfer nodes have been added to the workflow, Pegasus adds a create dir jobsto the workflow. Pegasus
usually , creates one workflow specific directory per compute site, that is on the staging site associated with the job.
In the case of shared shared filesystem setup, it is a directory on the shared filesystem of the compute site. In case
of shared filesystem setup, this directory is visible to al the worker nodes and that is where the data is staged-in by
the data stage-in jobs.

The staging sitefor ajob isthe execution siteif running in asharedfs mode, elseit isthe one specified by --staging-site
option to the planner. More details about staging site can be found in the data staging configuration chapter.

After addition of the create dir jobs, the workflow is optionally handed to the cleanup module. The cleanup module
adds cleanup nodes to the workflow that remove data from the directory on the shared filesystem when it is no longer
required by the workflow. Thisis useful in reducing the peak storage requirements of the workflow.

42

Running Workflows

Tip
The addition of the cleanup nodes to the workflow can be disabled by passing the --nocleanup option to
pegasus-plan.

Figure 5.6. Addition of Directory Creation and File Removal Jobs

®—®

B e
(::>
E

©) ©)

f.d

Legend
O Unmapped Job
. Job Mapped to Site A

fd fe
\,/ @ Job Mapped to site B

e B

. Stage-Out Job
Workflow with Directory

(O inter-site Transfer Job
Creation Jobs and Cleanup . Remove Files Job
Nodes

. Regstration Job
O Make Dir Job

Workflow with Registration
Job that registers the
generated data

Tip

Users can specify the maximum number of cleanup jobs added per level by specifying the property
pegasus.file.cleanup.clusters.num in the properties.

Code Generation

The last step of refinement process, is the code generation where Pegasus writes out the executable workflow in a
form understandable by the underlying workflow executor. At present Pegasus supports the following code generators

1. Condor

Thisisthedefault code generator for Pegasus . This generator generates the executable workflow asa Condor DAG
file and associated job submit files. The Condor DAG fileis passed asinput to Condor DAGMan for job execution.

2. Shell

This Code Generator generates the executable workflow as a shell script that can be executed on the submit host.
While using this code generator, all the jobs should be mapped to sitelocal i.e specify --siteslocal to pegasus-plan.

43

Running Workflows

Tip

To use the Shell code Generator set the property pegasus.code.generator Shell

Figure5.7. Final Executable Wor kflow

®—®

fip

fip

Legend

O Unmapped Job
. Job Mapped to Site A

. Job Mapped to Site B

O Stage-in Job

f.out . Stage-Out Job
\ _ O Inter-Site Transfer Job
Abstract Workdlow . . Registration Job

() Make DirJob
Final Executable Workflow O Remove Files Job

Data Staging Configuration

Pegasus can be broadly setup to run workflows in the following configurations
¢ Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in adirectory on the shared filesystem.

¢ NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share afilesystem. Compute jobs
in the workflow runin alocal directory on the worker node

¢ Condor Pool Without a shared filesystem
This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data |0 is achieved using Condor File 10. Thisis aspecial case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File 10 is used.

For the purposes of data configuration various sites, and directories are defined below.

Running Workflows

1. Submit Host

The host from where the workflows are submitted . Thisiswhere Pegasus and Condor DAGMan areinstalled. This
isreferred to asthe " local" sitein the sitecatalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site
A siteto which the separate transfer jobsin the executable workflow (jobswith stage in, stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site
The output site is the fina storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input datais stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

Thisisthedirectory created by the create dir jobsin the executable workflow on the Staging Site. Thisisadirectory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

Thisisthe directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

45

Running Workflows

Figure5.8. Shared File System Setup

Input Site n
-~
COMPUTE SITE
'l\ STAGING SITE
Input =T
Bia1 v - 2_== WHN
! HEAD NODE -

- = 4
1 _ =L -"3
- Cen Execute on Submit

Hast or Head Node

WH

- T
- S
 © Can Executs on Submit tranaler
WN | Warker Node
Stegein Job

iy
-
.‘: S Sta.gi_ng Job Transter
using pegesus-
-~ Host ar Head Node Compute Job Posix
-—* le}
DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES RELYING OMN A
SHARED FILESYSTEM . Compute Job

COMPUTE AND STAGING SITE ARE SAME

The dataflow is asfollowsin this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on aworker node in the workflow execution directory. Accesses the input data using Posix 10

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
10

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

Tip
Set pegasus.data.configuration to sharedfsto run in this configuration.
Non Shared Filesystem
In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be afile server on the head node of a cluster or can be on a separate machine.
Setup
« compute and staging site are the different

« head node and worker nodes of compute site don't share a filesystem

46

Running Workflows

 Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

Figure5.9. Non Shared Filesystem Setup

i cnupuras)
4
Input Site 1 | | input Site n Yy
» 7 1 STAGING SITE -
b < FILE Sarver 2
Can Execute on Submit -—__—_—_—-_-_-_—_—_h_-
Host or Head Mode B
-————_ __ L |
- | f
. _" - #| wu
b A
Staging Job Trensfer
-= using pegasus-transtar
-~ © Can Execute on Submit
- Haost or Head Node —— Compute Joo Posx 10
-7 Compute Job Staging
- - using pegasus-transter
-
F 3

WH ‘Waorker Made

Stagein Job

. Stageout Job

DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES AND NO
SHARED FILESYSTEM
COMPUTE AND STAGING SITE ARE DIFFERENT . Compute Joo

The dataflow is asfollowsin this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
aworkflow specific execution directory on the staging site.

2. Compute Job starts on aworker node in alocal execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to alocal directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10
5. Output Datais pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonshar edfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

47

Running Workflows

Condor Pool Without a Shared Filesystem

This setup appliesto acondor pool where the worker nodes making up acondor pool don't share afilesystem. All data
10 isachieved using Condor File IO. Thisis aspecial case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File 1O is used.

Setup

¢ Submit Host and staging site are same

» head node and worker nodes of compute site don't share a filesystem
¢ Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

Figure 5.10. Condor Pool Without a Shared Filesystem

-
CONDOR POOL OF
NODES
4

I
3 WN

i

@

Staging Job Transfer
using pegasus-transfer

-

—

-——»

\ g Can Execute on Submit

3 Host or Head Node —_—— Compute Job Posix 10

e Condor Fila 10

WH ‘Worker Node

Stagein Job

. Stageout Job
DATA FLOW TO COMPUTE JOBS ON A CONDOR POOL WITH NO SHARED
FILESYSTEM AND USING CONDOR IO
SUBMIT HOST AND STAGING SITE ARE SAME . Compute Job

The dataflow is asfollowsin this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on aworker nodein alocal execution directory. Before the compute job starts, Condor transfers
theinput datafor the job from the workflow execution directory on the submit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

48

Running Workflows

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecialy useful for running in the cloud environments where you don't want to setup ashared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to sitelocal

PegasusLite

Starting Pegasus 4.0, all compute jobs (single or clustered jobs) that are executed in a non shared filesystem setup,
are executed using lightweight job wrapper called PegasusLite.

Figure5.11. Workflow Running in NonShared Filesystem Setup with PegasusL itelaunching
computejobs

®@®:‘::1:;;
\ .
[&

[~ s

When PegasusL ite starts on a remote worker node to run acomputejob , it performs the following actions:

1. Discoversthe best run-time directory based on space requirements and create the directory on the local filesystem
of the worker node to execute the job.

2. Prepare the node for executing the unit of work. This involves discovering whether the pegasus worker tools are
already installed on the node or need to be brought in.

3. Usepegasus-transfer to stagein theinput datato the runtime directory (created in step 1) on theremote worker node.
4. Launch the compute job.
5. Use pegasus-transfer to stage out the output data to the data coordination site.

6. Remove the directory created in Step 1.

Pegasus-Plan

pegasus-plan isthe main executable that takesin the abstract workflow (DAX) and generates an executable workflow
(‘usually a Condor DAG) by querying various catalogs and performing severa refinement steps. Before users can
run pegasus plan the following needs to be done:

1. Populate the various catalogs
a. Replica Catalog

The Replica Catal og needs to be catal ogued with the locations of the input files required by the workflows. This
can be done by using pegasus-rc-client (See the Replica section of Creating Workflows).

b. Transformation Catalog

49

Running Workflows

The Transformation Catalog needs to be catalogued with the locations of the executables that the workflows
will use. This can be done by using pegasus-tc-client (See the Transformation section of Creating Workflows).

c. SiteCatalog

The Site Catalog needs to be catal ogued with the site layout of the various sites that the workflows can execute
on. A site catalog can be generated for OSG by using the client pegasus-sc-client (See the Site section of the
Creating Workflows).

2. Configure Properties

After the catalogs have been configured, the user properties file need to be updated with the types and locations
of the catalogs to use. These properties are described in the basic.propertiesfilesin the etc sub directory (seethe
Properties section of theReference chapter.

The basic properties that need to be set usually are listed below:

Table5.2. Table2: Basic Propertiesthat need to be set

pegasus.catal og.replica

pegasus.catalog.replicafile | pegasus.catal og.replica.url

pegasus.catal og.transformation

pegasus.catal og.transformation.file

pegasus.catalog.site.file

To execute pegasus-plan user usually requires to specify the following options:
1. --dax the path to the DAX file that needs to be mapped.

2. --dir the base directory where the executable workflow is generated

3. --sites comma separated list of execution sites.

4. --output the output site where to transfer the materialized output files.

5. --submit boolean value whether to submit the planned workflow for execution after planning is done.

Basic Properties

Thisisthereference guide to the basic properties regarding the Pegasus Workflow Planner, and their respective default
values. Pleaserefer to the advanced properties guide to know about all the propertiesthat auser can useto configurethe
Pegasus Workflow Planner. Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some propertiesrely with their default on the value of other properties. Asanotation, the curly bracesrefer to thevalue
of the named property. For instance, ${ pegasus.home} meansthat the val ue depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is amutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

50

Running Workflows

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property isintroduced by a-D argument. Note that these arguments are parsed by the shell wrapper, and
thusthe -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the propertiesfile

e pegasus.properties
¢ pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus. cat al og. replica File

pegasus.catal og.replica.file ${ pegasus. hone}/etc/ sanpl e.rc. data
pegasus. cat al og. replica Regex

pegasus.catal og.replica.file ${ pegasus. hone}/etc/ sanpl e.rc. data
pegasus. cat al og. t ransf or mati on Text

pegasus. catal og. transfornmation.file ${pegasus.hone}/etc/sanple.tc.text
pegasus.catal og.site.file ${ pegasus. hone}/ et c/ sanpl e. si tes. xni

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in afile with the suffix properties.

pegasus.home

Systems: al
Type: directory location string
Default: "$PEGASUS HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clientsinternally by determining the installation directory of pegasus. Knowledge about this property isimportant for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus
Since: 20

Type: enumeration
Value[0]: RLS
Value[1]: LRC
Vaue[2]: JDBCRC
Value[3]: File
Valuel4]: Directory
Value[5]: MRC
Value[6]: Regex

51

Running Workflows

Default:

RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS

LRC

JDBCRC

File

Regex

RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. Thereis an
index service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC)
report. Each LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central
RLI to discover in which LRC's the mappings for aLFN reside. It then queries the individual LRC's
for the PFN's. To use RLS, the user additionally needs to set the property pegasus.catal og.replica.url
to specify the URL for the RLI to query. Details about RLS can be found at http://www.globus.org/
toolkit/datalrls/

If the user does not want to query the RLI, but directly asingle Local Replica Catalog. To use LRC,
the user additionally needs to set the property pegasus.catal og.replica.url to specify the URL for the
LRC to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

In thismode, Pegasus queriesa SQL based replicacatal og that isaccessed viaJDBC. The sgl schema's
for this catalog can be found at $PEGASUS HOME/sql directory. To use JDBCRC, the user addi-
tionally needs to set the following properties

1. pegasus.catalog.replica.db.url
2. pegasus.catalog.replica.db.user
3. pegasus.catalog.replica.db.password

In thismode, Pegasus queries afile based replicacatalog. It isneither transactionally safe, nor advised
to usefor production purposesin any way. Multiple concurrent accessto the Filewill end up clobbering
the contents of the file. The site attribute should be specified whenever possible. The attribute key for
the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality
sign, it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated
by an equality sign without any whitespaces. The value may be in quoted. The LFN sentiments about

quoting apply.

LFN PFN
LFN PFN a=b [..]

LFN PFN a="b" [..]

"LFN W LWS" "PFN w LWS" [..]

To use File, the user additionally needs to specify pegasus.catal og.replicafile property to specify the
path to the file based RC.

In thismode, Pegasus queries afile based replicacatalog. It isneither transactionally safe, nor advised
to usefor production purposesin any way. Multiple concurrent accessto the Filewill end up clobbering
the contents of thefile. The site attribute should be specified whenever possible. The attribute key for
the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality
sign, it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated
by an equality sign without any whitespaces. The value may be in quoted. The LFN sentiments about

quoting apply.

In addition users can specifiy regular expression based LFN's. A regular expression based entry should
be qualified with an attribute named 'regex'. The attribute regex when set to true identifies the catalog
entry as aregular expression based entry. Regular expressions should follow Java regular expression
syntax.

For example, consider areplica catalog as shown below.

52

Running Workflows

Directory

MRC

Entry 1 refersto an entry which does not use aresular expressions. This entry would only match afile
named 'f.a, and nothing else. Entry 2 referesto an entry which uses aregular expression. In this entry
f.areferesto files having name as f[any-character]ai.e. faa, f.a, fOa, etc.

f.a file:///Volunes/datal/input/f.a pool ="local"
f.a file:///Volunes/datal/input/f.a pool="Iocal" regex="true"

Regular expression based entries al so support substitutions. For example, consider the regular expres-
sion based entry shown below.

Entry 3 will match fileswith name apha.csv, alphatxt, aphaxml. In addition, values matched in the
expression can be used to generate a PFN.

For the entry below if thefile being looked up is alpha.csv, the PFN for the file would be generated as
file:///V olumes/data/input/csv/apha.csv. Similary if the file being lookedup was alpha.csv, the PFN
for the file would be generated as file:///V olumes/data/input/xml/al phaxml i.e. The section [0], [1]
will be replaced. Section [0] refers to the entire string i.e. alpha.csv. Section [1] refers to a partial
match in theinput i.e. csv, or txt, or xml. Users can utilize as many sections as they wish.

al pha\. (csv|txt|xm) file:///Volunes/data/input/[1]/[0] pool ="l ocal " regex="true"

To use File, the user additionally needs to specify pegasus.catal og.replica.file property to specify the
path to the file based RC.

Inthismode, Pegasusdoesadirectory listing on aninput directory to createthe LFN to PFN mappings.
The directory listing is performed recursively, resulting in deep LFN mappings. For example, if an
input directory $input is specified with the following structure

$i nput
$input/f.1
$input/f.2

$i nput/ D1
$input/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally

f.1 file://$input/f.1 pool="1ocal"

f.2 file://$input/f.2 pool="1ocal"

D1/f.3 file://$input/D2/f.3 pool ="1ocal "

pegasus-plan has --input-dir option that can be used to specify an input directory.

Users can optionally specify additional properties to configure the behvavior of thisimplementation.

pegasus.catal og.replica.directory.site to specify a site attribute other than local to associate with the
mappings.

pegasus.catal og.replica.directory.url.prefix to associate a URL prefix for the PFN's constructed. If not
specified, the URL defaultsto file://

In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To
useit set

pegasus. catal og. replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is
any legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catal ogs the user
specifies the following properties.

53

Running Workflows

pegasus.catalog.replica.url

pegasus. cat al og. repl i ca. nrc. [val ue] specifies the type of replica catal og.
pegasus. cat al og. replica. nrc.[val ue]. key specifies a property name key for a
particul ar catal og

For example, if auser wants to query two Irc's at the same time he/she can specify as follows

pegasus.
pegasus.
pegasus.
pegasus.

cat al og.
cat al og.
cat al og.
cat al og.

replica.
replica.
replica.
replica.

nrc.lrcl LRC
nrc.lrc2.url rls://sukhna
nrc.lrc2 LRC
nrc.lrc2.url rls://smarty

In the above example, Ircl, Irc2 are any valid identifier names and url isthe property key that needed
to be specified.

System: Pegasus
Since: 20

Type: URI string
Default: (no default)

When using the modern RLS replica catal og, the URI to the Replica catalog must be provided to Pegasus to enable
it to look up filenames. Thereis no default.

Site Catalog

pegasus.catalog.site.file

System: Site Catalog

Since: 20

Type: file location string

Default: ${ pegasus.home.sysconfdir} /sites.xml

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected.

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 20

Type: enumeration

Value[0]: Text

Vaue[1]: File

Defaullt: Text

See also: pegasus.catal og.transformation.file

Text Inthis mode, amultiline file based format is understood. Thefile isread and cached in memory. Any modi-
fications, as adding or deleting, causes an update of the memory and hence to the file underneath. All queries
are done against the memory representation.

Running Workflows

Thefile sample.tc.text in the etc directory contains an example

Hereis a sample textua format for transfomation catalog containing one transformation on two sites

tr exanple::keg:1.0 {

#specify profiles that apply for all the sites for the transfornation
#in each site entry the profile can be overriden
profile env "APP_HOVE" "/t np/karan"

profile env "JAVA HOVE" "/bin/app"

site isi {

profile env "me" "with"

profile condor "nore" "test"

profile env "JAVA HOVE' "/bin/java.1l. 6"

pfn "/path/tol keg"

arch "x86"

os

"1inux"

osrel ease "fc"

osversion "4"

type "I NSTALLED"

site wind {

profile env "me" "with"
profile condor "nore" "test"
pfn "/path/tol keg"

arch "x86"

os

"1inux"

osrel ease "fc"
osversion "4"
type " STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1

2.

Theresource ID is represented in the first column.

Thelogica transformation uses the colonized format ns::name:vs.

. The path to the application on the system

. The installation type is identified by one of the following keywords - al upper case: INSTALLED,

STAGEABLE. If not specified, or NULL isused, the type defaultsto INSTALLED.

. The system is of the format ARCH::OS[:VER:GLIBC]. The following arch types are understood: "IN-

TEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaultsto INTEL32::LINUX.

. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY 3=VALUE3 Multiple

key-values for same namespace are seperated by acomma™," and multiple namespaces are seperated by a
semicolon";". If any of your profile values contains acommayou must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems:

Transformation Catalog

Type:

filelocation string

Default:

${ pegasus.home.sysconfdir} /tc.text |
${ pegasus.home.sysconfdir} /tc.data

See also:

pegasus.catal og.transformation

This property is used to set the path to the textual transformation catalogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

55

Running Workflows

Data Staging Configuration

pegasus.data.configuration

System: Pegasus
Since: 31

Type: enumeration
Value[0]: sharedfs
Vaue[1]: nonsharedfs
Value[2]: condorio
Defaullt: sharedfs

This property sets up Pegasus to run in different environments.

sharedfs

condorio

nonsharedfs

If thisis set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share afilesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_, stage inter_, stage out_) transfer the data to this
directory.The compute jobsin the executable workflow are launched in the directory on the shared
filesystem. Internally, if thisis set the following properties are set.

pegasus. execute. *. fil esystem | ocal fal se

If thisis set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File 10.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_, stage inter_, stage out_) transfer the data to this
directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file 10. The output
datafor each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem acrossthe VM's may betricky. On loading this property, internally the following
properies are set

pegasus.transfer.sls.*.inpl Condor
pegasus. execute. *.fil esystem | ocal true
pegasus. gridstart PegasusLite

pegasus. transfer. wor ker. package true

If thisis set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. Y ou can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobsin the executable workflow (stage_in_, stage inter_, stage_out_) transfer the datato
thisdirectory. When the computejobs start, theinput datafor each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only afew sites have large amounts of data storage exposed that can be used to place dataduring a
workflow run. This setup is also helpful when running workflowsin the cloud environment where

56

Running Workflows

setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus. execute. *.fil esystem | ocal true
pegasus. gri dstart PegasusLite
pegasus. transfer. wor ker. package true

57

Chapter 6. Execution Environments

Pegasus supports anumber of execution environments. An execution environment is a setup where jobs from awork-
flow are running.

Localhost

In this configuration, Pegasus schedules thejobsto run locally on the submit host. Running locally is agood approach
for smaller workflows, testing workflows, and for demonstations such as the Pegasus tutorial. Pegasus supports two
methods of local execution: local Condor pool, and shell planner. Theformer is preferred asthe latter does not support
all Pegasus' features (such as notifications).

Running on alocal Condor pool is achieved by executing the workflow on site local (--sites local option to pega-
sus-plan). The site "local" is a reserved site in Pegasus and results in the jobs to run on the submit host in condor
universe local. The site catalog can be left very simplein this case:

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/ W/ work"/>
</directory>
<directory type="l ocal -storage" path="/tnp/w/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

</ sitecatal og>
The simplest execution environment does not involve Condor. Pegasus is capable of planning small workflows for

local execution using a shell planner. Please refer to the shar e/ pegasus/ exanpl es directory in your Pegasus
installation, the shell planner's documentation section, or the tutorials, for details.

Condor Pool

A Condor pool is a set of machines that use Condor for resource management. A Condor pool can be a cluster of
dedicated machines or a set of distributively owned machines. Pegasus can generate concrete workflows that can be
executed on a Condor pool.

58

Execution Environments

Figure6.1. Thedistributed resources appear to be part of a Condor pool.

Abstract worlflow

|

‘ Pegasus

Condor submit files

DA GMan _ e Condor Pool
e Shabmif T
I.f'J \Hasf \
:.k\.__‘ Central P Worker Mode
- IManager N i

The workflow is submitted using DAGMan from one of the job submission machines in the Condor pool. It is the
responsibility of the Central Manager of the pool to match the task in the workflow submitted by DAGMan to the
execution machines in the pool. This matching process can be guided by including Condor specific attributes in the
submit files of the tasks. If the user wants to execute the workflow on the execution machines (worker nodes) in a
Condor pool, there should be a resource defined in the site catalog which represents these execution machines. The
universe attribute of the resource should be vanilla. There can be multiple resources associated with a single Condor
pool, where each resource identifies a subset of machine (worker nodes) in the pool.

When running on a Condor pool, the user has to decide how Pegasus should transfer data. Please see the Data Staging
Configuration for the options. The easiest is to use condorio as that mode does not require any extra setup - Condor
will do the transfers using the existing Condor daemons. For an example of this mode see the example workflow in
shar e/ pegasus/ exanpl es/ condor - bl ackdi anond- condori o/ . Incondorio mode, the site catalog for
the execution site is very simple as storage is provided by Condor:

<?xm version="1.0" encodi ng="UTF-8"?>
<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi :schemaLocation="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/ W/ work"/>
</directory>
<directory type="local -storage" path="/tnp/w/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="condorpool " arch="x86_64" os="LI NUX">
<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>
</site>

</sitecatal og>

Thereis a set of Condor profiles which are used commonly when running Pegasus workflows. Y ou may have to set
some or al of these depending on the setup of the Condor pool:

59

Execution Environments

<l-- Change the style to Condor for jobs to be executed in the Condor Pool.
By default, Pegasus creates jobs suitable for grid execution. -->
<profil e namespace="pegasus" key="styl e">condor</profile>

<!-- Change the universe to vanilla to make the jobs go to renote conpute
nodes. The default is local which will only run jobs on the submt host -->
<profil e namespace="condor" key="universe" >vanilla</profhile>

<!-- The requirenents expression allows you to linmt where your jobs go -->
<profil e namespace="condor" key="requirenments">(Target.Fil eSystenDomain !=
" ; yggdrasi |l .isi.edu")</profile>

<l-- The following two profiles forces Condor to always transfer files. This
has to be used if the pool does not have a shared fil esystem-->

<profil e namespace="condor" key="shoul d_transfer_fil es">True</profil e>

<profil e namespace="condor" key="when_to_transfer_output”">ON_EXI T</profil e>

Glideins

In this section we describe how machines from different administrative domains and supercomputing centers can be
dynamically added to a Condor pool for certain timeframe. These machines join the Condor pool temporarily and
can be used to execute jobsin a non preemptive manner. This functionality is achieved using a Condor feature called
glideins (seehttp://cs.wisc.edu/condor/glidein) . The startd daemon isthe Condor daemon which providesthe compute
slots and runs the jobs. In the glidein case, the submit machine is usually a static machine and the glideins are told
configued to report to that submit machine. The glideins can be submitted to any type of resource: a GRAM enabled
cluster, a campus cluster, a cloud environment such as Amazon AWS, or even another Condor cluster.

Tip

As glideins are usually coming from different compute resource, and/or the glideins are running in an ad-
ministrative domain different from the submit node, there is usually no shared filesystem available. Thus
the most common data staging modes are condorio and nonshar edfs..

There are many useful tools which submits and manages glideins for you:

¢ GlideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WM S/glideinWMS/] is a tool and host environ-
ment used mostly on the Open Science Grid [http://www.opensciencegrid.org/].

e Corra WMS [http://pegasus.isi.edu/projects/corralwmeg] is a personal frontend for GlideinWMS. Corra WM S was
developed by the Pegasus team and works very well for high throughput workflows.

« condor_glidein [http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html] is a simple glidein tool for
Globus GRAM clusters. condor_glidein is shipped with Condor.

e Glideins can aso be created by hand or scripts. This is a useful solution for example for cluster which have no
external job submit mechanisms or do not allow outside networking.

CondorC

Using CondorC users can submit workflowsto remote condor pools. CondorC is acondor specific solution for remote
submission that does not involve the setting up a GRAM on the headnode. To enable CondorC submission to a site,
user needs to associate pegasus profile key named style with value as condorc. In case, the remote Condor pool does
not have a shared filesytem between the nodes making up the pool, users should use pegasus in the condorio data
configuration. In this mode, all the data is staged to the remote node in the Condor pool using Condor File transfers
and is executed using PegasusL ite.

A sample site catalog for submission to a CondorC enabled siteislisted below

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schema/ sc- 4. 0. xsd"

60

http://cs.wisc.edu/condor/glidein
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://pegasus.isi.edu/projects/corralwms
http://pegasus.isi.edu/projects/corralwms
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html

Execution Environments

version="4,0">

<site handl e="local" arch="x86_64" os="LI NUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tmp/wf/work"/>
</directory>
<directory type="local -storage" path="/tnp/wf/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="condorcpool " arch="x86_86" os="LI NUX">
<l-- the grid gateway entries are used to designate
the renote schedd for the CondorC pool -->
<grid type="condor" contact="ccg-condorctest.isi.edu" schedul er="Condor"
j obt ype="conpute" />
<grid type="condor" contact="ccg-condorctest.isi.edu" schedul er="Condor"
j obtype="auxillary" />

<!-- enabl e submi ssion using condorc -->
<profil e namespace="pegasus" key="styl e">condorc</profil e>

<!-- specify which condor collector to use.
If not specified defaults to renpte schedd specified in grid gateway -->
<profil e namespace="condor" key="condor_col | ector">condorc-collector.isi.edu</profile>
<profil e namespace="condor" key="shoul d_transfer_fil es">Yes</profile>
<profil e namespace="condor" key="when_to_transfer_output">ON_EXI T</profil e>
<profil e namespace="env" key="PEGASUS HOVE" >/usr</profile>
<profil e namespace="condor" key="universe">vanilla</profile>

</site>

</ sitecatal og>

To enable PegasusLite in Condorl O mode, users should set the following in their properties

pegasus properties
pegasus. dat a. confi guration condorio

61

Execution Environments

Infrastructure Clouds

Figure 6.2. Cloud Sample Site L ayout

submit host (SH) Data flow —
Job flow ———=

Condor
collector

= two-step
= staging
ﬁ’d __________
J" 'Jr' th w
VM VM
Condor Condor

startd startd

local FS local FS

multi-resource request multi-resource request

another Cloud a Cloud

This figure shows a sample environment for executing Pegasus on multiple clouds (known as "sky computing"). At
thispoint, it isup to the user to provision the remote resources with a proper VM image that includes a Condor worker
that is configured to report back to a Condor master outside the cloud.

In this discussion, the submit host (SH) is located logically external to the cloud provider(s). The SH is the point
where auser submits Pegasus workflows for execution. This site typically runs a Condor collector to gather resource
announcements, or is part of alarger Condor pool that collects these announcements. Condor makes the remote re-
sources available to the submit host's Condor installation.

The figure above shows the way Pegasus WMS is deployed in cloud computing resources, ignoring how these re-
sources were provisioned. The provisioning request shows multiple resources per provisioning request.

The provisioning broker -- Nimbus, Eucalyptus or EC2 -- at the remote site is responsible to allocate and set up the
resources. For amulti-node request, the worker nodes often require accessto aform of shared data storage. Concretely,
either a POSIX-compliant shared file system (e.g. NFS, PVFS) is available to the nodes, or can be brought up for
the lifetime of the application workflow. The task steps of the application workflow facilitate shared file systems to
exchange intermediary results between tasks on the same cloud site. Pegasus also supports an S3 data mode for the
application workflow data staging.

Theinitial stage-in and final stage-out of application datainto and out of the node set is part of any Pegasus-planned
workflow. Several configuration options exist in Pegasusto deal with the dynamics of push and pull of data, and when
to stage data. In many use-cases, some form of external access to or from the shared file system that is visible to the

62

Execution Environments

application workflow is required to facilitate successful data staging. However, Pegasus is prepared to dea with a
set of boundary cases.

The data server in thefigureis shown at the submit host. Thisis not a strict requirement. The data server for consumed
data and data products may both be different and external to the submit host.

Once resources begin appearing in the pool managed by the submit machine& rsguor;s Condor collector, the applica-
tion workflow can be submitted to Condor. A Condor DAGMan will manage the application workflow execution.
Pegasus run-time tools obtain timing-, performance and provenance information as the application workflow is exe-
cuted. At this point, it is the user's responsibility to de-provision the allocated resources.

In the figure, the cloud resources on the right side are assumed to have uninhibited outside connectivity. This enables
the Condor 1/0O to communicate with the resources. The right side includes a setup where the worker nodes use all
private IP, but have out-going connectivity and a NAT router to talk to the internet. The Condor connection broker
(CCB) facilitates this setup almost effortlessly.

The left side shows a more difficult setup where the connectivity is fully firewalled without any connectivity except
to in-site nodes. In this case, a proxy server process, the generic connection broker (GCB), needs to be set up in the
DMZ of the cloud site to facilitate Condor /O between the submit host and worker nodes.

If the cloud supports data storage servers, Pegasus is starting to support workflows that require staging in two steps:
Consumed dataisfirst staged to adata server in the remote site's DM Z, and then a second staging task moves the data
from the data server to the worker node where the job runs. For staging out, data heeds to be first staged from the
job'sworker node to the site's data server, and possibly from there to another data server external to the site. Pegasus
is capable to plan both steps: Normal staging to the site's data server, and the worker-node staging from and to the
Site's data server as part of the job.

Amazon EC2

There are many different waysto set up an execution environment in Amazon EC2. The easiest way isto use a submit
machine outside the cloud, and to provision several worker nodes and afile server node in the cloud as shown here:

Figure 6.3. Amazon EC2

Condor

Submit Host

Condor
startd

Worker

Condor
startd

Worker

File Server

Amazon Elastic Compute Cloud (EC2)

The submit machine runs Pegasus and a Condor master (collector, schedd, negotiator). The workers run a Condor
startd. And the file server node exports an NFS file system. The startd on the workers is configured to connect to
the master running outside the cloud, and the workers also mount the NFS file system. More information on setting
up Condor for this environment can be found at http://www.isi.edu/~gideon/condor-ec2 [http://www.isi.edu/~gideon/
condor-ec2/].

63

http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/

Execution Environments

The site catalog entry for this configuration is similar to what you would create for running on alocal Condor pool
with a shared file system.

FutureGrid

FutureGrid [https://portal .futuregrid.org/] isadistributed testbed for cloud computing. Thereisatutorial on how to run
Pegasus on FutureGrid using the Nimbus cloud management system here: http://pegasus.isi.edu/futuregrid/tutorials
[http://pegasus.isi.edu/futuregrid/tutorial /]

Remote Cluster using Globus GRAM
Figure 6.4. Grid Sample Site L ayout

Compute

Cluster e
Cluster

Nodes -
Head Node Scheduler

Globus GRAM |
GrdFTP Server I 1
Port 2119 ki = = /
ks Maui
Grid Mapfile _
< e - @ =

and Signing

Policies Condor
Port 2811 il
\V Network File System
/ For better Performance
GridFTP server may be run on
= \ Ports 40000 - 41000 Ahe e::;::nfrser
Submit Node NF',I'UF'bg:Ii Ie:t
Cumfuarg gigMﬁN Data S Host Certificate
Gondor Schedd i BIYES _— CA Ceriificates and Signing Policies
CA Certificates and Signing Policies (Machine Running) Gridmap File
MWTP Client
Public IP
Optional
GridFTP Client
GridFTP Server

Host Certificate
Gridmap File

A generic grid environment shown in thefigure above. Wewill work from theleft to theright top, then theright bottom.

On theleft side, you have a submit machine where Pegasus runs, Condor schedules jobs, and workflows are executed.
We call it the submit host (SH), though its functionality can be assumed by a virtual machine image. In order to
properly communicate over secured channels, it isimportant that the submit machine has a proper notion of time, i.e.
runs an NTP daemon to keep accurate time. To be able to connect to remote clusters and receive connections from the
remote clusters, the submit host has a public | P address to facilitate this communication.

In order to send a job request to the remote cluster, Condor wraps the job into Globus calls via Condor-G. Globus
uses GRAM to manage jobs on remote sites. In terms of a software stack, Pegasus wraps the job into Condor. Condor
wraps the job into Globus. Globus transports the job to the remote site, and unwraps the Globus component, sending
it to the remote site's resource manager (RM).

To be able to communicate using the Globus security infrastructure (GSl), the submit machine needs to have the
certificate authority (CA) certificates configured, requires a host certificate in certain circumstances, and the user a

https://portal.futuregrid.org/
https://portal.futuregrid.org/
http://pegasus.isi.edu/futuregrid/tutorials/
http://pegasus.isi.edu/futuregrid/tutorials/

Execution Environments

user certificate that is enabled on the remote site. On the remote end, the remote gatekeeper node requires a host
certificate, all signing CA certificate chains and policy files, and a goot time source.

In agrid environment, there are one or more clusters accessible via grid middleware like the Globus Toolkit [http://
www.globus.org/]. In case of Globus, there isthe Globus gatekeeper listening on TCP port 2119 of the remote cluster.
The port is opened to a single machine called head node (HN).The head-node is typically located in a de-militarized
zone (DM2Z) of the firewall setup, asit requires limited outside connectivity and a public IP address so that it can be
contacted. Additionally, once the gatekeeper accepted ajob, it passesit on to ajobmanager. Often, these jobmanagers
require alimited port range, in the example TCP ports 40000-41000, to call back to the submit machine.

For the user to be able to run jobs on the remote site, the user must have some form of an account on the remtoe site.
The user's grid identity is passed from the submit host. An entity called grid mapfile on the gatekeeper maps the user's
grid identity into aremote account. While most sites do hot permit account sharing, it is possible to map multiple user
certificates to the same account.

The gatekeeper isthe interface through which jobs are submitted to the remote cluster's resource manager. A resource
manager isascheduling system like PBS, Maui, L SF, FBSNG or Condor that queuestasks and all ocates worker nodes.
Theworker nodes (WN) in theremote cluster might not have outside connectivity and often useall private |P addresses.
The Globus toolkit requires a shared filesystem to properly stage files between the head node and worker nodes.

Note

The shared filesystem requirement is imposed by Globus. Pegasus is capable of supporting advanced site
layoutsthat do not require a shared filesystem. Please contact usfor details, should you require such a setup.

To stage data between externa sitesfor the job, it isrecommended to enable a GridFTP server. If ashared networked
filesystemisinvolved, the GridFTP server should belocated as closeto thefile-server aspossible. The GridFTP server
requires TCP port 2811 for the control channel, and alimited port range for data channels, here as an examplethe TPC
ports from 40000 to 41000. The GridFTP server requires a host certificate, the signing CA chain and policy files, a
stabletime source, and agridmap file that maps between auser's grid identify and the user's account on theremote site.

The GridFTP server isoften installed on the head node, the same as the gatekeeper, so that they can share the grid map-
file, CA certificate chains and other setups. However, for performance purposes it is recommended that the GridFTP
server has its own machine.

An example site catalog entry for a GRAM enabled site looks as follow in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="Trestl es" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="trestles.sdsc.edu/jobmanager-fork" schedul er="Fork"
j obtype="auxillary"/>
<grid type="gt5" contact="trestles.sdsc.edu/jobmanager-pbs" schedul er ="unknown"
j obt ype="conpute"/>

<directory type="shared-scratch" path="/oasis/projects/nsf/ USERNAVE" >
<file-server operation="all" url="gsiftp://trestles-dml.sdsc. edu/ oasi s/ projects/nsf/
USERNAME" / >
</directory>

<!-- specify the path to a PEGASUS WORKER | NSTALL on the site -->

<profil e namespace="env" key="PEGASUS _HOVE" >/ path/to/ PEGASUS/ | NSTALL</ profil e>
</site>

</ sitecatal og>

Remote Cluster using CREAMCE

CREAM [https://wiki.italiangrid.it/twiki/bin/view/CREAM/Functional Description] is a webservices based job sub-
mission front end for remote compute clusters. It can be viewed as areplaced for Globus GRAM and ismainly popul ar
in Europe. It widely used in the Italian Grid.

65

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/
https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription
https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription

Execution Environments

In order to submit aworkflow to compute site using the CREAMCE front end, the user needs to specify the following
for the sitein their site catalog

1. pegasus profile style with value set to cream

2. grid gateway defined for the site with contact attribute set to CREAMCE frontend and scheduler attribute to
remote scheduler.

3. aremote queue can be optionally specified using globus profile queue with value set to queue-name

An example site catalog entry for a creamce site looks as follow in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://pegasus.isi.edu/ schena/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="creante" arch="x86" os="LI NUX">
<grid type="creant contact="https://ce0l-1cg.cr.cnaf.infn.it:8443/ce-creani servi ces/ CREAMR"
schedul er="LSF" jobtype="conpute" />
<grid type="creant contact="https://ce0l-lcg.cr.cnaf.infn.it:8443/ce-creani servi ces/ CREAMR"
schedul er="LSF" jobtype="auxillary" />

<directory type="shared-scratch" path="/hone/virgo034">
<file-server operation="all" url="gsiftp://ce0l-1cg.cr.cnaf.infn.it/hone/virgo034"/>
</directory>

<profil e namespace="pegasus" key="style">creanx/profile>
<profil e namespace="gl obus" key="queue">virgo</profile>
</site>

</ si tecatal og>

The pegasus distribution comes with creamce examplesin the examples directory. They can be used asastarting point
to configure your setup.

Tip

Usually , the CREAMCE frontends accept VOMS generated user proxies using the command voms-proxy-
init. Stepson generatingaVOM Sproxy arelistedinthe CREAM User Guide here[https://wiki.italiangrid.it/
twiki/bin/view/CREAM/UserGuide#l_1 Before starting_get_your_use] .

Local Cluster Using Glite

This section describes the various changes required in the site catal og for Pegasus to generate an executable workflow
that uses gL ite blahp to directly submit to PBS on the local machine. This mode of submission should only be used
when the condor on the submit host can directly talk to scheduler running on the cluster. It is recommended that the
cluster that gLite talksto is designated as a separate compute site in the Pegasus site catalog. To tag asiteasagLite
site the following two profiles need to be specified for the site in the site catalog

1. pegasus profile style with value set to dlite.
2. condor profile grid_resour ce with value set to pbs|lsf

An example site catalog entry for a glite site looks as follows in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="local" arch="x86" os="LINUX">
<directory type="shared-scratch" path="/|fs/shared-scratch/glite-sharedfs-exanpl e/ work">

66

https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use

Execution Environments

<file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-exanple/
wor k" />
</directory>
<directory type="local -storage" path="/shared-scratch//glite-sharedfs-exanpl e/ outputs">
<file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-exanple/
out puts"/>
</directory>
</site>

<site handl e="local - pbs" arch="x86" os="LI NUX">

<l-- the following is a shared directory shared anmongst all the nodes in the cluster -->
<directory type="shared-scratch" path="/1fs/glite-sharedfs-exanpl e/l ocal - pbs/shared-
scratch">
<file-server operation="all" url="file:///1fs/glite-sharedfs-exanple/local-pbs/shared-

scratch"/>
</directory>

<profil e namespace="env" key="PEGASUS HOVE">/| f s/ sof t war e/ pegasus/ pegasus- 4. 2. 0</ profil e>

<profil e namespace="pegasus" key="style" >glite</profile>
<profil e namespace="pegasus" key="change. dir">true</profil e>

<profil e namespace="condor" key="gri d_resource">pbs</profile>

<profil e namespace="condor" key="batch_queue">batch</profil e>

<profil e namespace="gl obus" key="maxwal | ti me">30000</profil e>
</site>

</ sitecatal og>
Tip

Starting 4.2.1 , in the examples directory you can find a glite shared filesystem example that you can use
to test out this configuration

Changes to Jobs

As part of applying the style to the job, this style adds the following classads expressions to the job description.
1. +remote_queue - value picked up from globus profile queue

2. +remote_cerequirements - See below

Remote CE Requirements

The remote CE requirements are constructed from the following profiles associated with the job. The profiles for a
job are derived from various sources

1. transformation catalog

2. sitecatalog

3. DAX

4. user properties

The following globus profilesif associated with the job are picked up and translated to corresponding glite key
1. hostcount -> PROCS

2. count -> NODES

3. maxwalltime-> WALLTIME

The following condor profilesif associated with the job are picked up and translated to corresponding glite key

1. priority -> PRIORITY

67

Execution Environments

All the env profiles are translated to MY ENV

The remote_cerequirements expression is constructed on the basis of the profiles associated with job . An example
+remote_cerequirements classad expression in the submit file is listed below

+renot e_cerequi rements = "PROCS==18 && NODES==1 && PRI ORI TY==10 && WALLTI ME==3600 \
&& PASSENV==1 && JOBNAME==\"TEST JOB\" && MYENV ==\"JAVA HOVE=/ bi n/j ava, APP_HOVE=/ bi n/ app\""

Specifying directory for the jobs

gLite blahp does not follow the remote_initialdir or initialdir classad directives. Hence, all thejobsthat have this style
applied don't have aremote directory specified in the submit directory. Instead, Pegasus relies on kickstart to change
to the working directory when the job is launched on the remote node.

Remote Cluster using BOSCO and SSH submissions

BOSCO [http://bosco.opensciencegrid.org/about/] enables users to submit jobs to remote clusters using SSH. This
section describes how to specify a site catalog entry for a site to which jobs can be submitted over SSH. To tag asite
for SSH submission, the following profiles need to be specified for the site in the site catal og:

1. pegasus profile style with value set to ssh

2. Specify the service information as grid gateways. This should match what Bosco provided when the cluster was
set up.

An example site catalog entry for aBOSCO site looks as follows in the site catalog

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handl e="USC_HPCC Bosco" arch="x86_64" os="LI NUX">

<l-- Specify the service information as grid gateways. This should match what Bosco provi ded
when the cluster
was set up. -->

<grid type="batch" contact="username@mpc-| ogi n2. usc. edu" schedul er="PBS" jobtype="conpute"/>
<grid type="batch" contact="username@mpc-| ogi n2. usc. edu" schedul er ="PBS"
j obtype="auxillary"/>

<l-- Scratch directory on the cluster -->
<directory type="shared-scratch" path="/hone/rcf-40/tnp">
<file-server operation="all" url="scp://username@mpc-| ogi n2. usc. edu/ horme/ rcf-40/tnmp"/>

</directory>

<l-- SSHis the style to use for Bosco SSH submits -->
<profil e namespace="pegasus" key="styl e">ssh</profil e>

<!-- Bosco is using the grid universe, which neans the gl obus
nanespace can be used to control the jobs -->

<profil e namespace="gl obus" key="queue">defaul t</profile>

<profil e namespace="gl obus" key="maxwal | ti me">30</profil e>

</site>

</sitecatal og>

Note

Itisrecommended to have a submit node configured either asaBOSCO submit node or avanillaHTCondor
node. Y ou cannot have HTCondor configured both asa BOSCO install and atraditional HTCondor submit
node at the same time as BOSCO will override the traditional HTCondor pool in the user environment.

68

http://bosco.opensciencegrid.org/about/
http://bosco.opensciencegrid.org/about/

Execution Environments

Starting 4.3 there is a bosco-shared-fs example in the examples directory of the distribution.

Campus Cluster

There are almost as many different configurations of campus clusters as there are campus clusters, and because of that
it can be hard to determine what the best way to run Pegasus workflows. Below is aordered checklist with some ideas
we have collected from working with usersin the past:

1. If the cluster scheduler is Condor, please see the Condor Pool section.

2. If the cluster is Globus GRAM enabled, see the Globus GRAM section. If you have have alot of short jobs, also
read the Glidein section.

3. For clusters without GRAM, you might be able to do glideins. If outbound network connectivity is allowed, your
submit host can be anywhere. If the cluster is setup to not allow any network connections to the outside, you will
probably have to run the submit host inside the cluster as well.

If the cluster you are trying to use is not fitting any of the above scenarios, please post to the Pegasus users mailing
list [http://pegasus.isi.edu/support] and we will help you find a solution.

XSEDE

The Extreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] provides a set of
High Performance Computing (HPC) and High Throughput Computing (HTC) resources.

For the HPC resources, it is recommended to run using Globus GRAM or glideins. Most of these resources have
fast parallel file systesm, so running with sharedfs data staging is recommended. Below is example site catalog and
pegasusrc to run on SDSC Trestles [http://www.sdsc.edu/us/resources/trestles/] :

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://pegasus.isi.edu/ schema/sitecatal og http://pegasus.isi.edu/
schena/ sc-4. 0. xsd"

version="4.0">

<site handle="local" arch="x86_64" os="LINUX">
<directory type="shared-scratch" path="/tnp/wf/work">
<file-server operation="all" url="file:///tnmp/ W/ work"/>
</directory>
<directory type="l ocal -storage" path="/tnp/wf/storage">
<file-server operation="all" url="file:///tnp/wf/storage"/>
</directory>
</site>

<site handl e="Trestl es" arch="x86_64" os="LI NUX">
<grid type="gt5" contact="trestles.sdsc. edu: 2119/ j obmanager - f ork" schedul er =" PBS"
j obtype="auxillary"/>
<grid type="gt5" contact="trestles.sdsc. edu: 2119/ j obmanager - pbs" schedul er =" PBS"
j obtype="conpute"/>
<directory type="shared-scratch" path="/phasel/ USERNAVE" >
<file-server operation="all" url="gsiftp://trestles-dml. sdsc. edu/ phasel/ USERNAME"/ >
</directory>
</site>

</ sitecatal og>

pegasusic:

pegasus. cat al og. repl i ca=Si npl eFi l e
pegasus. catal og.replica.file=rc

pegasus. catal og.site.fil e=sites.xnl

pegasus. cat al og. t r ansf or mat i on=Text
pegasus. catal og. transformation.file=tc

pegasus. data. configuration = sharedfs

69

http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
https://www.xsede.org/
https://www.xsede.org/
http://www.sdsc.edu/us/resources/trestles/
http://www.sdsc.edu/us/resources/trestles/

Execution Environments

Pegasus might not be installed, or be of a different version
so stage the worker package
pegasus. transf er. wor ker. package = true

The HTC resources available on XSEDE are all Condor based, so standard Condor Pool setup will work fine.

If you need to run high throughput workloads on the HPC machines (for example, post processing after alarge parallel
job), glideins can be useful asit is amore efficient method for small jobs on these systems.

Open Science Grid Using glideinWMS

glideinWMSS [http://www.uscms.org/SoftwareComputing/Grid/WM S/glideinWMS/] is a glidein system widely used
on Open Science Grid. Running on top of glideinWMSiis like running on a Condor Pool without a shared filesystem.

70

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/

Chapter 7. Submit Directory Detalls

This chapter describes the submit directory content after Pegasus has planned aworkflow. Pegasustakesin an abstract
workflow (DAX) and generates an executable workflow (DAG) in the submit directory.

This document also describes the various Replica Selection Strategies in Pegasus.

Layout

Each executable workflow is associated with a submit directory, and includes the following:
1. <daxlabel-daxindex>.dag

Thisisthe Condor DAGMman dag file corresponding to the executable workflow generated by Pegasus. The dag
file describes the edgesin the DAG and information about the jobsin the DAG. Pegasus generated .dag file usually
contains the following information for each job

a. Thejob submit file for each job in the DAG.

b. The post script that isto be invoked when ajob completes. Thisisusually located at SPEGASUS HOME/bin/
exitpost and parses the kickstart record in the job's.out file and determines the exitcode.

¢. JOB RETRY - the number of timesthejob isto beretried in case of failure. In Pegasus, the job postscript exits
with anon zero exitcode if it determines a failure occurred.

2. <daxlabel-daxindex>.dag.dagman.out

When a DAG (.dag file) is executed by Condor DAGMan , the DAGMan writes out it's output to the <daxla-
bel-daxindex>.dag.dagman.out file . Thisfiletells usthe progress of the workflow, and can be used to determine
the status of the workflow. Most of pegasus tools mine the dagman.out or jobstate.log to determine the progress
of the workflows.

3. <daxlabel-daxindex>.static.bp

This file contains netlogger events that link jobs in the DAG with the jobs in the DAX. This file is parsed by
pegasus-monitord when aworkflow starts and populated to the stampede backend.

4. <daxlabel-daxindex>.notify

Thisfile contains all the notifications that need to be set for the workflow and the jobs in the executable workflow.
The format of notify file is described here

5. <daxlabel-daxindex>.replica.store
Thisisafile based replica catalog, that only lists file locations are mentioned in the DAX.
6. <daxlabel-daxindex>.dot

Pegasus creates a dot file for the executable workflow in addition to the .dag file. This can be used to visualize the
executable workflow using the dot program.

7. <job>.sub

Each job in the executable workflow is associated with it's own submit file. The submit file tells Condor how to
execute the job.

8. <job>.out.00n

The stdout of the executabl e referred in the job submit file. In Pegasus, most jobs are launched viakickstart. Hence,
thisfile containsthe kickstart XML provenance record that captures runtime provenance on the remote node where
thejob was executed. n varies from 1-N where N isthe JOB RETRY value in the .dag file. The exitpost executable

71

Submit Directory Details

is invoked on the <job>.out file and it moves the <job>.out to <job>.out.00n so that the the job's .out files are
preserved across retries.

9. <job>.err.00n

The stderr of the executable referred in the job submit file. In case of Pegasus, mostly the jobs are launched via
kickstart. Hence, this file contains stderr of kickstart. This is usually empty unless there in an error in kickstart
e.g. kickstart segfaults, or kickstart location specified in the submit file is incorrect. The exitpost executable is
invoked on the <job>.out file and it moves the <job>.err to <job>.err.00n so that the the job's .out files are
preserved across retries.

10jobstate.log

The jobstate.log file is written out by the pegasus-monitord daemon that is launched when a workflow is submit-
ted for execution by pegasus-run. The pegasus-monitord daemon parses the dagman.out file and writes out the
jobstate.log that is easier to parse. The jobstate.log captures the various states through which ajob goes during the
workflow. There are other monitoring related files that are explained in the monitoring chapter.

11.braindump.txt

Contains information about pegasus version, dax file, dag file, dax label.

Condor DAGMan File

The Condor DAGMan file (.dag) is the input to Condor DAGMan (the workflow executor used by Pegasus) .
Pegasus generated .dag file usually contains the following information for each job:
1. Thejob submit file for each job in the DAG.

2. The post script that is to be invoked when ajob completes. This is usualy found in SPEGASUS _HOME/bin/
exitpost and parses the kickstart record in the job's .out file and determines the exitcode.

3. JOB RETRY - the number of timesthe job isto beretried in case of failure. In case of Pegasus, job postscript exits
with anon zero exitcode if it determines afailure occurred.

4. The pre script to be invoked before running ajob. Thisis usually for the dax jobs in the DAX. The pre script is
pegasus-plan invocation for the subdax.

In the last section of the DAG file the relations between the jobs (that identify the underlying DAG structure) are
highlighted.

Sample Condor DAG File

PEGASUS WVB GENERATED DAG FI LE
DAG bl ackdi anond
Index = 0, Count =1

JOB create_dir_bl ackdi amond_0_i si _viz create_dir_bl ackdi amond_0O_i si _vi z. sub
SCRI PT POST create_dir_bl ackdi amond_0O_i si _vi z / pegasus/ bi n/ pegasus- exi t code \

/ submit-dir/create_dir_bl ackdi amond_0O_i si _vi z. out
RETRY create_dir_bl ackdi anond_0_isi_viz 3

JOB create_dir_bl ackdi amond_0_I| ocal create_dir_bl ackdi amond_0O_I ocal . sub
SCRI PT POST create_dir_bl ackdi amond_0_| ocal /pegasus/ bi n/ pegasus-exitcode
/submit-dir/create_dir_bl ackdi amond_0O_| ocal . out

JOB pegasus_concat _bl ackdi anmond_0 pegasus_concat _bl ackdi anond_0. sub

JOB stage_in_local _isi_viz_0 stage_in_local _isi_viz_0.sub
SCRI PT POST stage_in_|l ocal _isi_viz_0 /pegasus/bin/pegasus-exitcode \
/submit-dir/stage_in_local _isi_viz_0.out

JOB chnod_preprocess_|I DO00001_0 chnod_preprocess_| DO0O0001_0. sub
SCRI PT POST chnod_preprocess_| DO00001_0 / pegasus/ bi n/ pegasus- exi t code \
/ submni t-dir/chnod_preprocess_| DO00001_0. out

72

Submit Directory Details

JOB preprocess_| DO0O0001 preprocess_I DOO0001. sub
SCRI PT POST preprocess_| DO00001 / pegasus/ bi n/ pegasus- exi t code \
/ submi t-dir/preprocess_I DO0O0001. out

JOB subdax_bl ack_I DO00002 subdax_bl ack_I DO0O0002. sub
SCRI PT PRE subdax_bl ack_| DO00002 / pegasus/ bi n/ pegasus-pl an \
- Dpegasus. user. properti es=/submt-dir/./dag_1/test_I DO0O0002/
pegasus. 3862379342822189446. properti es\
- Dpegasus. | og. *=/ submi t - di r/ subdax_bl ack_I DO00002. pre. | og \
- Dpegasus. di r. exec=app_domai n/ app - Dpegasus. di r. st orage=duncan - Xmx1024 - Xnms512\
--dir /pegasus-features/dax-3.2/dags \
--relative-dir user/pegasus/bl ackdi anmond/ run0005/ user/ pegasus/ bl ackdi anond/ run0005/./dag_1 \
--relative-submt-dir user/pegasus/bl ackdi amond/ run0005/./dag_1/test_I DOO0002\
--basenanme bl ack --sites dax_site \

--output local --force --nocleanup \
--verbose --verbose --verbose --verbose --verbose --verbose --verbose \
--verbose --monitor --deferred --group pegasus --rescue 0\

--dax /submit-dir/./dag_1/test_I DO00002/ dax/ bl ackdi anmond_dax. xmi

JOB stage_out _| ocal _isi_viz_0_0 stage_out_local _isi_viz_0_0.sub
SCRI PT POST stage_out_l ocal _isi_viz_0_0 /pegasus/bin/ pegasus-exitcode /submt-dir/
stage_out _l ocal _isi_viz_0_0. out

SUBDAG EXTERNAL subdag_bl ack_| DO00003 / User s/ user/ Pegasus/ wor k/ dax- 3. 2/ bl ack. dag DI R / duncan/ t est

JOB cl ean_up_stage_out _| ocal _isi_viz_0_0 clean_up_stage_out_l| ocal _isi_viz_0_0.sub
SCRI PT POST cl ean_up_stage_out _local _isi_viz_0_0 /1fsl1/devel/ Pegasus/ pegasus/ bi n/ pegasus-exitcode \
/ submit-dir/clean_up_stage_out _|ocal _isi_viz_0_0.out

JOB cl ean_up_preprocess_I DO0O0001 cl ean_up_preprocess_| DOO0001. sub
SCRI PT POST cl ean_up_preprocess_| DO00001 /1 fs1/devel / Pegasus/ pegasus/ bi n/ pegasus-exi tcode \
/ submi t-dir/clean_up_preprocess_|I DO0O0001. out

PARENT create_dir_bl ackdi anond_0_i si _vi z CH LD pegasus_concat _bl ackdi anond_0
PARENT create_di r_bl ackdi anond_0_| ocal CHI LD pegasus_concat _bl ackdi anond_0
PARENT stage_out_local _isi_viz_0_0 CH LD clean_up_stage_out_local _isi_viz_0_0
PARENT st age_out _l ocal _isi_viz_0_0 CH LD cl ean_up_preprocess_| D000001

PARENT pr eprocess_| D0O00001 CHI LD subdax_bl ack_I DO00002

PARENT preprocess_| DO00001 CHI LD stage_out_local _isi_viz_0_0

PARENT subdax_bl ack_| D0O00002 CHI LD subdag_bl ack_| DO00003

PARENT stage_in_local _isi_viz_0 CH LD chnod_preprocess_| DO00001_0

PARENT stage_in_l ocal _isi_viz_0 CH LD preprocess_| D000001

PARENT chnod_preprocess_| DO00001_0 CHI LD preprocess_| DO00001

PARENT pegasus_concat _bl ackdi anond_0 CHI LD stage_in_local _isi_viz_0

End of DAG

Kickstart XML Record

Kickstart is a light weight C executable that is shipped with the pegasus worker package. All jobs are launced via
Kickstart on the remote end, unless explicitly disabled at the time of running pegasus-plan.

Kickstart does not work with:

1. Condor Standard Universe Jobs

2. MPI Jobs

Pegasus automatically disables kickstart for the above jobs.

Kickstart captures useful runtime provenance information about the job launched by it on the remote note, and putsin
an XML record that it writesto its own stdout. The stdout appearsin the workflow submit directory as <job>.out.00n .
The following information is captured by kickstart and logged:

1. The exitcode with which the job it launched exited.
2. Theduration of the job
3. The start time for the job

4. The node on which thejob ran

73

Submit Directory Details

5. The stdout and stderr of the job

6. The arguments with which it launched the job

7. The environment that was set for the job before it was launched.
8. The machine information about the node that the job ran on

Amongst the above information, the dagman.out file gives a coarser grained estimate of thejob duration and start time.

Reading a Kickstart Output File

The kickstart file below has the following fields highlighted:
1. Thehost on which the job executed and the ipaddress of that host

N

. The duration and start time of the job. The time here is in reference to the clock on the remote node where the
job is executed.

. The exitcode with which the job executed

. The arguments with which the job was launched.

. The directory in which the job executed on the remote site
. The stdout of the job

. The stderr of the job

0 N o 0 A~ W

. The environment of the job
<?xm version="1.0" encodi ng="1SO 8859-1"?>

<invocation xm ns="http://pegasus.isi.edu/ schena/invocation" \
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance" \
xsi : schemalLocati on="http://pegasus.isi.edu/ schena/invocation http://pegasus.isi.edu/ schena/
iv-2.0.xsd" \
version="2.0" start="2009-01-30T19: 17: 41. 157- 06: 00" dur ati on="0. 321"
transformati on="pegasus: : di r manager "\
derivation="pegasus: : di rmanager: 1. 0" resource="cobalt" wf-Iabel ="scbh" \
wf - st anp="2009- 01- 30T17: 12: 55- 08: 00" host addr ="141. 142. 30. 219" host nane="co-
| ogi n. ncsa. ui uc. edu"\
pi d="27714" ui d="29548" user="vahi" gi d="13872" group="bvr" unask="0022">

<mai nj ob start="2009-01-30T19: 17: 41. 426- 06: 00" durati on="0. 052" pi d="27783">

<usage utine="0.036" stinme="0.004" mnflt="739" majflt="0" nswap="0" nsignal s="0" nvcsw="36"
ni vesw="3"/>

<status raw="0"><regul ar exitcode="0"/></status>

<statcall error="0">

<!-- deferred flag: 0 -->
<file name="/u/ ac/ vahi / SOFTWARE/ pegasus/ def aul t/ bi n/ di r manager " >23212F7573722F62696E2F656E762070</
file>

<statinfo npde="0100755" size="8202" inode="85904615883" nlink="1" bl ksize="16384" \
bl ocks="24" nti ne="2008- 09-22T18: 52: 37- 05: 00" ati ne="2009- 01- 30T14: 54: 18- 06: 00" \
ctime="2009-01-13T19: 09: 47-06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>
</statcal | >

<ar gument - vect or >

<arg nr="1">--create</arg>

<arg nr="2">--dir</arg>

<arg nr="3">/u/ ac/ vahi / gl obus-t est/EXEC/ vahi / pegasus/ sch/ run0001</ ar g>
</ ar gunent - vect or >

</ mai nj ob>
<cwd>/ u/ ac/ vahi / gl obus-t est/ EXEC</ cwd>
<usage utine="0.012" stinme="0.208" mnflt="4232" majflt="0" nswap="0" nsignal s="0" nvcsw="15"

ni vesw="74"/>
<machi ne page-si ze="16384" provider="LI NUX">

74

Submit Directory Details

<st anp>2009- 01- 30T19: 17: 41. 157- 06: 00</ st anp>
<unanme systene"linux" nodename="co-|ogin" rel ease="2.6.16.54-0.2.5-default" machi ne="i a64">#1 SMP

Mon Jan 21\

13:29: 51 UTC 2008</ unanme>
<ram t ot al ="148299268096" free="123371929600" shared="0" buffer="2801664"/>
<swap total ="1179656486912" free="1179656486912"/>
<boot idl e="1315786. 920" >2009- 01- 15T10: 19: 50. 283- 06: 00</ boot >
<cpu count ="32" speed="1600" vendor=""></cpu>
<l oad m n1="3.50" min5="3.50" minl5="2.60"/>
<proc total ="841" runni ng="5" sl eeping="828" stopped="5" vnsi ze="10025418752" rss="2524299264"/>
<task total ="1125" runni ng="6" sl eepi ng="1114" stopped="5"/>
</ machi ne>
<statcall error="0" id="stdin">
<!-- deferred flag: 0 -->
<file nane="/dev/null"/>
<statinfo node="020666" size="0" inode="68697" nlink="1" bl ksize="16384" bl ocks="0" \
nti me="2007- 05- 04T05: 54: 02- 05: 00" ati ne="2007- 05- 04T05: 54: 02- 05: 00" \
ctime="2009-01-15T10: 21: 54- 06: 00" ui d="0" user="root" gi d="0" group="root"/>

</statcal | >

<statcall error="0" id="stdout">

<tenporary name="/tnp/gs.out.s9rTIL" descriptor="3"/>

<statinfo node="0100600" size="29" inode="203420686" nlink="1" bl ksi ze="16384" bl ocks="128" \
nti me="2009- 01- 30T19: 17: 41- 06: 00" ati ne="2009- 01- 30T19: 17: 41- 06: 00"\
ctime="2009-01- 30T19: 17: 41- 06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>

<dat a>nkdir finished successfully.

</ dat a>

</statcal | >

<statcall error="0" id="stderr">

<tenporary name="/tnp/gs.err. kobn3S" descriptor="5"/>

<statinfo node="0100600" size="0" inode="203420689" nlink="1" bl ksi ze="16384" bl ocks="0" \
nti me="2009- 01- 30T19: 17: 41- 06: 00" ati ne="2009- 01- 30T19: 17: 41- 06: 00" \

ctime="2009-01-30T19: 17: 41- 06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>

</statcal | >

<statcall error="0" id="gridstart">

<!-- deferred flag: 0 -->
<file nanme="/u/ ac/ vahi / SOFTWARE/ pegasus/ def aul t/ bi n/ ki ckstart">7F454C46020101000000000000000000</
file>

<statinfo npde="0100755" size="255445" inode="85904615876" nlink="1" bl ksi ze="16384" bl ocks="504" \
nti me="2009- 01- 30T18: 06: 28- 06: 00" ati me="2009-01-30T19: 17: 41- 06: 00"\
cti me="2009- 01- 30T18: 06: 28- 06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>
</statcal | >
<statcall error="0" id="logfile">
<descri ptor nunber="1"/>
<statinfo node="0100600" size="0" inode="53040253" nlink="1" bl ksize="16384" bl ocks="0" \
nti me="2009- 01- 30T19: 17: 39- 06: 00" ati ne="2009- 01- 30T19: 17: 39- 06: 00" \
ctime="2009-01-30T19: 17: 39- 06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>
</statcal | >
<statcall error="0" id="channel ">
<fifo nanme="/tnp/gs. app.!|enlnD" descriptor="7" count="0" rsize="0" wsize="0"/>
<statinfo node="010640" size="0" inode="203420696" nlink="1" bl ksize="16384" bl ocks="0" \
ntime="2009-01- 30T19: 17: 41- 06: 00" ati me="2009- 01- 30T19: 17: 41- 06: 00" \
ctime="2009-01-30T19: 17: 41- 06: 00" ui d="29548" user="vahi" gi d="13872" group="bvr"/>
</statcal |l >

<envi r onnment >

<env key="GLOBUS_GRAM JOB_CONTACT" >htt ps://co-1 ogi n. ncsa. ui uc. edu: 50001/ 27456/ 1233364659/ </ env>
<env key="GLOBUS_GRAM MyYJOB_CONTACT" >URLx- nexus: // co-| ogi n. ncsa. ui uc. edu: 50002/ </ env>

<env key="CGLOBUS_LOCATI ON'>/ usr /| ocal / prews-gram 4. 0. 7-r1/ </ env>

</ envi r onment >

<r esour ce>

<soft id="RLIMT_CPU'>unlim ted</soft>
<hard id="RLIM T_CPU'>unl i m t ed</ har d>
<soft id="RLIMT_FSI ZE">unl i m ted</soft>
</ resource>

</invocation>

Jobstate.Log File

The jobstate.log file logs the various states that a job goes through during workflow execution. It is created by the
pegasus-monitord daemon that is launched when a workflow is submitted to Condor DAGMan by pegasus-run.

75

Submit Directory Details

pegasus-monitor d parsesthe dagman.out file and writes out thejobstate.log file, theformat of whichismoreamenable
to parsing.

Note

The jobstate.log fileis not created if auser uses condor_submit_dag to submit aworkflow to Condor DAG-
Man.

The jobstate.log file can be created after a workflow has finished executing by running pegasus-monitord on
the .dagman.out file in the workflow submit directory.

Below is a snippet from the jobstate.log for asingle job executed via condorg:

1239666049 create_dir_bl ackdi anond_0_isi_viz SUBMT 3758.0 isi_viz - 1

1239666059 create_dir_bl ackdi anond_0_isi_viz EXECUTE 3758.0 isi_viz - 1

1239666059 create_dir_bl ackdi anond_0_isi_viz GLOBUS SUBM T 3758.0 isi_viz - 1
1239666059 create_dir_bl ackdi anond_0_isi_viz GRID SUBM T 3758.0 isi_viz - 1

1239666064 create_dir_bl ackdi anond_0_isi_viz JOB_TERM NATED 3758.0 isi_viz - 1
1239666064 create_dir_bl ackdi anond_0_isi_viz JOB SUCCESS 0 isi_viz - 1

1239666064 create_dir_bl ackdi anond_0_isi_viz POST_SCRI PT_STARTED - isi_viz - 1
1239666069 create_dir_bl ackdi anond_0_isi_viz POST_SCRI PT_TERM NATED 3758.0 isi_viz - 1
1239666069 create_dir_bl ackdi anond_0_isi_viz POST_SCRI PT_SUCCESS - isi_viz - 1

Each entry in jobstate.log has the following:

1. ThelSO timestamp for the time at which the particular event happened.
2. The name of thejob.

3. The event recorded by DAGMan for the job.

4. The condor id of the job in the queue on the submit node.

5. The pegasus site to which the job is mapped.

6. Thejob time requirements from the submit file.

7. Thejob submit sequence for this workflow.

Table7.1. Table1: Thejob lifecycle when executed as part of the wor kflow

STATE/EVENT DESCRIPTION

SUBMIT job is submitted by condor schedd for execution.

EXECUTE condor schedd detects that a job has started execution.

GLOBUS SUBMIT thejob has been submitted to the remoteresource. It'sonly
written for GRAM jobs (i.e. gt2 and gt4).

GRID_SUBMIT same a GLOBUS SUBMIT event. The
ULOG_GRID_SUBMIT event iswritten for al grid uni-
verse jobs./

JOB_TERMINATED job terminated on the remote node.

JOB_SUCCESS job succeeded on the remote host, condor id will be zero
(successful exit code).

JOB_FAILURE job failed on the remote host, condor id will be the job's
exit code.

POST_SCRIPT_STARTED post script started by DA GMan on the submit host, usually
to parse the kickstart output

POST_SCRIPT_TERMINATED post script finished on the submit node.

POST_SCRIPT_SUCCESS | POST_SCRIPT_FAILURE | post script succeeded or failed.

76

Submit Directory Details

There are other monitoring related files that are explained in the monitoring chapter.

Pegasus Workflow Job States and Delays

Thevariousjob statesthat ajob goesthrough (as caputured in the dagman.out and jobstate.log file) duringit'slifecycle
areillustrated below. The figure below highlights the various local and remote delays during job lifecycle.

PEGASUS WORKFLOW JOB STATES AND DELAYS

B Submit Node Delays
B Remote Node Delays

Condor Submit
<+—— Condor Terminated

Postscript Begin

Postscript End

+— Condor Execute

+—— (Grid Submit
«— Kickstart Begin
-+ Kickstart End
-

Condor Submit

-
-+

m—— ¥
am - ..

ki Z_I ..

Resource Delay PostScript Startup Delay

Condor Delay

- PARENT JOB -

DagMan Delay

Braindump File

The braindump file is created per workflow in the submit file and contains metadata about the workflow.

Table7.2. Table 2: Information Captured in Braindump File

KEY DESCRIPTION

user the username of the user that ran pegasus-plan

grid_dn the Distinguished Name in the proxy

submit_hostname the hostname of the submit host

root_wf_uuid the workflow uuid of the root workflow

wf_uuid the workflow uuid of the current workflow i.e the one
whose submit directory the braindump fileis.

dax the path to the dax file

dax_label the label attribute in the adag element of the dax

dax_index the index in the dax.

dax_version the version of the DAX schemathat DAX referred to.

pegasus wf_name the workflow name constructed by pegasus when plan-
ning

timestamp the timestamp when planning occured

basedir the base submit directory

submit_dir the full path for the submit directory

properties the full path to the propertiesfile in the submit directory

7

Submit Directory Details

planner the planner used to construct the executable workflow. al-
way's pegasus

planner_version the versions of the planner

pegasus _build the build timestamp

planner_arguments the arguments with which the planner isinvoked.

jd the path to the jobstate file

rundir the rundir in the numbering scheme for the submit direc-
tories

pegasushome the root directory of the pegasus installation

vogroup the vo group to which the user belongs to. Defaults to pe-
gasus

condor_log thefull path to condor common login the submit directory

notify the notify file that contains any notifications that need to
be sent for the workflow.

dag the basename of the dag file created

type the type of executable workflow. Can be dag | shell

A Sample Braindump Fileis displayed below:

user vabhi

grid_dn null

subm t _host name obel i x

root _wf _uui d a4045eb6- 317a- 4710- 9a73- 96a745chif e8

wf _uui d a4045eb6- 317a- 4710- 9a73- 96a745cb1f e8

dax /datal/scratch/vahi/exanpl es/synthetic-scec/ Test. dax

dax_| abel Stanpede- Test

dax_i ndex 0

dax_version 3.3

pegasus_wf _nane St anpede- Test-0

tinmestanp 20110726T153746- 0700

basedi r /data/scratch/vahi/exanpl es/ synthetic-scec/ dags

subm t _dir /datal/scratch/vahi/exanpl es/synthetic-scec/dags/vahi/pegasus/ St anpede- Test/run0005

properties pegasus. 6923599674234553065. properties

pl anner /data/scratch/vahi/software/install/pegasus/default/bin/pegasus-plan

pl anner _version 3. 1.0cvs

pegasus_bui | d 20110726221240Z

pl anner _argunents "--conf ./conf/properties --dax Test.dax --sites local --output local --dir dags
--force --submt "

jsd jobstate.log

rundi r run0005

pegasushone /data/scratch/vahi/software/install/pegasus/default

vogroup pegasus

condor _| og Stanpede-Test-0.1o0g

notify Stanpede-Test-0.notify

dag Stanpede- Test-0. dag

type dag

Pegasus static.bp File

Pegasus creates aworkflow.static.bp file that links jobs in the DAG with the jobsin the DAX. The contents of thefile
arein netlogger format. The purpose of thisfileisto be ableto link an invocation record of atask to the corresponding
jobinthe DAX

The workflow is replaced by the name of the workflow i.e. same prefix asthe .dag file
In thefile there are five types of events:
e task.info
This event is used to capture information about al the tasks in the DAX(abstract workflow)

« task.edge

78

Submit Directory Details

This event is used to capture information about the edges between the tasks in the DAX (abstract workflow)
¢ job.info

Thisevent is used to capture information about the jobs in the DAG (executable workflow generated by Pegasus)
e job.edge

This event is used to capture information about edges between the jobs in the DAG (executable workflow).
« wf.map.task_job

This event is used to associate the tasksin the DAX with the corresponding jobs in the DAG.

79

Chapter 8. Monitoring, Debugging and
Statistics

Pegasus comes bundled with useful tools that help users debug workflows and generate useful statistics and plots
about their workflow runs. These tools internally parse the Condor log files and have a similar interface. With the
exception of pegasus-monitord (see below), al tools take in the submit directory as an argument. Users can invoke
the tools listed in this chapter as follows:

$ pegasus-[tool nane] <path to the submt directory>

All these utilities query a database (usualy a sqllite in the workflow submit directory) that is populated by the
monitoring daemon pegasus-monitord .

Workflow Status

Asthe number of jobs and tasksin workflows increase, the ability to track the progress and quickly debug aworkflow
becomes more and more important. Pegasus comes with a series of utilities that can be used to monitor and debug
workflows both in real-time as well as after execution is already completed.

pegasus-status

To monitor the execution of the workflow run the pegasus-status command as suggested by the output of the pega-
sus-run command. pegasus-status shows the current status of the Condor Q as pertaining to the master workflow
from the workflow directory you are pointing it to. In asecond section, it will show asummary of the state of all jobs
in the workflow and all of its sub-workflows.

The details of pegasus-status are described in its respective manual page. There are many options to help you gather
the most out of this tool, including a watch-mode to repeatedly draw information, various modes to add more infor-
mation, and legends if you are new to it, or need to present it.

$ pegasus-status /Workfl ow dags/directory
STAT | N_STATE JOB

Run 05:08 level-3-0

Run 04: 32 | - sl eep_I| DOO0005

Run 04:27 _subdax_| evel - 2_1 DO00004

Run 03: 51 | - sl eep_I DOO0003

Run 03: 46 \ _subdax_I evel - 1_| DO00002

Run 03: 10 \ _sl eep_I DOO0O001

Summary: 6 Condor jobs total (R 6)

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %DONE
0 0 0 6 0 3 0 33.3

Summary: 3 DAGs total (Running:3)

Withoutthe- | option, theonly asummary of theworkflow statisticsisshown under the current queue status. However,
withthe- | option, it will show each sub-workflow separately:

$ pegasus-status -1 /Workfl ow dags/directory
STAT | N_STATE JOB

Run 07:01 level-3-0

Run 06: 25 | - sl eep_I DOO0005

Run 06: 20 \ _subdax_I evel - 2_1 D0O00004
Run 05: 44 | - sl eep_I DOO0003

Run 05: 39 \ _subdax_| evel - 1_1 D000002
Run 05: 03 \ _sl eep_| D0O0O0001

Summary: 6 Condor jobs total (R 6)

UNRDY READY PRE IN_Q POST DONE FAIL “ONE STATE DAGNAME

0 0 0 1 0 1 0 50.0 Running |evel -2_1 D000004/ | evel -1_1 DO00002/
| evel -1- 0. dag

0 0 0 2 0 1 0 33.3 Running | evel -2_1D000004/ | evel -2-0. dag

0 0 0 3 0 1 0 25.0 Running *level -3-0.dag

0 0 0 6 0 3 0 33.3 TOTALS (9 j obs)

Summary: 3 DAGs total (Running:3)

80

Monitoring, Debugging and Statistics

The following output shows a successful workflow of workflow summary after it has finished.

$ pegasus-status work/2011080514

(no matching jobs found in Condor Q

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %DONE
0 0 0 0 0 7,137 0 100.0

Summary: 44 DAGs total (Success: 44)

Warning

For large workflowswith many jobs, please note that pegasus-statuswill take timeto compile state from all
workflow files. Thistypically affectstheinitial run, and sub-sequent runs are faster due to the file system's
buffer cache. However, on alow-RAM machine, thrashing is a possibility.
The following output show a failed workflow after no more jobs from it exist. Please note how no active jobs are
shown, and the failure status of the total workflow.

$ pegasus-status work/submit

(no matching jobs found in Condor Q

UNREADY READY PRE QUEUED POST SUCCESS FAI LURE %DONE
20 0 0 0 0 0 2 0.0

Summary: 1 DAG total (Failure:1)

pegasus-analyzer

Pegasus-analyzer isacommand-line utility for parsing several filesin the workflow directory and summarizing useful
information to the user. It should be used after the workflow has already finished execution. pegasus-analyzer quickly
goes through the jobstate.log file, and isolates jobs that did not complete successfully. It then parses their submit,
and kickstart output files, printing to the user detailed information for helping the user debug what happened to his/
her workflow.

The simplest way to invoke pegasus-analyzer isto simply giveit aworkflow run directory, like in the example below:

$ pegasus-anal yzer /hone/ user/run0004
pegasus-anal yzer: initializing...

************************************Sumry*************************************

Total jobs : 26 (100.00%
j obs succeeded : 25 (96.15%
jobs failed : 1 (3.84%
jobs unsubmitted : 0 (0.00%

kkkkkkkkkkkkkkkkkkkkkkkkkxk*k**Fqj | o] ObS' detaj| s****kkkkkkhkhhkkhkkkhkhkkkkkkkkk*

egister_viz_glidein_7_0

| ast state: POST_SCRI PT_FAI LURE
site: local
submt file: /home/user/run0004/register_viz_glidein_7_0.sub
output file: /home/user/run0004/register_viz_glidein_7_0.out.002
error file: /home/user/run0004/register_viz_glidein_7_0.err.002

------------------------------- Task #1 - SUMMBIY----- - m e e e

site : local

executable : /lfsl/software/install/pegasus/default/bin/rc-client

argunents . -Dpegasus. user. properties=/Ifsl/work/pegasus/run0004/ pegasus. 15181. properties \
- Dpegasus. catal og.replica.url=rlsn://smarty.isi.edu --insert register_viz_glidein_7_0.in
exitcode 1

working dir : /Ifsl/work/pegasus/run0004
--------- Task #1 - pegasus::rc-client - pegasus::rc-client:1.0 - stdout---------

2009- 02- 20 16:25:13. 467 ERROR [root] You need to specify the pegasus.catal og.replica property
2009- 02-20 16:25:13.468 WARN [root] non-zero exit-code 1

Inthecaseabove, pegasus-analyzer'soutput containsabrief summary section, showing how many jobshave succeeded
and how many have failed. After that, pegasus-analyzer will print information about each job that failed, showing its
last known state, along with the location of its submit, output, and error files. pegasus-analyzer will aso display any
stdout and stderr from the job, as recorded inits kickstart record. Please consult pegasus-analyzer's man page for more
examples and a detailed description of its various command-line options.

81

Monitoring, Debugging and Statistics

Note

Starting with 4.0 release, by default pegasus analyzer queries the database to debug the workflow. If you
want it to use files in the submit directory , use the --files option.

pegasus-remove

If you want to abort your workflow for any reason you can use the pegasus-remove command listed in the output of
pegasus-run invocation or by specifying the Dag directory for the workflow you want to terminate.

$ pegasus-renove / PATH To/ WORKFLOW DI RECTORY

Resubmitting failed workflows

Pegasus will remove the DAGMan and all the jobs related to the DAGMan from the condor queue. A rescue DAG
will be generated in case you want to resubmit the same workflow and continue execution from where it last stopped.
A rescue DAG only skips jobs that have completely finished. It does not continue a partially running job unless the
executabl e supports checkpointing.

To resubmit an aborted or failed workflow with the same submit files and rescue Dag just rerun the pegasus-run
command

$ pegasus-run / Pat h/ To/ Wr kfl ow Di rectory

Plotting and Statistics

Pegasus plotting and statistics tools queries the Stampede database created by pegasus-monitord for generating the
output.The stampede scheme can be found here.

The statistics and plotting tools use the following terminology for defining tasks, jobs etc. Pegasus takes in a DAX
which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that consists of Jobs. In
case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable workflow. When
DAGMan executes ajob, ajob instance is populated . Job instances capture information as seen by DAGMan. In case
DAGManretiresajob on detecting afailure, anew job instanceis populated. When DAGMan finds ajob instance has
finished , an invocation is associated with job instance. In case of clustered job, multipleinvocationswill be associated
with asinglejob instance. If aPre script or Post Script isassociated with ajob instance, then invocations are popul ated
in the database for the corresponding job instance.

pegasus-statistics

Pegasus statistics can compute statistics over one or more than one workflow run.

Command to generate statistics over asingle runis as shown below.

$ pegasus-statistics /scratch/grid-setup/run0001/ -s all

Pegasus Wor kfl ow Managenent System - http://pegasus.isi.edu

Wor kf | ow sunmary:
Summary of the workflow execution. It shows total
t asks/j obs/sub workflows run, how many succeeded/failed etc.
I'n case of hierarchical workflow the cal cul ati on shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not conpleted etc. This
is calculated as difference between 'total’' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

HoH H HH H HHHHHHHHHHH

82

Monitoring, Debugging and Statistics

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total +Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cunulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wal Itine fromthe start of the workflow execution to the end as
reported by the DAGVAN. I n case of rescue dag the value is the
curmul ative of all retries.
Wor kf | ow cumul ative job wall tine:
The sumof the walltine of all jobs as reported by kickstart.
In case of job retries the value is the cunulative of all retries.
For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the walltine value includes jobs fromthe sub workflows as well.
Cunrul ative job walltime as seen fromsubnmit side:
The sumof the walltine of all jobs as reported by DAGVan.
This is simlar to the regular cumulative job walltinme, but includes
j ob managenent overhead and del ays. In case of job retries the val ue
is the cumulative of all retries. For workflows having sub workfl ow
jobs (i.e SUBDAG and SUBDAX jobs), the walltinme value includes jobs
fromthe sub workflows as well.
Type Succeeded Failed |Inconplete Total Retries Total +Retries
Tasks 4 0 0 4 0 4
Jobs 17 0 0 17 0 17

HoHH H HHHHHHHHHHHHHH

Wor kflow wal I tine : 5 mns, 18 secs
Wor kfl ow cunul ative job wall tine 4 mns, 2 secs
Cunul ative job walltine as seen fromsubnit side : 4 mins, 10 secs

By default the output gets generated to a statistics folder inside the submit directory. The output that is generated
by pegasus-statistics is based on the value set for command line option 's(statistics level). In the sample run the
command line option 's is set to 'al’ to generate all the statistics information for the workflow run. Please consult the
pegasus-statistics man page to find a detailed description of various command line options.

Note

In case of hierarchal workflows, the metricsthat are displayed on stdout take into account all the jobs/tasks/
sub workflows that make up the workflow by recursively iterating through each sub workflow.

Command to generate statistics over all workflow runs populated in a single database is as shown below.

$ pegasus-statistics -Dpegasus. nonitord. output="nysql://s_user:s_user123@27.0.0. 1: 3306/ st anpede' -
o /scratch/workflow 1_2/statistics -s all --nmultiple-w

Pegasus Wor kfl ow Managenent System - http://pegasus.isi.edu

Wor kf | ow sunmary:
Summary of the workflow execution. It shows total
t asks/j obs/ sub workfl ows run, how many succeeded/failed etc.
I'n case of hierarchical workflow the cal cul ation shows the
statistics across all the sub workflows.It shows the follow ng
statistics about tasks, jobs and sub workfl ows.

* Succeeded - total count of succeeded tasks/jobs/sub workfl ows.

* Failed - total count of failed tasks/jobs/sub workfl ows.

* Inconplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not conpleted etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed count.

* Total - total count of tasks/jobs/sub workfl ows.

* Retries - total retry count of tasks/jobs/sub workfl ows.

* Total +Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cunulative of retries,
succeeded and failed count.

Wor kfl ow wal | tine:
The wal ltime fromthe start of the workfl ow execution to the end as
reported by the DAGVAN. I n case of rescue dag the value is the
curmul ative of all retries.

B HHHHHHHHHHHHHHHHHHHHH S

83

Monitoring, Debugging and Statistics

Workfl ow cumul ative job wall tine:

The sum of the walltime of all jobs as reported by kickstart.

In case of job retries the value is the cunulative of all retries.

For wor kfl ows having sub workfl ow jobs (i.e SUBDAG and SUBDAX j obs),
the walltine value includes jobs fromthe sub workflows as well.

Cunul ative job walltinme as seen from subnmit side:

The sum of the walltime of all jobs as reported by DAGwVan.

This is simlar to the regular cumul ative job walltinme, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the walltine value includes jobs
fromthe sub workflows as well.

Type Succeeded Failed |nconplete Total Retries Total +Retri es
Tasks 8 0 0 8 0 8

Jobs 34 0 0 34 0 34
Sub-Workflows 0 0 0 0 0 0

Wor kfl ow cunul ative job wall tine : 8 mins, 5 secs

Cunul ative job walltine as seen fromsubnit side : 8 mins, 35 secs

Note

When computing statistics over multiple workflows, please note,

1. All workflow run information should be populated in asingle STAMPEDE database.
2. The --output argument must be specified.

3. Job statisticsinformation is not computed.

4. Workflow wall time information is not computed.

Pegasus statistics can also compute statistics over afew specified workflow runs, by specifying the either the submit
directories, or the workflow UUIDs.

pegasus-statistics -Dpegasus. nonitord. output='"<DB URL> -0 <OUTPUT_DIR> <SUBM T_DIR 1>
<SUBM T DIR 2> .. <SUBM T_DIR n>

R

pegasus-statistics -Dpegasus. nonitord. output='"<DB URL> -0 <OQUTPUT_DIR> --isuuid <UU D 1>
<UU D 2> .. <UU D_n>

pegasus-statistics summary which is printed on the stdout contains the following information.

* Workflow summary - Summary of the workflow execution. In case of hierarchical workflow the calcul ation shows
the statistics across al the sub workflows.It shows the following statistics about tasks, jobs and sub workflows.

» Succeeded - total count of succeeded tasksg/jobs/sub workflows.
» Failed - total count of failed tasks/jobs/sub workflows.

» Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. Thisincludes all
the jobs that are not submitted, submitted but not completed etc. Thisis calculated as difference between 'total’
count and sum of 'succeeded' and 'failed' count.

e Total - total count of tasks/jobs/sub workflows.
» Retries- total retry count of tasks/jobs/sub workflows.

e Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of
total retries, succeeded and failed count.

« Workflow wall time - The walltime from the start of the workflow execution to the end as reported by the
DAGMAN.In case of rescue dag the value is the cumulative of all retries.

Monitoring, Debugging and Statistics

Type |Succeeded | Failed Incom- Total Retries | Total Run | Workflow
plete Retries
2a86df11b-9972-4ba0- 0
baba-4fd39c357af4

Tasks 4 0 0 4 0 4
Jobs 13 0 0 13 0 13

Sub Work- 0 0 0 0 0 0
flows

Workflow cummulate job wall time - The sum of the walltime of al jobs as reported by kickstart. In case of
job retries the value is the cumulative of al retries. For workflows having sub workflow jobs (i.e SUBDAG and
SUBDAX jobs), the walltime value includes jobs from the sub workflows as well. This value is multiplied by the
multiplier_factor in the job instance table.

Cumulativejob walltime as seen from submit side - The sum of the walltime of all jobs asreported by DAGMan.
Thisis similar to the regular cumulative job walltime, but includes job management overhead and delays. In case
of job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG
and SUBDAX jobs), the walltime value includes jobs from the sub workflows. This value is multiplied by the
multiplier_factor in the job instance table.

pegasus-statistics generates the following statistics files based on the command line options set.

Workflow statistics file per workflow [wor kflow.txt]

Workflow statistics file per workflow contains the following information about each workflow run. In case of hierar-
chal workflows, the file contains a table for each sub workflow. The file also contains a 'Tota' table at the bottom
which isthe cumulative of all the individual statistics details.

A sample table is shown below. It shows the following statistics about tasks, jobs and sub workflows.

Workflow retries - number of times aworkflow was retried.
Succeeded - total count of succeeded tasks/jobs/sub workflows.
Failed - total count of failed tasks/jobs/sub workflows.

Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. Thisincludes al the
jobs that are not submitted, submitted but not completed etc. Thisis calculated as difference between 'total' count
and sum of 'succeeded' and 'failed' count.

Total - total count of tasks/jobs/sub workflows.
Retries - total retry count of tasks/jobs/sub workflows.

Total Run - total count of tasks/jobs/sub workflows executed during workflow run. Thisis the cumulative of total
retries, succeeded and failed count.

Table 8.1. Workflow Statistics

Job statisticsfile per workflow [jobs.txt]

Job statistics file per workflow contains the following details about the job instances in each workflow. A sample
fileis shown below.

Job - the name of the job instance

Try - the number representing the job instance run count.

Site - the site where the job instance ran.

Kickstart(sec.) - the actual duration of the job instance in seconds on the remote compute node.

Mult - multiplier factor from the job instance table for the job.

85

Monitoring, Debugging and Statistics

Kickstart_Mult - value of the Kickstart column multiplied by Mult.
CPU-Time - remote CPU time computed as the stime + utime (when Kickstart is not used, thisis empty).
Post(sec.) - the postscript time as reported by DAGMan.

Condor QTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It isan estimate
of the time spent in the condor g on the submit node .

Resour ce(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job instance spent in the remote queue .

Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . |s always >=kickstart .
Seqexec(sec.) - the time taken for the completion of a clustered job instance .

Seqexec-Delay(sec.) - the time difference between the time for the completion of a clustered job instance and sum
of all the individual tasks kickstart time .

Table 8.2. Job statistics

Job Try Site | Kick- | Mutickstart M@PU- | Post | Con- Re- Run- Se- | Segex-
start Time dorQ- | source| time | gexec | ec-De-
Time lay

anayge |D00D00OH local | 60.002 1 60.002 | 59.843 | 5.0 0.0 - 62.0 - -
create_din_diamond_Ollocdl loca | 0.027 1 0.027 | 0.003 | 5.0 5.0 - 0.0 - -
findrarpge_l D0QOO0D2 | local |60.001| 10 |600.01|59.921| 5.0 0.0 - 60.0 - -
findraﬂmge_l DOQOOOD3 | local | 60.002| 10 |600.02|59.912| 5.0 10.0 - 61.0 - -
prepro¢ess_|D0OP00AOL | local | 60.002 1 60.002 | 59.898 | 5.0 5.0 - 60.0 - -
regigter_local| 1 @ local | 0.459 1 0459 | 0432 | 6.0 5.0 - 0.0 - -
register_local 1 1 local | 0.338 1 0338 | 0331 | 5.0 5.0 - 0.0 - -
register_local| 2 @ loca | 0.348 1 0.348 | 0.342 | 5.0 5.0 - 0.0 - -
stage in local_|ocall O | local 0.39 1 0.39 | 0.032 5.0 5.0 - 0.0 - -
stage out_local_Ipcall0 O local | 0.165 1 0.165 | 0.108 | 5.0 10.0 - 0.0 - -
stage out_local_Ipcalll O local | 0.147 1 0.147 | 0.098 | 7.0 5.0 - 0.0 - -
stage out_local_Ipcalll_1f local | 0.139 1 0.139 | 0.089 | 5.0 6.0 - 0.0 - -
stage out_local lpcall2 O local | 0.145 1 0.145 | 0101 | 5.0 5.0 - 0.0 - -

Transformation statistics file per workflow [breakdown.txt]

Transformation statistics file per workflow contains information about the invocations in each workflow grouped by
transformation name. A sample file is shown below.

.

Transformation - name of the transformation.

Count - the number of times invocations with a given transformation name was executed.
Succeeded - the count of succeeded invocations with agiven logical transformation name .
Failed - the count of failed invocations with agiven logica transformation name..

Min (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multipler_factor.

Max (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Mean (sec.) - the mean of the invocation runtimes with a given logical transformation name times the
multiplier_factor.

86

Monitoring, Debugging and Statistics

e Total (sec.) - the cumulative of runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Table 8.3. Transformation Statistics

Transfor- Count Succeeded Failed Min M ax Mean Total
mation
dagman::post 13 13 0 5.0 7.0 5.231 68.0
diamond::analyze 1 1 0 60.002 60.002 60.002 60.002
diamond::findranige 2 2 0 600.01 600.02 600.02 1200.03
diamond::preprogess 1 1 0 60.002 60.002 60.002 60.002
pegasus::dirmanager 1 1 0 0.027 0.027 0.027 0.027
pegasus.:pegasus- 5 5 0 0.139 0.39 0.197 0.986
transfer
pegasus..rc- 3 3 0 0.338 0.459 0.382 1.145
client

Time statisticsfile [time.txt]

Time statistics file contains job instance and invocation statistics information grouped by time and host. The time
grouping can be on day/hour. The file contains the following tables Job instance statistics per day/hour, Invocation
statistics per day/hour, Job instance statistics by host per day/hour and Invocation by host per day/hour. A sample
Invocation statistics by host per day table is shown below.

« Job instance statistics per day/hour - the number of job instances run, total runtime sorted by day/hour.
* Invocation statistics per day/hour - the number of invocations, total runtime sorted by day/hour.

« Job instance statistics by host per day/hour - the number of job instances run, total runtime on each host sorted
by day/hour.

« Invocation statistics by host per day/hour - the number of invocations , total runtime on each host sorted by
day/hour.

Table 8.4. Invocation statistics by host per day

Date[YYYY-MM-DD] Host Count Runtime (Sec.)
2011-07-15 butterfly.isi.edu 54 625.094

pegasus-plots

Pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ pegasus-plots -p all /scratch/grid-setup/run0001/

Kkkkkkkkkkkkkkkhhkkhhkkkhkkhkkhkkkkkkkkkkkkkx QUVMARY ****hkkkkkkkkkkkkhkkhkkkkkkkkhkkkkkkkkkkk k% k

Graphs and charts generated by pegasus-plots can be viewed by opening the generated htm file in the
web browser
/ scratch/ grid-setup/run0001/ pl ot s/i ndex. ht m

L s

By default the output gets generated to plots folder inside the submit directory. The output that is generated by pega-
sus-plots is based on the value set for command line option 'p'(plotting_level).In the sample run the command line
option 'p'isset to 'dl' to generate al the charts and graphs for the workflow run. Please consult the pegasus-plots man
page to find a detailed description of various command line options.pegasus-plots generates an index.html file which
provides linksto all the generated charts and plots. A sample index.html page is show below.

87

Monitoring, Debugging and Statistics

Figure 8.1. pegasus-plot index page

Pegasus plots
Workflow Execution Gantt Chart
Host Over Time Chart
Time Chart
DAX graph
DAG graph
dag_file_name :diamond-0.dag
wi_uuid «d7257985-4e25-4519-a13b-129687d80b36
submit_hostname buterflyisi edo
dax_label :diamond
planner_version :3.1.0cvs
planner_arguments :
grid_dn J/DC=0rg/DC=doegrids/OU=People/CN=Prasanth Thomas 541192
user :prasanth
submit_dir Jfs1/pras: d-semup/workflow/hierarichal/dags/prasanth/pegasusmierarichalirun0001 /dag _2/diamond_IDOO00002.000

dax_version 133

pegasus-plots generates the following plots and charts.
Dax Graph

Graph representation of the DAX file. A sample page is shown below.

Figure8.2. DAX Graph

DAX Graph
Top level workflow (ad180edc-222b-49d5-hef3-7c40b8969422)

b

wi_unid ad180ede-222b-49d5-bef3. Ted9hBO694 22
dax label hierarichal

Sub workflow's of workflow (ad180edc-222b-49d5-hef3-7Tc49bB969422)

e

wi_uuid :d 1adaB67-5499-436d-b4B0-52d 7384 52 Te
dax label :dinmond

Dag Graph

—_

wi_uuid :812acTe2- |1 aD-4{Tf-adas-8 Secfedbdfal
dax label ;diamond

88

Monitoring, Debugging and Statistics

Graph representation of the DAG file. A sample page is shown below.

Figure 8.3. DAG Graph

DAG Graph
Top level workflow (ad180edc-222b-49d5-bef3-Ted9bE969422)

i .

wi_uuid :ad] BOedc-222b-4%d5-bof3-TodYbE965422
dag label :hierarichal-0

Sub workflow's of workflow (ad180ede-222b-49d5-bef3-Te49b8969422)

R R
e e
et el
e "y — el s o —
e = B
AL s Al AL s
e B
wi_unid :dlada:ﬂ-lf::?;mﬁ%ﬁdﬂ“mh wi_wuid :ma::zl;::;:n:maismmmm

Gantt workflow execution chart

Gantt chart of the workflow execution run. A sample page is shown below.

Figure 8.4. Gantt Chart

Workflow execution Gantt chart
et § { X & ¥ EE

hiararichal

Tt e 2 D00

Fabeian e DB

Job count —=

| et e Sewera D oew |

5] [E]
Timeline in seconds --=
‘condior o 8 mource deiny & o tme m ety dagran) powtacro pagm irmarage:

% o) =) = -] P e o (]

] 9.

0 s ot joib [MOB_TERMINATED -SUBMIT]
] show kickstart fime ¥
] show runtime as soen by dagman [JOB_TERMINATED - EXECUTE] §
0 st sesource delay [EXECUTE SGRID_SUBMITAGLOBUS_SUBMIT]

(1 bow poe script time i
L aborw st sl time

———— Condor Expcue
PR— R

Possicrpt Slang Celay

89

Monitoring, Debugging and Statistics

The toolbar at the top provides zoom infout , pan left/right/top/bottom and show/hide job name functionality. The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Host over timechart

Host over time chart of the workflow execution run. A sample page is shown below.

Figure 8.5. Host over time chart

Host Over Time Chart - ,
oo et § 3 et EE

1 Ui

Host count —=

@) =) =
Timeding in seconds -->
e o8 S By o
show eondar job [JOB_TERMINATED -SUBMIT)
show kickstart time

show nuntime as seen: by dagman [J08_TERMINATED - EXECUTE] E 1
show resoence delay [EXECUTE -GRID_SUBMIT/GLOBUS_SUBMIT]

The toolbar at the top provides zoom infout , pan left/right/top/bottom and show/hide host name functionality. The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Timechart

Time chart shows job instance/invocation count and runtime of the workflow run over time. A sample page is shown
below.

0

Monitoring, Debugging and Statistics

Figure 8.6. Timechart

Time chart

Ll JE =S

a®

ann
amm

it
i

.

T
L

Runtime in secands <= >

u
]
.
—
-
a—_
-
.
-
.
count >

o
S dE

TR
L eI
LEC
e

Date time --=

@ sman mean et

Type filter Time fler

* show joba Iy i

show imvocabions ® by bour

The toolbar at the top provides zoom infout and pan left/right/top/bottom functionality. The toolbar at the bottom can
be used to switch between job instances invocations and day/hour filtering.

Breakdown chart

Breakdown chart showsinvocation count and runtime of the workflow run grouped by transformation name. A sample
page is shown below.

91

Monitoring, Debugging and Statistics

Figure 8.7. Breakdown chart

Invocation breakdown by count grouped by transformation name

diamond
pogasus: dirmanager diamond: preprocess diamond: findrange pegasus:re-client
damand - analyze POGASUS: POJASUS-ransior
Breakdown by
® count
O runtime

Note: Legends can be clicked to find information corresponding to the transformation name.

Thetoolbar at the bottom can be used to switch between invocation count and runtime filtering. Legends can be clicked
to get more details.

Dashboard

Asthe number of jobs and tasksin workflows increase, the ability to track the progress and quickly debug aworkflow
becomes more and more important. The dashboard provides users with a tool to monitor and debug workflows both
in real-time as well as after execution is already completed, through a browser.

Workflow Dashboard

Pegasus Workflow Dashboard is bundled with the Pegasus service layer. This is available as a separate project in
Github [https://github.com/pegasus-isi/pegasus-service]. The pegasus-service-server is developed in Python and uses
the Flask framework to implement the web interface. The users can then connect to this server using a browser to
monitor/debug workflows.

Note

the workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.
By default, the server is configured to listen on all network interfaces on port 5000. A user can view the dashboard
on http://<IP_ADDRESS>:5000/

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service-server.

92

https://github.com/pegasus-isi/pegasus-service
https://github.com/pegasus-isi/pegasus-service

Monitoring, Debugging and Statistics

The Dashboard's home page lists al workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed. The home page lists only the top level workflows
(Pegasus supports hierarchical workflowsi.e. workflows within aworkflow). The rows in the table are color coded

¢ Green: indicates workflow finished successfully.

* Red: indicates workflow finished with afailure.

» Blue: indicates aworkflow is currently running.

Figure 8.8. Dashboard Home Page

#

‘Workflow Listing

Successtul: 1~ _— Running: 1

) ‘
| S Running @ Failed W Successful |

Show results for:

- search:
Workflow Label < Submit Directory & State & Submitted On -
diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0003 Running Tue, 12 Nov 2013 14:39:22
diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0002 Failed Tue, 12 Nov 2013 14:11:11
diamond /home/tutorial/submit/tutorial/pegasus/diamond/run0001 Successful Tue, 12 Nov 2013 14:05:49

Showing 1 to 3 of 3 entries First Previous 1 Next Last I

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page a so displays pie charts showing the distribution of jobs based on status.

In addition, the details page displays atab listing al sub-workflows and their statuses. Additional tabs exist which list
information for al running, failed, and successful jobs.

Theinformation displayed for ajob depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

93

Monitoring, Debugging and Statistics

Figure 8.9. Dashboard Workflow Page

A | Workflow
Label diamond
Type root-wf
Progress Successful
Submit Host localhost.localdomain
User tutorial
Submit Directory /home/tutori it/tutorial diamond/run0001
‘Wall Time 3 mins 56 secs
Cumulative Wall Time 2 mins 2 secs
Job Status (Entire Workflow) Job Status (Per Workflow)

Unsubmitted: 0
F—\ Failed: 0

L ‘Successful: 7

8 unsubmited @ Failed Bl Successtul

Charts Statistics

Show ‘ entries

Job Name - Time Taken s
analyze 1D0000004 30 secs
create_dir_diamond_0_PegasusVM 0secs
findrange_|D0000002 30 secs
findrange_I|D0000003 30 secs
preprocess_1D0000001 30 secs
stage_in_local_PegasusVM_0_0 0 secs
stage_out_local_PegasusVM_2_0 0 secs

Showing 1 to 7 of 7 entries

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

Thejob details page a so showstab'sfor failed, and successful task invocations (Pegasus allows usersto group multiple
smaller task'sinto asingle job i.e. ajob may consist of one or more tasks)

Figure 8.10. Dashboard Job Description Page
=

M | Workflow | Job

Job Details
Label preprocess_ID0000001
Type Compute
Exit Code 0
Stdout Preview Preview
Stdout File preprocess_[D0000001.out.000
Stderr Preview Preview
Stderr File preprocess [D0000001.erT.000

m Successful

scarcr: [

Invocations - Time Taken &
1D0000001 30 secs

Showing 1 to 1 of 1 entries

94

Monitoring, Debugging and Statistics

Thetask invocation detail s page provides task specific information like task name, exit code, duration etc. Task details
differ from job details, as they are more granular in nature.

Figure 8.11. Dashboard I nvocation Page

M | Workflow | Job | Task
Task Label ID0000001
Transformation preprocess

Executable /home/tutorial/bin/transformation.py
Arguments -ifa-ofbl-ofb2
Exit Code 0
Start Time Tue, 12 Nov 2013 14:07:08

Remote Duration 30 secs

Remote CPU Time 0 secs

The dashboard al so has web pages for workflow statistics and workflow charts, which graphically rendersinformation
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.
1. Workflow level statistics
2. Job breakdown statistics

3. Job specific statistics

Figure 8.12. Dashboard Statistics Page

M | Workflow | Statistics

Workflow Wall Time 3 mins 56 secs
Workflow Cumulative Job Wall Time 2 mins 2 secs
Cumulative Job Walltime as seen from Submit Side 2 mins
Workflow Retries 0

~ Workflow Statistics ‘

This Workflow

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 0 4
Jobs 7 0 0 7 0 7
Sub Workflows 0 0 0 0 0 0

Type Succeeded Failed Incomplete Total Retries Total + Retries
Tasks 4 0 0 4 0 4
Jobs 7 0 0
Sub Workflows 0 0 0 0 0 0

=
o
~

+ Job Breakdown Statistics

+ Job Statistics

The Charts page shows the following charts.
1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

95

Monitoring, Debugging and Statistics

Figure 8.13. Dashboard Plots - Job Distribution

Invocation Distribution by Count

preprocess: 1 - » analyze: 1

\
pegasus::transfer: 2 \\
pegasus::dirmanager: 1

dagman::post: 7

P
findrange: 2 ~

| B analyze BB dagman:post @ findrange @ pegasus:dirmanager @l pegasus:transter Wl preprocess |

By Count By Time

The time chart shown bel ow shows the number of jobs/invocations in the workflow and their total runtime

Figure 8.14. Dashboard Plots - Time Chart

Time Chart by Jobs

2013-01-24 17: 20 secs

Runtime (secs)

2013-01-24 17

BB runtime [l Count

@By Jobs (By Invocations

The workflow gantt chart lays out the execution of the jobs in the workflow over time.

wnoy

96

Monitoring, Debugging and Statistics

Figure 8.15. Dashboard Plots - Workflow Gantt Chart

N | Workflow | Charts

...,

Workflow Execution Gantt Chart

create_dir_diamond_0_PegasusVM .

preprocess.

findrange_IDD

findrange_IDOY

analyze_|

stage_out_local_PegasusVM_2_0

100 1o 120 130 140 150 160
Timeline (Seconds)

‘:-JDD:‘

97

Chapter 9. Example Workflows

These examples are included in the Pegasus distribution and can be found under shar e/ pegasus/ exanpl es in
your Pegasusinstall (/ usr/ shar e/ pegasus/ exanpl es for native packages)

Note

These examplesareintended to be astarting point for when you want to create your own workflows and want
to see how other workflows are set up. The example workflows will probably not work in your environment
without modifications. Site and transformation catalogs contain site and user specifics such as paths to
scratch directoriesand install ed software, and at |east minor modificiationsare required to get the workflows
to plan and run.

Grid Examples

These examples assumes you have accessto a cluster with Globusinstalled. A pre-ws gatekeeper and gridftp server is
reguired. Y ou also need Globus and Pegasus installed, both on the machine you are submitting from, and the cluster.

Black Diamond

Pegasusis shipped with 3 different Black Diamond examplesfor the grid. Thisisto highlight the available DAX APIs
which are Java, Perl and Python. The examples can be found under:

shar e/ pegasus/ exanpl es/ gri d- bl ackdi anond-j ava/
shar e/ pegasus/ exanpl es/ gri d- bl ackdi amond- per |/
shar e/ pegasus/ exanpl es/ gri d- bl ackdi anond- pyt hon/

The workflow has 4 nodes, layed out in adiamond shape, with files being passed between them (f.*):

98

Example Workflows

preprocess

findrange —

The binary for the nodes is a simple "mock application" name keg ("canonical example for the grid") which reads
input files designated by arguments, writes them back onto output files, and produces on STDOUT a summary of
where and when it was run. Keg ships with Pegasus in the bin directory.

This example ships with a "submit" script which will build the replica catalog, the transformation catalog, and the
site catalog. When you create your own workflows, such a submit script is not needed if you want to maintain those
catalogs manually.

Note

Theuseof . / submi t scriptsinthese examplesare just to make it more easy to run the examples out of the
box. For a production site, the catalogs (transformation, replica, site) may or may not be static or generated
by other tooling.

To test the examples, edit the submit script and change the cluster config to the setup and install locations for your
cluster. Then run:

99

Example Workflows

$./submt

The workflow should now be submitted and in the output you should see a work dir location for the instance. With
that directory you can monitor the workflow with:

$ pegasus-status [workdir]
Once the workflow is done, you can make sure it was sucessful with:

$ pegasus-anal yzer -d [workdir]

NASA/IPAC Montage

This example can be found under

shar e/ pegasus/ exanpl es/ gri d- nont age/

The NASA IPAC Montage (http://montage.ipac.caltech.edu/) workflow projects'/montages a set of input images from
telescopes like Hubble and end up with images like http://montage.ipac.caltech.edu/imagessm104.jpg . The test work-
flow isfor a1 by 1 degreestile. It has about 45 input images which al have to be projected, background modeled
and adjusted to come out as one seamless image.

Just like the Black Diamond above, thisexampleusesa. / subni t script.

The Montage DAX is generated with atool called mDAG shipped with Montage which generates the workflow.

Rosetta

This example can be found under

shar e/ pegasus/ exanpl es/ gri d-rosetta/

Rosetta (http://www.rosettacommons.org/) is a high resolution protein prediction and design software. Highlightsin
this example are:

¢ Using the Pegasus Java API to generate the DAX
« The DAX generator loops over the input PDBs and creates a job for each input

« Thejobsall have adependency on aflatfile database. For simplicity, each job dependson all thefilesin the database
directory.

¢ Job clustering is turned on to make each grid job run longer and better utilize the compute cluster

Just like the Black Diamond above, thisexampleusesa. / subni t script.

Condor Examples

Black Diamond - condorio

There are a set of Condor examples available, highlighting different data staging configurations.The most basic one
is condorio, and the example can be found under:

shar e/ pegasus/ exanpl es/ condor - bl ackdi anond- condori o/

This example is using the same abstract workflow as the Black Diamond grid example above, and can be executed
either on the submit machine (universe="local") or on aloca Condor pool (universe="vanilla").

Y ou can run this example with the . / submi t script. Example:

$. /submt

100

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/images/m104.jpg
http://www.rosettacommons.org/

Example Workflows

Local Shell Examples

Black Diamond

To aid in workflow development and debugging, Pegasus can now map aworkflow to alocal shell script. One advan-
tageis that you do not need a remote compute resource.

This example is using the same abstract workflow as the Black Diamond grid example above. The difference is that
aproperty is set in pegasusrc to force shell execution:

tell pegasus to generate shell version of
the workflow
pegasus. code. generator = Shel |

You can run this example with the. / submi t script.

Notifications Example

A new feature in Pegasus 3.1. is notifications. While the workflow is running, a monitoring tool is running side by
side to the workflow, and issues user defined notifications when certain events takes place, such asjob completion or
failure. See notifications section for detailed information. A workflow example with notifications can be found under
examples/notifications. This workflow is based on the Black Diamond, with the changes being notifications added to
the DAX generator. For example, notifications are added at the workflow level:

Create a abstract dag

di amond = ADAG "di anond")

dax level notifications

di amond. i nvoke('all', os.getcwd() + "/ny-notify.sh")

The DAX generator also contains job level notifications:

job level notifications - in this case for at_end events
frr.invoke('at_end', os.getcwd() + "/ny-notify.sh")

These invoke lines specify that the my-notify.sh script will be invoked for events generated (all in the first case,
at_end in the second). The my-notify.sh script contains callouts sample notification tools shipped with Pegasus, one
for email and for Jabber/GTalk (commented out by default):

#!/ bi n/ bash

Pegasus ships with a couple of basic notification tools. Below
we show how to notify via enmil and gtalk.

all notifications will be sent to email
change $USER to your full enmil addess
$PEGASUS_HOME/ | i bexec/ noti fication/enmail -t $USER

this sends notifications about failed jobs to gtalk.

note that you can al so set which events to trigger on in your DAX

set jabberid to your gnmil address, and put in yout

password

uncomment to enable

if ["x$PEGASUS STATUS" != "x" -a "$PEGASUS STATUS' != "0"]; then

$PEGASUS_HOME/ | i bexec/ noti fication/jabber --jabberid FI XME@nuil.com\

--password FI XME \
--host tal k. googl e.com

fi

Workflow of Workflows

Galactic Plane

The Galactic Plane [http://en.wikipediaorg/wiki/Galactic_plane] workflow is a workflow of many Montage work-
flows. The output is a set of tiles which can be used in software which takes the tiles and produces a seamless image

101

http://en.wikipedia.org/wiki/Galactic_plane
http://en.wikipedia.org/wiki/Galactic_plane

Example Workflows

which can be scrolled and zoomed into. As this is more of a production workflow than an example one, it can be a
little bit harder to get running in your environment.

Highlights of the example are:

* The subworkflow DAXes are generated as jobs in the parent workflow - thisis an example on how to make more
dynamic workflows. For example, if you need ajob in your workflow to determine the number of jobsin the next
level, you can have thefirst job create a subworkflow with the right number of jobs.

« DAGMan job categories are used to limit the number of concurrant jobs in certain places. Thisis used to limit the
number of concurrant connections to the data find service, as well limit the number of concurrant subworkflows
to manage disk usage on the compute cluster.

« Job priorities are used to make sure we overlap staging and computation. Pegasus sets default priorities, which for
most jobs are fine, but the priority of the data find job is set explicitly to a higher priority.

« A specific output site is defined the the site catalog and specified with the --output option of subworkflows.

The DAX API has support for sub workflows:

renote_tile_setup = Job(nanespace="gp", nane="renote_tile_setup", version="1.0")
renote_til e_setup. addArgunent s("%05d" % (tile_id))
renote_tile_setup.addProfile(Profile("dagman", "CATEGORY", "renote_tile_setup"))
renote_til e_setup.uses(parans, |ink=Link.|NPUT, register=False)

renote_til e_setup.uses(ndagtar, |ink=Link.OUTPUT, register=Fal se, transfer=True)
uber dax. addJob(renpte_til e_setup)

subwf = DAX("9%05d.dax" % (tile_id), "1D¥®5d" % (tile_id))

subwf . addAr gunent s(" - Dpegasus. schenma. dax=%/ et c/ dax- 2. 1. xsd" 9% os. envi ron[" PEGASUS_HOVE"]),
"-Dpegasus. catalog.replica.file=%/rc.data" % (tile_work_dir),
"-Dpegasus. catalog.site.file=%/sites.xm" % (work_dir),
"-Dpegasus. transfer.links=true",
"--sites", cluster_nane,

"--cluster", "horizontal ",
"--basenane", "tile-9%95d" % (tile_id),

"--force",

"--output", output_nane)
subwf . addProfil e(Profil e("dagman", "CATEGORY", "subworkflow'))
subwf . uses(subdax_file, |ink=Link.|INPUT, register=False)
uber dax. addDAX(subwf)

102

Chapter 10. Reference Manual

Properties

Thisisthe reference guide to al properties regarding the Pegasus Workflow Planner, and their respective default val-
ues. Pleaserefer to the user guide for a discussion when and which properties to use to configure various components.
Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some propertiesrely with their default on the value of other properties. Asanotation, the curly bracesrefer to thevalue
of the named property. For instance, ${ pegasus.home} meansthat the val ue depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following isamutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost al of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.XxXxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property isintroduced by a-D argument. Note that these arguments are parsed by the shell wrapper, and
thusthe -D arguments must be thefirst arguments to any command. Commandline properties are useful for debugging
pUrposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the propertiesfile

¢ pegasus.properties
¢ pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus. catal og.replica File

pegasus. catalog.replica.file ${ pegasus. hone}/etc/ sanpl e.rc. data
pegasus. cat al og. transformation Text

pegasus. catal og. transformation.file ${pegasus. hone}/etc/sanple.tc.text
pegasus. catal og.site.file ${ pegasus. hone}/ et c/ sanpl e. si tes. xnl

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in afile with the suffix properties.

pegasus.home

Systems: al
Type: directory location string
Default: "$PEGASUS HOME"

103

Reference Manual

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clientsinternally by determining the installation directory of pegasus. Knowledge about this property isimportant for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Local Directories

This section describesthe GNU directory structure conventions. GNU distinguishes between architecture independent
and thus sharabl e directories, and directories with data specific to a platform, and thus often local. It al so distinguishes
between frequently modified data and rarely changing data. These two axis form a space of four distinct directories.

pegasus.home.datadir

Systems: al
Type: directory location string
Defaullt: ${ pegasus.home} /share

The datadir directory contains broadly visiable and possilby exported configuration files that rarely change. This
directory is currently unused.

pegasus.home.sysconfdir

Systems: al
Type: directory location string
Defaullt: ${ pegasus.home} /etc

The system configuration directory contains configuration files that are specific to the machine or installation, and
that rarely change. Thisis the directory where the XML schema definition copies are stored, and where the base pool

configuration fileis stored.

pegasus.home.sharedstatedir

Systems: al
Type: directory location string
Defaullt: ${ pegasus.home} /com

Frequently changing files that are broadly visible are stored in the shared state directory. Thisis currently unused.

pegasus.home.localstatedir

Systems: al
Type: directory location string
Default: ${ pegasus.home} fvar

Frequently changing files that are specific to amachine and/or installation are stored in the local state directory. This
directory is being used for the textual transformation catalog, and the file-based replica catal og.

pegasus.dir.submit.logs
System: Pegasus

104

Reference Manual

Since: ‘ 24
Type: ‘ directory location string

This property can be used to specify the directory where the condor logs for the workflow should go to. By default,
starting 4.2.1 release, Pegasus will setup the log to be in the workflow submit directory. This can create problems,
in case users submit directories are on NSF.

Thisis done to ensure that the logs are created in alocal directory even though the submit directory maybe on NFS.

Site Directories

The site directory properties modify the behavior of remotely run jobs. In rare occasions, it may also pertainto locally
run compute jobs.

pegasus.dir.useTimestamp

System: Pegasus
Since: 2.1
Type: Boolean
Defaullt: false

While creating the submit directory, Pegasus employs a run numbering scheme. Users can use this property to use a
timestamp based numbering scheme instead of the runxxxx scheme.

pegasus.dir.exec

System: Pegasus

Since: 20

Type: remote directory location string
Defaullt: (no default)

This property modifies the remote location work directory in which al your jobs will run. If the path is relative then
it is appended to the work directory (associated with the site), as specified in the site catalog. If the path is absolute
then it overrides the work directory specified in the site catalog.

pegasus.dir.storage.mapper

System: Pegasus

Since: 43

Type: enumeration

Value[0]: Flat

Value[1]: Fixed

Value2]: Hashed

Value[3]: Replica

Default: Flat

See Also: pegasus.dir.storage.deep

This property modifies determines how the output files are mapped on the output site storage location.

105

Reference Manual

In order to preserve backward compatibility, setting the boolean property pegasus.dir.storage.deep results in the
Hashed output mapper to be loaded, if no output mapper property is specified.

Flat

Fixed

Hashed

Replica

By default, Pegasus will place the output files in the storage directory specified in the site catalog for
the output site.

Using this mapper, users can specify an externally accesible url to the storage directory in their properties
file. The following property needs to be set.

pegasus. di r. storage. mapper.fixed.url an externally accessible URL to the
storage directory on the output site
e.g. gsiftp://outputs.isi.edu/shared/ outputs

Note: For hierarchal workflows, the above property needs to be set separately for each dax job, if you
want the sub workflow outputs to goto a different directory.

This mapper results in the creation of a deep directory structure on the output site, while populating
the results. The base directory on the remote end is determined from the site catalog. Depending on the
number of files being staged to the remote site a Hashed File Structure is created that ensures that only
256 files reside in one directory. To create this directory structure on the storage site, Pegasus relies on
the directory creation feature of the Grid FTP server, which appeared in globus 4.0.x

Thismapper determinesthe path for an output file on the output site by querying an output replicacatal og.
The output site is one that is passed on the command line. The output replica catalog can be configured
by specifiing the properties with the prefix pegasus.dir.storage.replica. By default, a Regex File based
backend is assumed unless overridden. For example

pegasus. di r. st or age. mapper.replica Regex| Fil e
pegasus. dir.storage. mapper.replica.file the RCfile at the backend to use if using a
file based RC

pegasus.dir.storage.deep

System: Pegasus

Since: 21

Type: Boolean

Defaullt: false

See Also: pegasus.dir.storage.mapper

This property results in the creation of adeep directory structure on the output site, while populating the results. The
base directory on the remote end is determined from the site catal og.

To this base directory, the relative submit directory structure ($user/$vogroup/$label/runxxxx) is appended.

$storage = $base + $relative_submit_directory

Thisisthe base directory that is passed to the storage mapper.

Note: To preserve backward compatibilty, setting this property results in the Hashed mapper to be loaded unless
pegasus.dir.storage.mapper is explicitly specified. Before 4.3, this property resulted in HashedDirectory structure.

pegasus.dir.create.strategy

System: Pegasus
Since: 22

Type: enumeration
Value[0]: HourGlass

106

Reference Manual

Value[1]: Tentacles
Vaue[2]: Minimal
Default: Minimal
If the

--randondi r

option is given to the Planner at runtime, the Pegasus planner adds nodes that create the random directories at the
remote pool sites, before any jobs are actually run. The two modes determine the placement of these nodes and their
dependenciesto the rest of the graph.

HourGlass It adds a make directory node at the top level of the graph, and all these concat to a single dummy job
before branching out to the root nodes of the original/ concrete dag so far. So we introduce a classic
X shape at the top of the graph. Hence the name HourGlass.

Tentacles This option placesthejobs creating directories at the top of the graph. However instead of constricting
it to an hour glass shape, this mode links the top node to al the relevant nodes for which the create
dir job is necessary. It looks as if the node spreads its tentacleas all around. This puts more load on
the DAGMan because of the added dependencies but removes the restriction of the plan progressing
only when al the create directory jobs have progressed on the remote pools, as is the case in the
HourGlass model.

Minimal The strategy involvesin walking the graph in a BFS order, and updating a bit set associated with each
job based on the BitSet of the parent jobs. The BitSet indicates whether an edge exists from the create
dir job to an ancestor of the node. For anode, the bit set isthe union of all the parents BitSets. The BFS
traversal ensuresthat the bitsets are of anode are only updated once the parents have been processed.

pegasus.dir.create.impl

System: Pegasus

Since: 22

Type: enumeration

Value[0]: Defaultlmplementation
Value[1]: S3

Defaullt: Defaultlmpelmentation

This property is used to select the executable that is used to create the working directory on the compute sites.

Defaultlmplementation Thedefault executablethat is used to create adirectory isthe dirmanager executable
shipped with Pegasus. It isfound at SPEGASUS_HOME/bin/dirmanager in the pe-
gasus distribution. An entry for transformation pegasus::dirmanager needs to ex-
ist in the Transformation Catalog or the PEGASUS_HOME environment variable
should be specified in the site catalog for the sites for this mode to work.

S3 This option is used to create buckets in S3 instead of a directory. This should
be set when running workflows on Amazon EC2. This implementation relies on
s3cmd command line client to create the bucket. An entry for transformation
amazon::s3cmd needs to exist in the Transformation Catalog for this to work.

Schema File Location Properties

This section defines the location of XML schema files that are used to parse the various XML document instancesin
the PEGASUS. The schema backupsin the installed file-system permit PEGASUS operations without being online.

107

Reference Manual

pegasus.schema.dax

Systems: Pegasus
Since: 20

Type: XML schemafile location string
Value[0]: ${ pegasus.home.sysconfdir} /dax-3.2.xsd
Defaullt: ${ pegasus.home.sysconfdir} /dax-3.2.xsd

Thisfileis a copy of the XML schema that describes abstract DAG files that are the result of the abstract planning
process, and input into any concrete planning. Providing a copy of the schema enablesthe parser to use thelocal copy
instead of reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.sc

Systems: Pegasus

Since: 20

Type: XML schemafile location string
Value[0]: ${ pegasus.home.sysconfdir} /sc-3.0.xsd
Defaullt: ${ pegasus.home.sysconfdir} /sc-3.0.xsd

Thisfileisacopy of the XML schemathat describes the xml description of the site catalog, that is generated as aresult
of using genpool config command. Providing a copy of the schema enables the parser to use the local copy instead of
reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.ivr

Systems: al

Type: XML schemafile location string
Value[0]: ${ pegasus.home.sysconfdir} /iv-2.0.xsd
Default: ${ pegasus.home.sysconfdir} /iv-2.0.xsd

Thisfileisacopy of the XML schemathat describes invocation record files that are the result of the agrid launchin
aremote or local site. Providing a copy of the schema enables the parser to use the local copy instead of reaching out
to the internet, and obtaining the latest version from the GriPhyN website dynamically.

Database Drivers For All Relational Catalogs

pegasus.catalog.*.db.driver

System: Pegasus

Type: Java class nhame

Valuel0]: Postgres

Vaue[1]: MySQL

Vaue[2]: SQL Server2000 (not yet implemented!)
Value[3]: Oracle (not yet implemented!)

108

Reference Manual

Default: \ (no default)
See also: ‘ pegasus.catal 0g.provenance

The database driver class is dynamically loaded, as required by the schema. Currently, only PostGreSQL 7.3 and
MySQL 4.0 are supported. Their respective JDBC3 driver is provided as part and parcel of the PEGASUS.

A user may provide their own implementation, derived from org.griphyn.vdl.dbdriver.DatabaseDriver, to tak to a
database of their choice.

For each schemain PTC, adriver isinstantiated separately, which has the same prefix as the schema. This may result
in multiple connections to the database backend. As fallback, the schema"*" driver is attempted.

The* inthe property name can be replaced by acatal og nameto apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.url

System: PTC, ...

Type: JDBC database URI string
Defaullt: (no default)

Example: jdbc:postgresgl:${ user.name}

Each database hasits own string to contact the database on agiven host, port, and database. Although most driver URLs
allow to pass arbitrary arguments, please use the pegasus.catal og.[catalog-name].db.* keys or pegasus.catalog.* .db.*
to prel oad these arguments. THE URL ISA MANDATORY PROPERTY FOR ANY DBMS BACKEND.

Postgres : jdbc:postgresql:[//hostnane[:port]/]database

My SQL : jdbc:nysql://hostnanme[:port]]/database

SQLServer: jdbc:mcrosoft:sql server://hostnane: port

O acle : jdbc:oracle:thin:[user/password] @/ host[:port]/service

The* inthe property name can be replaced by acatalog nameto apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.user

System: PTC, ...
Type: string
Defaullt: (no default)
Example: ${ user.name}

In order to access adatabase, you must provide the name of your account on the DBMS. This property is database-in-
dependent. THISISA MANDATORY PROPERTY FOR MANY DBMS BACKENDS.

The* in the property name can be replaced by a catal og nameto apply the property only for that catalog. Valid catalog
names are

replica

109

Reference Manual

provenance

pegasus.catalog.*.db.password

System: PTC, ...
Type: string
Default: (no default)
Example: ${ user.name}

In order to access a database, you must provide an optional password of your account on the DBMS. This property
is database-independent. THIS IS A MANDATORY PROPERTY, IF YOUR DBMS BACKEND ACCOUNT RE-
QUIRES A PASSWORD.

The* in the property name can be replaced by a catal og nameto apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.*
System: |PTC,RC

Each database has a multitude of options to control in fine detail the further behaviour. Y ou may want to check the
JDBC3 documentation of the JIDBC driver for your database for details. The keyswill be passed as part of the connect
properties by stripping the "pegasus.catal og.[catal og-name].db." prefix from them. The catal og-name can be replaced
by the following values provenance for Provenance Catalog (PTC), replicafor Replica Catalog (RC)

Postgres 7.3 parses the following properties:

pegasus. cat al og. *. db. user
pegasus. cat al og. *. db. passwor d
pegasus. cat al og. *. db. PGHOST
pegasus. cat al og. *. db. PGPORT
pegasus. cat al og. *. db. char Set
pegasus. cat al og. *. db. conpati bl e

MySQL 4.0 parses the following properties:

. db. user

. db. password

db. dat abaseNanme

db. server Nare

db. port Nunber

db. socket Factory

db. strict Updat es

db. i gnoreNonTxTabl es

db. secondsBef or eRet ryMast er
db. queri esBef or eRet ryMast er
.db. al | owLoadLocal Infile

. db. conti nueBat chOnErr or

. db. pedantic

. db. useSt reaniengt hsl nPrepStnt s
. db. useTi mezone

. db. rel axAut oConmi t

.db. paranoid

. db. aut oReconnect

.db. capi talizeTypeNanes

. db. ul trabDevHack

.db. strictFl oati ngPoi nt

. db. useSSL

pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.

E T T T

110

Reference Manual

. db. useConpr essi on
. db. socket Ti neout
pegasus. cat al og. *. db. maxReconnect s
pegasus. catal og. *. db. i ni tial Ti neout

pegasus. cat al 0og. *
*
*
*
pegasus. cat al og. *. db. maxRows
*
*
*
*

pegasus. cat al og.

pegasus. cat al og. *. db. useHost sl nPri vi | eges
pegasus. catal og. *. db.interactivedient
pegasus. cat al og. *. db. useUni code

pegasus. cat al og. *. db. char act er Encodi ng

MSSQL Server 2000 support thefollowing properties (keysare case-insensitive, e.g. both "user" and "User" arevalid):

. db. User

. db. Password

. db. Dat abaseNane
. db. Server Nane

pegasus. cat al og. *
*
*
*
*. db. Host Process
*
*
*
*
*

pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.
pegasus. cat al og.

. db. Net Addr ess

. db. Port Nunber

. db. Progr anNanme

. db. SendSt ri ngPar anet er sAsUni code
. db. Sel ect Met hod

The* inthe property name can be replaced by acatal og nameto apply the property only for that catalog. Valid catalog
names are

replica
provenance

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus
Since: 20

Type: enumeration
Value[0]: RLS
Value[1]: LRC
Value2]: JDBCRC
Value[3]: File
Value[4]: Directory
Value[5]: MRC
Value[6]: Regex
Default: RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. Thereis an
index service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC)
report. Each LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central
RLI to discover in which LRC's the mappings for aLFN reside. It then queries the individual LRC's
for the PFN's. To use RLS, the user additionally needs to set the property pegasus.catal og.replica.url

111

Reference Manual

LRC

JDBCRC

File

Regex

to specify the URL for the RLI to query. Details about RLS can be found at http://www.globus.org/
toolkit/datalrls/

If the user does not want to query the RLI, but directly asingle Local Replica Catalog. To use LRC,
the user additionally needs to set the property pegasus.catal og.replica.url to specify the URL for the
LRC to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

In thismode, Pegasus queriesa SQL based replicacatal og that isaccessed viaJDBC. The sgl schema's
for this catalog can be found at $PEGASUS HOME/sql directory. To use JIDBCRC, the user addi-
tionally needs to set the following properties

1. pegasus.catalog.replica.db.driver = mysql

2. pegasus.catalog.replica.db.url = jdbc url to database e.g jdbc:mysql://database-host.isi.edu/data-
base-name

3. pegasus.catalog.replica.db.user = database-user
4. pegasus.catal og.replica.db.password = database-password

In thismode, Pegasus queries afile based replicacatalog. It is neither transactionally safe, nor advised
to use for production purposesin any way. Multiple concurrent instanceswill clobber each other!. The
site attribute should be specified whenever possible. The attribute key for the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality
sign, it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated
by an equality sign without any whitespaces. The value may be in quoted. The LFN sentiments about

quoting apply.

LFN PFN
LFN PFN a=b [..]

LFN PFN a="b" [..]

“LFN W LWS' "PFN w LW&" [..]

To use File, the user additionally needs to specify pegasus.catal og.replica.file property to specify the
path to the file based RC.

In thismode, Pegasus queries afile based replicacatalog. It isneither transactionally safe, nor advised
to usefor production purposesin any way. Multiple concurrent accessto the Filewill end up clobbering
the contents of thefile. The site attribute should be specified whenever possible. The attribute key for
the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality
sign, it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated
by an equality sign without any whitespaces. The value may be in quoted. The LFN sentiments about

quoting apply.

In addition users can specifiy regular expression based LFN's. A regular expression based entry should
be qualified with an attribute named ‘regex'. The attribute regex when set to true identifies the catalog
entry as aregular expression based entry. Regular expressions should follow Javaregular expression
syntax.

For example, consider areplica catalog as shown below.

Entry 1 refersto an entry which does not use aresular expressions. This entry would only match afile
named 'f.a, and nothing else. Entry 2 referesto an entry which uses aregular expression. In this entry
f.areferesto files having name as f[any-character]ai.e. faa, f.a, fOa, etc.

f.a file:///Volunes/data/input/f.a pool ="local"
f.a file:///Volunes/datal/input/f.a pool="Iocal" regex="true"

Regular expression based entries also support substitutions. For example, consider the regular expres-
sion based entry shown below.

112

Reference Manual

Directory

MRC

Entry 3 will match fileswith name apha.csv, alphatxt, aphaxml. In addition, values matched in the
expression can be used to generate a PFN.

For the entry below if the file being looked up is apha.csv, the PFN for the filewould be generated as
file:///V olumes/data/input/csv/apha.csv. Similary if the file being lookedup was alpha.csv, the PFN
for the file would be generated as file:///V olumes/data/input/xml/al phaxml i.e. The section [0], [1]
will be replaced. Section [0] refers to the entire string i.e. alpha.csv. Section [1] refers to a partial
match in the input i.e. csv, or txt, or xml. Users can utilize as many sections as they wish.

al pha\. (csv|txt|xm) file:///Volumes/data/input/[1]/[0] pool="local" regex="true"

To use File, the user additionally needs to specify pegasus.catalog.replica.file property to specify the
path to the file based RC.

Inthismode, Pegasusdoesadirectory listing on aninput directory to createthe LFN to PFN mappings.
The directory listing is performed recursively, resulting in deep LFN mappings. For example, if an
input directory $input is specified with the following structure

$i nput
$input/f.1
$input/f.2

$i nput/ D1

$i nput/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally
f.1 file://$input/f.1 pool="1ocal"

f.2 file://$input/f.2 pool="1ocal"
D1/f.3 file://$input/D2/f.3 pool ="1ocal "

If you don't want the deep Ifn'sto be created then, you can set pegasus.catal og.replica.directory.flat.lfn
to true In that case, for the previous example, Pegasus will create the following LFN PFN mappings
internaly.

f.1 file://$input/f.1 pool="1ocal"

f.2 file://$input/f.2 pool="1ocal"

f.3 file://$input/D2/f.3 pool ="Ilocal"

pegasus-plan has --input-dir option that can be used to specify an input directory.

Users can optionally specify additional properties to configure the behvavior of thisimplementation.

pegasus.catal og.replica.directory.site to specify a site attribute other than local to associate with the
mappings.

pegasus.catal og.replica.directory.url.prefix to associate a URL prefix for the PFN's constructed. If not
specified, the URL defaultsto file://

In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To
useit set

pegasus. catal og. replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is
any legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catal ogs the user
specifies the following properties.

pegasus. cat al og. replica. nrc.[val ue] specifies the type of replica catal og.
pegasus. cat al og. replica. nrc.[val ue]. key specifies a property name key for a
particul ar catal og

113

Reference Manual

For example, if auser wantsto query two Irc's at the same time he/she can specify as follows

pegasus. cat al og. repl i ca.
pegasus. cat al og. replica.
pegasus. cat al og. repl i ca.
pegasus. cat al og. repl i ca.

nrc.lrcl LRC
nrc.lrc2.url rls://sukhna
nrc.lrc2 LRC
nrc.lrc2.url rls://smarty

In the above example, Ircl, Irc2 are any valid identifier names and url isthe property key that needed

to be specified.

pegasus.catalog.replica.url

System: Pegasus
Since: 20

Type: URI string
Defaullt: (no default)

When using the modern RLS replica catal og, the URI to the Replica catalog must be provided to Pegasus to enable

it to look up filenames. Thereis no default.

pegasus.catalog.replica.chunk.size

System: Pegasus, rc-client
Since: 20

Type: Integer

Default: 1000

Therc-client takesin an input file containing the mappings upon which to work. This property determines, the number
of linesthat are read in at atime, and worked upon at together. This allows the various operations like insert, delete
happen in bulk if the underlying replicaimplementation supportsit.

pegasus.catalog.replica.lrc.ignore

System: Replica Catalog - RLS

Since: 20

Type: comma separated list of LRC urls
Defaullt: (no default)

See also: pegasus.catal og.replicalrc.restrict

Certain users may like to skip some LRCs while querying for the physical locations of afile. If some LRCs need to
be skipped from those found in the rli then use this property. Y ou can define either the full URL or partial domain
names that need to be skipped. E.g. If auser wantsrls://smarty.isi.edu and all LRCs on usc.edu to be skipped then the
property will be set as pegasus.ris.Irc.ignore=rls.//smarty.isi.edu,usc.edu

pegasus.catalog.replica.lrc.restrict

System: Replica Catalog - RLS

Since: 139

Type: comma separated list of LRC urls
Defaullt: (no default)

See also: pegasus.catal og.replica.lrc.ignore

Reference Manual

This property applies a tighter restriction on the results returned from the LRCs specified. Only those PFNs are re-
turned that have a pool attribute associated with them. The property "pegasus.rc.Irc.ignore” has a higher priority than
"pegasus.rc.Irc.restrict”. For example, in case a LRC is specified in both properties, the LRC would be ignored (i.e.
not queried at all instead of applying atighter restriction on the results returned).

pegasus.catalog.replica.lrc.site.[site-name]

pegasus.

System: Replica Catalog - RLS
Since: 230

Type: LRC url

Default: (no default)

This property allows for the LRC url to be associated with site handles. Usually, a pool attribute is required to be
associated with the PFN for Pegasus to figure out the site on which PFN resides. However, in the case wherean LRC
isresponsible for only a single site's mappings, Pegasus can safely associate LRC url with the site. This association
can be used to determine the pool attribute for all mappings returned from the LRC, if the mapping does not have a
pool attribute associated with it.

The site_name in the property should be replaced by the name of the site. For example
pegasus. catalog.replica.lrc.site.isi rls://lrc.isi.edu
tells Pegasus that all PFNs returned from LRC rls://Irc.isi.edu are associated with site isi.

The [site_name] should be the same as the site handle specified in the site catalog.

catalog.replica.cache.asrc

System: Pegasus

Since: 20

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

See also: pegasus.catal og.replica

This property determines whether to treat the cache file specified as a supplemental replica catalog or not. User can
specify on the command lineto pegasus-plan acommaseparated list of cachefilesusing the --cache option. By defaullt,
the LFEN->PFN mappings contained in the cache file are treated as cache, i.e if an entry is found in a cache file the
replica catalog is not queried. This results in only the entry specified in the cache file to be available for replica
selection.

Setting this property to true, results in the cache files to be treated as supplemental replica catalogs. This resultsin
the mappings found in the replica catal og (as specified by pegasus.catal og.replica) to be merged with the ones found
in the cache files. Thus, mappings for a particular LFN found in both the cache and the replica catalog are available
for replica selection.

Site Catalog

pegasus.catalog.site
System: Site Catalog
Since: 20

115

Reference Manual

Type: enumeration
Value[0]: XML4
Vaue[1]: XML3
Default: XML4

The site catalog file format is now automatically detected, so there should be no need to use the property anymore.

pegasus.catalog.site.file

System: Site Catalog

Since: 20

Type: file location string

Default: ${ pegasus.home.sysconfdir} /sites.xml
See also: pegasus.catal og.site

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected.

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 20

Type: enumeration

Value[0]: Text

Value[1]: File

Default: Text

See also: pegasus.catal og.transformation.file

Text Inthismode, amultiline file based format is understood. The file is read and cached in memory. Any modi-
fications, as adding or deleting, causes an update of the memory and hence to the file underneath. All queries

are done against the memory representation.

The file sample.tc.text in the etc directory contains an example

Hereis a sample textua format for transfomation catalog containing one transformation on two sites

tr exanple::keg:1.0 {

#specify profiles that apply for all the sites for the transfornation
#in each site entry the profile can be overriden

profile env "APP_HOVE" "/t np/karan"
profile env "JAVA HOVE" "/bin/app"
site isi {

profile env "me" "wth"

profile condor "nore" "test"
profile env "JAVA HOVE' "/bin/java.1l.6"
pfn "/path/tol keg"

arch "x86"

0s "1 nux"

osrel ease "fc"

osversion "4"

type "I NSTALLED"

site wind {

116

Reference Manual

profile env "nme" "with"
profile condor "nore" "test"
pfn "/path/tol keg"

arch "x86"

os

"1inux"

osrel ease "fc"
osversion "4"
type " STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1

2
3.
4

Theresource ID is represented in the first column.

. Thelogical transformation uses the colonized format ns::name:vs.

The path to the application on the system

. The installation type is identified by one of the following keywords - all upper case: INSTALLED,

STAGEABLE. If not specified, or NULL isused, the type defaultsto INSTALLED.

. The system is of the format ARCH::05[:VER:GLIBC]. The following arch types are understood: "IN-

TEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaultsto INTEL32::LINUX.

. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY 3=VALUE3 Multiple

key-values for same namespace are seperated by acomma™," and multiple namespaces are seperated by a
semicolon";". If any of your profile values contains acommayou must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems:

Transformation Catalog

Type:

filelocation string

Default:

${ pegasus.home.sysconfdir} /tc.text |
${ pegasus.nome.sysconfdir} /tc.data

See also:

pegasus.catal og.transformation

This property is used to set the path to the textua transformation catal ogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

Provenance Catalog

pegasus.catalog.provenance

System: Provenance Tracking Catalog (PTC)
Since: 20

Type: Java class name

Value[0]: InvocationSchema

Value[1]: NXDInvSchema

Default: (no default)

See aso: pegasus.catalog.*.db.driver

This property denotes the schema that is being used to access a PTC. The PTC is usually not a standard installation.
If you use a database backend, you most likely have a schema that supports PTCs. By default, no PTC will be used.

117

Reference Manual

Currently only the InvocationSchemaisavail ablefor storing the provenancetracking records. Beware, thiscan become
alot of data. The values are names of Javaclasses. If no absolute Javaclassnameisgiven, "org.griphyn.vdl.dbschema."
isprepended. Thus, by deriving from the DatabaseSchema APl , and implementing the PTC interface, userscan provide

their own classes here.

Alternatively, if you use a native XML database like eXist, you can store data using the NXDInvSchema. This will

avoid using any of the other database driver properties.

pegasus.catalog.provenance.refinement

System: PASOA Provenance Store
Since: 201

Type: Java class name

Value[0]: Pasoa

Value[1]: InMemory

Defaullt: InMemory

See aso: pegasus.catalog.* .db.driver

This property turns on the logging of the refinement process that happens inside Pegasus to the PASOA store. Not all
actions are currently captured. It is still an experimental feature.

The PASOA store needs to run on localhost on port 8080 https://local host:8080/prserv-1.0

Replica Selection Properties

pegasus.selector.replica

System: Replica Selection

Since: 20

Type: URI string

Defaullt: default

See also: pegasus.replica.* .ignore.stagein.sites
See also: pegasus.replica.* .prefer.stagein.sites

Each job in the DAX maybe associated with input LFN's denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus queries the replica catalog to get al the PFN's (replicas)
associated with a LFN. Pegasus then calls out to a replica selector to select a replica amongst the various replicas
returned. This property determines the replica selector to use for selecting the replicas.

Default

If aPFN that isafile URL (starting with file:///) and has a pool attribute matching to the site handle

of the site where the compute is to be run is found, then that is returned. Else,a random PFN is
selected amongst all the PFN'sthat have apool attribute matching to the site handle of the site where
acompute job isto be run. Else, arandom pfn is selected amongst all the PFN's.

Restricted

This replica selector, alows the user to specify good sites and bad sites for staging in data to a

particular compute site. A good site for a compute site X, is a preferred site from which replicas
should be staged to site X. If there are more than one good sites having a particular replica, then a
random site is selected amongst these preferred sites.

A bad site for a compute site X, is a site from which replicas should not be staged. The reason
of not accessing replica from a bad site can vary from the link being down, to the user not having

permissions on that site's data.

118

Reference Manual

Regex

Local

The good | bad sites are specified by the properties

pegasus.replica.*. prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is
taken to mean dl sites.

The pegasus.replica.* .prefer.stagein.sites property takes precedence over
pegasus.replica.* .ignore.stagein.sites property i.e. if for a site X, asite Y is specified both in the
ignored and the preferred set, then site Y istaken to mean as only a preferred site for asite X.

This replica selector allows the user alows the user to specific regex expressions that can be used
to rank various PFN's returned from the Replica Catalog for a particular LFN. This replica selector
selects the highest ranked PFN i.e the replica with the lowest rank value.

Theregular expressionsare assigned different rank, that determinethe order in which the expressions
are employed. The rank values for the regex can expressed in user properties using the property.

pegasus. sel ector.replica. regex. rank.[val ue] regex- expressi on

The value is an integer value that denotes the rank of an expression with a rank value of 1 being
the highest rank.

Please note that before applying any regular expressions on the PFN's, the file URL 'sthat dont match
the preferred site are explicitly filtered out.

This replica selector prefers replicas from the local host and that start with afile: URL scheme. It
is useful, when users want to stagin files to a remote site from your submit host using the Condor
file transfer mechanism.

pegasus.selector.replica.*.ignore.stagein.sites

System: Replica Selection

Type: comma separated list of sites

Since: 20

Defaullt: no default

See also: pegasus.selector.replica

See also: pegasus.selector.replica.* .prefer.stagein.sites

A comma separated list of storage sites from which to never stage in data to a compute site. The property can apply
to all or asingle compute site, depending on how the * in the property name is expanded.

The* in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica*.ignore.stagein.sites to usc means that ignore all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.ignore.stagein.sites to usc means that ignore all replicas
from site usc for staging in data to siteisi.

pegasus.selector.replica.*.prefer.stagein.sites

System: Replica Selection

Type: comma separated list of sites
Since: 20

Default: no default

119

Reference Manual

See also: ‘ pegasus.selector.replica
See also: ‘ pegasus.selector.replica.* .ignore.stagein.sites

A comma separated list of preferred storage sites from which to stage in datato acompute site. The property can apply
to al or asingle compute site, depending on how the * in the property name is expanded.

The* in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica*.prefer.stagein.sites to usc means that prefer all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.prefer.stagein.sitesto usc meansthat prefer all replicasfrom
site usc for staging in datato siteisi.

pegasus.selector.replica.regex.rank.[value]

System: Replica Selection

Type: Regex Expression
Since: 23.0

Default: no default

See also: pegasus.selector.replica

Specifies the regex expressions to be applied on the PFNs returned for a particular LFN. Refer to

http://java.sun.conljavase/ 6/ docs/ api/javal/util/regex/ Pattern. htm

on information of how to construct a regex expression.

The[value] inthe property key isto be replaced by an int value that designates the rank value for the regex expression
to be applied in the Regex replica selector.

The example below indicates preference for file URL's over URL'sreferring to gridftp server at example.isi.edu

pegasus. sel ector.replica.regex.rank.1 file://.*
pegasus. sel ector.replica.regex.rank.2 gsiftp://exanple\.isi\.edu. *

Site Selection Properties

pegasus.selector.site

System: Pegasus

Since: 20

Type: enumeration

Value[0]: Random

Value[1]: RoundRobin

Value[2]: NonJavaCallout

Value[3]: Group

Value[4]: Heft

Defaullt: Random

See also: pegasus.selector.site.path
See dso: pegasus.sel ector.site.timeout
See also: pegasus.sel ector.site.keep.tmp

120

Reference Manual

See also:

pegasus.selector.site.env.*

The site selection in Pegasus can be on basis of any of the following strategies.

Random

RoundRobin

NonJavaCallout

In this mode, the jobs will be randomly distributed among the sites that can execute them.

In this mode. the jobs will be assigned in a round robin manner amongst the sites that can
execute them. Since each site cannot execute everytype of job, the round robin scheduling is
done per level on a sorted list. The sorting is on the basis of the number of jobs a particular
site has been assigned in that level so far. If ajob cannot be run on the first site in the queue
(due to no matching entry in the transformation catalog for the transformation referred to by
thejob), it goesto the next one and so on. Thisimplementation defaults to classic round robin
in the case where all the jobs in the workflow can run on al the sites.

In this mode, Pegasus will callout to an external site selector.In this mode a temporary
file is prepared containing the job information that is passed to the site selector as an ar-
gument while invoking it. The path to the site selector is specified by setting the property
pegasus.site.sel ector.path. The environment variablesthat need to be set to run the site selector
can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary
file contains information about the job that needs to be scheduled. It contains key value pairs
with each key value pair being on anew line and separated by a =.

Thefollowing pairsare currently generated for the site selector temporary filethat isgenerated
in the NonJavaCallout.

version isthe version of the site selector
api,currently 2.0.

transformation isthe fully-qualified definition iden-
tifier for the transformation (TR)
namespace::name:version.

derivation isteh fully qualified definition
identifier for the derivation (DV),
namespace::name:version.

job.level isthe job's depth in the tree of the workflow
DAG.

job.id isthejob's D, asused in the DAX file.

resource.id isapool handle, followed by whitespace,

followed by a gridftp server. Typically, each
gridftp server is enumerated once, so you
may have multiple occurances of the same
site. There can be multiple occurances of this
key.

input.Ifn isan input LFN, optionally followed by a
whitespace and file size. There can be multi-
ple occurances of this key,one for each input
LFN required by the job.

wf.name label of the dax, as found in the DAX's root
element. wf.index isthe DAX index, that is
incremented for each partition in case of de-

ferred planning.

wf.time isthe mtime of the workflow.

wf.manager is the name of the workflow manager being
used .e.g condor

vo.name is the name of the virtual organization that is
running this workflow. It is currently set to
NONE

121

Reference Manual

Group

Heft

vo.group unused at present and is set to NONE.
I

In this mode, a group of jobs will be assigned to the same site that can execute them. The use
of the PEGASUS profile key group in the dax, associates a job with a particular group. The
jobsthat do not have the profile key associated with them, will be put in the default group. The
jobsin the default group are handed over to the "Random" Site Selector for scheduling.

In this mode, a version of the HEFT processor scheduling algorithm is used to schedule jobs
in the workflow to multiple grid sites. The implementation assumes default data communica
tion costs when jobs are not scheduled on to the same site. Later on this may be made more
configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus
profile key runtime with the entries.

The number of processorsin a siteis picked up from the attribute idle-nodes associated with
the vanillajobmanager of the site in the site catalog.

pegasus.selector.site.path

System: Site Selector
Since: 20
Type: String

If one callsout to an external site selector using the NonJavaCallout mode, thisrefersto the path where the site selector
isinstalled. In case other strategies are used it does not need to be set.

pegasus.site.selector.env.*

System: Pegasus
Since: 123
Type: String

The environment variables that need to be set while callout to the site selector. These are the variables that the user
would set if running the site selector on the command line. The name of the environment variable is got by stripping
the keys of the prefix "pegasus.site.selector.env.” prefix from them. The value of the environment variableisthe value

of the property.

e.g pegasus.site.selector.path.LD_LIBRARY _PATH /globus/lib would lead to the site selector being called with the
LD_LIBRARY_PATH set to /globus/lib.

pegasus.selector.site.timeout

System: Site Selector

Since: 20

Type: non negative integer
Default: 60

It sets the number of seconds Pegasus waits to hear back from an external site selector using the NonJavaCallout
interface before timing out.

pegasus.selector.site.keep.tmp

System:

Pegasus

122

Reference Manual

Since: 20

Type: enumeration
Value[0]: onerror
Value[1]: aways
Value2]: never
Defaullt: onerror

It determines whether Pegasus del etes the temporary input files that are generated in the temp directory or not. These
temporary input files are passed as input to the external site selectors.

A temporary input file is created for each that needs to be scheduled.

Data Staging Configuration

pegasus.data.configuration

System: Pegasus
Since: 4.0

Type: enumeration
Value[0]: sharedfs
Value[1]: nonsharedfs
Value2]: condorio
Default: sharedfs

This property sets up Pegasus to run in different environments.

sharedfs

condorio

If thisis set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share afilesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_, stage_inter_, stage_out_) transfer the data to this
directory.The compute jobsin the executable workflow are launched in the directory on the shared
filesystem. Internally, if thisis set the following properties are set.

pegasus. execute. *.fil esystem | ocal fal se

If thisis set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File 10.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_, stage inter_, stage out_) transfer the data to this
directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file 10. The output
datafor each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem across the VM's may be tricky. On loading this property, internally the following
properies are set

pegasus. transfer.sls.*.inpl Condor
pegasus. execute. *.fil esystem | ocal true
pegasus. gridstart PegasusLite

pegasus. transf er. wor ker . package true

123

Reference Manual

nonsharedfs If thisis set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. Y ou can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobsin the executable workflow (stage_in_, stage inter_, stage_out_) transfer the datato
thisdirectory. When the computejobs start, theinput datafor each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only afew sites have large amounts of data storage exposed that can be used to place dataduring a
workflow run. This setup is also helpful when running workflowsin the cloud environment where
setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus. execute. *.fil esystem | ocal true
pegasus. gridstart PegasusLite
pegasus. t ransf er. wor ker . package true

pegasus.transfer.bypass.input.staging

System: Pegasus

Since: 43

Type: Boolean

Defaullt: (no default)

See dso: pegasus.data.configuration

When executiing in anon shared filesystem setup i.e data configuration set to nonsharedfs or condorio, Pegasus aways
stages the input files through the staging site i.e the stage-in job stages in data from the input site to the staging site.
The PegasusL ite jobs that start up on the worker nodes, then pull the input data from the staging site for each job.

This property can be used to setup the PegasusLite jobs to pull input data directly from the input site without going
through the staging server. Thisis based on the assumption that the worker nodes can access the input site. If users set
thisto true, they should be aware that the access to the input site is no longer throttled (asin case of stage in jobs). If
large number of computejobs start at the sametimein aworkflow, theinput server will see aconnection from each job.

Transfer Configuration Properties

pegasus.transfer.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: GUC

Default: Transfer

See also: pegasus.transfer.refiner
Since: 20

Each compute job usually has data products that are required to be staged in to the execution site, materialized data
products staged out to afinal resting place, or staged to another job running at adifferent site. This property determines
the underlying grid transfer tool that is used to manage the transfers.

124

Reference Manual

The* in the property name can be replaced to achieve finer grained control to dictate what type of transfer jobs need
to be managed with which grid transfer tool.

Usually,the arguments with which the client is invoked can be specified by

- the property pegasus.transfer.argunents
- associating the PEGASUS profile key transfer.argunments

Thetable below illustrates all the possible variations of the property.

Property Name Appliesto
pegasus.transfer.stagein.impl the stage in transfer jobs
pegasus.transfer.stageout.impl the stage out transfer jobs
pegasus.transfer.inter.impl the inter pool transfer jobs
pegasus.transfer.setup.impl the setup transfer job
pegasus.transfer.*.impl apply to types of transfer jobs

Note: Sinceversion 2.2.0 the worker package is staged automatically during staging of executables to the remote site.
Thisis achieved by adding a setup transfer job to the workflow. The setup transfer job by default uses GUC to stage
the data. The implementation to use can be configured by setting the property

pegasus. transfer.setup.inpl

property. However, if you have pegasus.transfer.*.impl set in your properties file, then you need to set
pegasus.transfer.setup.impl to GUC

The various grid transfer tools that can be used to manage data transfers are explained below

Transfer Thisresultsin pegasus-transfer to be used for transferring of files. It is a python based wrapper around
various transfer clients like globus-url-copy, lcg-copy, wget, cp, In . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS HOME env profile specified in the site catalog. To specify a different path to the pega-
sus-transfer client , users can add an entry into the transformation catalog with fully qualified logical
name as pegasus:: pegasus-transfer

GucC This refers to the new guc client that does multiple file transfers per invocation. The globus-url-copy
client distributed with Globus 4.x is compatible with this mode.

pegasus.transfer.refiner

System: Pegasus

Type: enumeration

Value[0]: Basic

Value[1]: Cluster

Default: Cluster

Since: 20

See dso: pegasus.transfer.*.impl

This property determines how the transfer nodes are added to the workflow. The various refiners differ in the how
they link the various transfer jobs, and the number of transfer jobs that are created per compute jobs.

Basic Thisisabasic refinement strategy that adds a stage-in job per compute job and a stage-out per compute
jobs. It is not recommended to usethis, especially for large workflows where | ots of stage-in jobs maybe
created for aworkflow. Thisis only recommended for experimental setups.

125

Reference Manual

Cluster

In this refinement strategy, clusters of stage-in and stageout jobs are created per level of the workflow.

This workflow alows you to control the number of stagein and stageout jobs by associating pegasus
profiles stagein.clusters and stageout.clusters with the jobs or in the site catalog for the staging sites.

pegasus.transfer.sls.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: Condor

Defaullt: Transfer

Since: 220

See also: pegasus.data.configuration

See also: pegasus.execute.* .filesystem.local

This property specifies the transfer tool to be used for Second Level Staging (SLS) of input and output data between
the head node and worker node filesystems.

Currently, the * in the property name CANNOT be replaced to achieve finer grained control to dictate what type of
SL Stransfers need to be managed with which grid transfer tool.

The various grid transfer tools that can be used to manage SL S data transfers are explained bel ow

Transfer

Thisresultsin pegasus-transfer to be used for transferring of files. It is a python based wrapper around

various transfer clients like globus-url-copy, Icg-copy, wget, cp, In . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS HOME env profile specified in the site catalog. To specify a different path to the pega
sus-transfer client , users can add an entry into the transformation catalog with fully qualified logical
name as pegasus:: pegasus-transfer

Condor

Thisresultsin Condor file transfer mechanism to be used to transfer the input data files from the submit

host directly to the worker node directories. This is used when running in pure Condor mode or in a
Condor pool that does not have a shared filesystem between the nodes.

When setting the SLS transfers to Condor make sure that the following properties are also set

pegasus. gridstart

PegasusLite
true

pegasus. execute. *. fil esystem | ocal

Alternatively, you can set

pegasus. dat a. confi guration

in lieu of the above 3 properties.

condori o

Also make sure that pegasus.gridstart is not set.

Please refer to the section on "Condor Pool Without a Shared Filesystem™ in the chapter on Planning

and Submitting.

pegasus.transfer.arguments

System:

Pegasus

Since:

20

126

Reference Manual

Type: String
Defaullt: (no default)
See also: pegasus.transfer.sls.arguments

This determinesthe extraarguments with which the transfer implementation isinvoked. Thetransfer executablethat is
invoked is dependant upon the transfer mode that has been selected. The property can be overloaded by associated the
pegasus profile key transfer.arguments either with the site in the site catalog or the corresponding transfer executable
in the transformation catal og.

pegasus.transfer.sis.arguments

System: Pegasus

Since: 24

Type: String

Default: (no default)

See also: pegasus.transfer.arguments
See dso: pegasus.transfer.sls.*.impl

This determines the extra arguments with which the SL S transfer implementation is invoked. The transfer executable
that isinvoked is dependant upon the SL'S transfer implementation that has been selected.

pegasus.transfer.stage.sls.file

System: Pegasus

Since: 30

Type: Boolean

Defaullt: (no default)

See also: pegasus.gridstart

See also: pegasus.execute.* .filesystem.local

For executing jobs on the local filesystem, Pegasus creates ssfiles for each compute jobs. These dsfileslist thefiles
that need to be staged to the worker node and the output files that need to be pushed out from the worker node after
completion of the job. By default, pegasus will stage these SL Sfilesto the shared filesystem on the head node as part
of first level data stagein jobs. However, in the case where there is no shared filesystem between head nodes and the
worker nodes, the user can set this property to false. Thiswill result in the sisfiles to be transferred using the Condor

File Transfer from the submit host.

pegasus.transfer.worker.package

System: Pegasus
Type: boolean

Default: false

Since: 3.0

See dso: pegasus.data.configuration

By default, Pegasus relies on the worker package to be installed in a directory accessible to the worker nodes on the
remote sites. Pegasus usesthe value of PEGASUS_HOME environment profilein the site catalog for the remote sites,
to then construct paths to pegasus auxillary executables like kickstart, pegasus-transfer, segexec etc.

If the Pegasus worker package is not installed on the remote sites users can set this property to true to get Pegasus
to deploy worker package on the nodes.

127

Reference Manual

In the case of sharedfs setup, the worker package is deployed on the shared scratch directory for the workflow , that
isaccessible to all the compute nodes of the remote sites.

When running in nonsharefs environments, the worker package isfirst brought to the submit directory and then trans-
ferred to the worker node filesystem using Condor file 1O.

pegasus.transfer.links

System: Pegasus

Type: boolean
Default: false

Since: 20

See aso: pegasus.transfer

If thisis set, and the transfer implementation is set to Transfer i.e. using the transfer executable distributed with the
PEGASUS. On setting this property, if Pegasus while fetching data from the Replica Catalog sees a pool attribute
associated with the PFN that matches the execution pool on which the data has to be transferred to, Pegasus instead
of the URL returned by the Replica Catalog replaces it with afile based URL. Thisis based on the assumption that
theif the pools match the filesystems are visible to the remote execution directory whereinput dataresides. On seeing
both the source and destination urls as file based URL s the transfer executable spawns a job that creates a symbolic

link by calling In -s on the remote pool.

pegasus.transfer.*.remote.sites

System: Pegasus
Type: comma separated list of sites
Defaullt: no default

Since: 20

By default Pegasus looks at the source and destination URL 's for to determine whether the associated transfer job runs
on the submit host or the head node of aremote site, with preference set to run atransfer job to run on submit host.

Pegasus will run transfer jobs on the remote sites

if the file server for the conpute site is a file server i.e url prefix file://
sym ink jobs need to be added that require the symink transfer jobs to
be run remotely.

This property can be used to change the default behaviour of Pegasus and force pegasus to run different types of
transfer jobs for the sites specified on the remote site.

The table below illustrates al the possible variations of the property.

Property Name Appliesto
pegasus.transfer.stagein.remote.sites the stage in transfer jobs
pegasus.transfer.stageout.remote.sites the stage out transfer jobs
pegasus.transfer.inter.remote.sites the inter pool transfer jobs
pegasus.transfer.* .remote.sites apply to types of transfer jobs

In addition * can be specified as a property value, to designate that it appliesto all sites.

pegasus.transfer.staging.delimiter

%/ stem: Pagagjs

128

Reference Manual

Since: 20

Type: String

Default: :

See also: pegasus.transformation.sel ector

Pegasus supports executable staging as part of the workflow. Currently staging of statically linked executables is
supported only. An executableis normally staged to the work directory for the workflow/partition on the remote site.
The basename of the staged executable is derived from the namespace,name and version of the transformation in the
transformation catalog. This property sets the delimiter that is used for the construction of the name of the staged

executable.

pegasus.transfer.disable.chmod.sites

System: Pegasus
Since: 20

Type: comma separated list of sites
Default: no default

During staging of executables to remote sites, chmod jobs are added to the workflow. These jobs run on the remote
sites and do a chmod on the staged executable. For some sites, this maynot be required. The permissions might be
preserved, or there maybe an automatic mechanism that doesit.

This property alows you to specify the list of sites, where you do not want the chmod jobs to be executed. For those
sites, the chmod jobsare replaced by NoOP jobs. The NoOPjobs are executed by Condor, and instead will immediately
have a terminate event written to the job log file and removed from the queue.

pegasus.transfer.setup.source.base.url

System: Pegasus
Type: URL
Default: no default
Since: 2.3

This property specifies the base URL to the directory containing the Pegasus worker package builds. During Staging
of Executable, the Pegasus Worker Package is also staged to the remote site. The worker packages are by default
pulled from the http server at pegasus.isi.edu. This property can be used to override the location from where the worker
package are staged. This maybe required if the remote computes sites don't allows files transfers from a http server.

Gridstart And Exitcode Properties

pegasus.gridstart

System: Pegasus
Since: 20

Type: enumeration
Value[0]: Kickstart
Value[1]: None
Vaue[2]: PegasusL ite
Default: Kickstart

129

Reference Manual

See also: pegasus.execute.* .filesystem.local

Jobsthat are launched on the grid maybe wrapped in awrapper executable/script that enablesinformation about about
the execution, resource consumption, and - most importantly - the exitcode of the remote application. At present, a
job scheduled on aremote site is launched with a gridstart if site catalog has the corresponding gridlaunch attribute
set and the job being launched is not MPI.

Users can explicitly decide what gridstart to use for a job, by associating the pegasus profile key named gridstart

with the job.

Kickstart In this mode, all the jobs are lauched via kickstart. The kickstart executable is a light-weight
program which connects the stdin,stdout and stderr filehandles for PEGASUS jobs on the re-
mote site. Kickstart is an executable distributed with PEGASUS that can generally be found at
${ pegasus.home.hin} /kickstart.

None Inthismode, al the jobs are launched directly on the remote site. Each job's stdin,stdout and stderr
are connected to condor commandsin amanner to ensure that they are sent back to the submit host.

PegasusL ite In this mode, the compute jobs are wrapped by PegasusL ite instances. PegasusLite instance is a

bash script, that is launced on the compute node. It determins at runtime the directory ajob needs
to execute in, pullsin data from the staging site , launches the job, pushes out the data and cleans
up the directory after execution.

pegasus.gridstart.kickstart.set.xbit

System: Pegasus

Since: 24

Type: Boolean

Default: false

See also: pegasus.transfer.disable.chmod.sites

Kickstart has an option to set the X bit on an executable before it launches it on the remote site. In case of staging of
executables, by default chmod jobs are launched that set the x bit of the user executables staged to aremote site.

On setting this property to true, kickstart gridstart module adds a-X option to kickstart arguments. The -X arguments
tells kickstart to set the x bit of the executable before launching it.

User should usually disable the chmod jobs by setting the property pegasus.transfer.disable.chmod.sites, if they set
this property to true.

pegasus.gridstart.kickstart.stat

System: Pegasus
Since: 21

Type: Boolean

Defaullt: false

See also: pegasus.gridstart.generate.l of

Kickstart has an option to stat the input files and the output files. The stat information is collected in the XML record
generated by kickstart. Since stat is an expensive operation, it is not turned on by on. Set this property to true if you
want to see stat information for the input files and output files of ajob init'skickstart output.

pegasus.gridstart.generate.lof

System: Pegasus

130

Reference Manual

Since: 21

Type: Boolean

Defaullt: false

See also: pegasus.gridstart.kickstart.stat

For the stat option for kickstart, we generate 2 lof (list of filenames) files for each job. One lof file containing the
input Ifn's for the job, and the other containing output Ifn's for the job. In some cases, it maybe beneficia to have
these lof files generated but not do the actual stat. This property allows you to generate the | of files without triggering
the stat in kickstart invocations.

pegasus.gridstart.invoke.always

System: Pegasus

Since: 20

Type: Boolean

Default: false

See also: pegasus.gridstart.invoke.length

Condor hasalimitinit, that restricts the length of argumentsto an executable to 4K. To get around this limit, you can
trigger Kickstart to be invoked with the -1 option. In this case, an argumentsfileis prepared per job that istransferred
to the remote end via the Condor file transfer mechanism. This way the arguments to the executable are not specified
in the condor submit file for the job. This property specifies whether you want to use the invoke option aways for all
jobs, or want it to be triggered only when the argument string is determined to be greater than a certain limit.

pegasus.gridstart.invoke.length

System: Pegasus
Since: 20

Type: Long

Defaullt: 4000

See dso: pegasus.gridstart.invoke.aways

Gridstart isautomatically invoked with the -1 option, if it is determined that the length of the arguments to be specified
is going to be greater than a certain limit. By default this limit is set to 4K. However, it can overriden by specifying

this property.

Interface To Condor And Condor Dagman

The Condor DAGMan facility is usually activate using the condor_submit_dag command. However, many shapes of
workflows have the ability to either overburden the submit host, or overflow remote gatekeeper hosts. While DAGMan
providesthrottles, unfortunately these can only be supplied on the command-line. Thus,PEGASUS providesaversatile
wrapper to invoke DAGMan, called pegasus-submit-dag. It can be configured from the command-line, from user- and

system properties, and by defaults.

pegasus.condor.logs.symlink

System: Condor
Type: Boolean
Defaullt: false
Since: 30

131

Reference Manual

Starting 4.2.1 release, this property defaultsto false. Prior to that it defaulted to true.

If this property is set to true, then Pegasus will have the Condor common log [dagname]-0.log in the submit file as
asymlink to alocation in /tmp . You want to set this to true when your workflow submit directory is on the shared
filesystem . Y ou don't want the common log to get written to a shared filesystem. If the user knows for sure that the
workflow submit directory is not on the shared filesystem, then the value to this property should be false.

pegasus.condor.arguments.quote

System: Condor

Type: Boolean

Default: true

Since: 20

Old Name: pegasus.condor.arguments.quote

This property determines whether to apply the new Condor quoting rules for quoting the argument string. The new
argument quoting rules appeared in Condor 6.7.xx series. We have verified it for 6.7.19 version. If you are using an
old condor at the submit host, set this property to false.

pegasus.dagman.notify

System: DAGman wrapper

Type: Case-insensitive enumeration

Value[0]: Complete

Value[1]: Error

Value[2]: Never

Default: Never

Document: http://www.cs.wisc.edu/condor/manual /v6.9/
condor_submit_dag.html

Document: http://www.cs.wisc.edu/condor/manual /v6.9/
condor_submit.html

The pegasus.dagman.nofity property has been deprecated in favor of the Pegasus notification framework. Please see
the reference manual for details on how to get workflow notifications. pegasus.dagman.nofity will be removed in the
an upcoming version of Pegasus.

pegasus.dagman.verbose

System: DAGman wrapper

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

Document: http://www.cs.wisc.edu/condor/manual /v6.9/
condor_submit_dag.html

The pegasus-submit-dag wrapper processes properties to set DAGMan commandline arguments. If set and true, the
argument activates verbose output in case of DAGMan errors.

132

Reference Manual

pegasus.dagman.[category].maxjobs

System: DAGman wrapper

Type: Integer

Since: 22

Default: no default

Document: http://vtcpc.isi.edu/pegasus/index.php/Changel -
og\#Support_for_DAGMan_node_categories

DAGMan now allows for the nodes in the DAG to be grouped in category. The tuning parameters like maxjobs then
can be applied per category instead of being applied to the whole workflow. To use thisfacility users need to associate
the dagman profile key named category with their jobs. The value of the key isthe category to which thejob belongsto.

You can then use this property to specify the value for a category. For the above example you will set
pegasus.dagman.short-running.max;jobs

Monitoring Properties

pegasus.monitord.events

System: Pegasus-monitord

Type: Boolean

Defaullt: true

Since: 3.02

See Also: pegasus.monitord.output

Thisproperty determineswhether pegasus-monitord generateslog events. If log eventsare disabled using this property,
no bp file, or database will be created, even if the pegasus.monitord.output property is specified.

pegasus.monitord.output

System: Pegasus-monitord

Type: String

Since: 3.02

See Also: pegasus.monitord.events

This property specifies the destination for generated log events in pegasus-monitord. By default, events are stored in
a sglite database in the workflow directory, which will be created with the workflow's name, and a ".stampede.db"
extension. Users can specify an alternative database by using a SQLAlchemy connection string. Details are available
at:

http://ww. sql al cheny. or g/ docs/ 05/ r ef er ence/ di al ect s/ i ndex. ht

It is important to note that users will need to have the appropriate db interface library installed. Which is to say,
SQLAIlchemy isawrapper around the mysq|l interface library (for instance), it does not provide aMySQL driver itself.
The Pegasus distribution includes both SQL Alchemy and the SQL ite Python driver. Asafinal note, it isimportant to
mention that unlike when using SQL ite databases, using SQLAlchemy with other database servers, e.g. MySQL or
Postgres , the target database needs to exist. Users can also specify afile name using this property in order to create
afile with the log events.

Example values for the SQL Alchemy connection string for various end points are listed below

SQL Alchemy End Point Example Vaue

133

Reference Manual

Netlogger BP File
SQL Lite Database
MySQL Database

file:///submit/dir/myworkflow.bp

sqlite:///submit/dir/myworkflow.db

mysq|l://user:password@host: port/databasename

pegasus.dashboard.output

System: Pegasus-monitord

Type: String

Since: 42

See Also: pegasus.monitord.output

This property specifies the destination for the workflow dashboard database. By default, the workflow dashboard
datbase defaults to a sglite database named workflow.db in the SHOME/ .pegasus directory. Thisis database is shared
for all workflowsrun asaparticular user. Users can specify an alternative database by using a SQL Alchemy connection
string. Details are available at:

htt p: // ww. sql al cheny. or g/ docs/ 05/ r ef er ence/ di al ect s/ i ndex. ht ni

It is important to note that users will need to have the appropriate db interface library installed. Which is to say,
SQLAIlchemy isawrapper around the mysq| interface library (for instance), it does not provideaMySQL driver itself.
The Pegasus distribution includes both SQL Alchemy and the SQL ite Python driver. Asafina note, it isimportant to
mention that unlike when using SQL ite databases, using SQLAlchemy with other database servers, e.g. MySQL or
Postgres , the target database needs to exist. Users can also specify afile name using this property in order to create
afile with the log events.

Example values for the SQLAlchemy connection string for various end points are listed below
SQL Alchemy End Point

SQL Lite Database
MySQL Database

Example Vaue

sqlite:///shared/myworkflow.db

mysq|l://user: password@host: port/databasename

pegasus.monitord.notifications

System: Pegasus-monitord

Type: Boolean

Defaullt: true

Since: 31

See Also: pegasus.monitord.natifications.max
See Also: pegasus.monitord.notifications.timeout

This property determines whether pegasus-monitord processes notifications. When notifications are enabled, pega-
sus-monitord will parse the .notify file generated by pegasus-plan and will invoke notification scripts whenever con-
ditions matches one of the notifications.

pegasus.monitord.notifications.max

System: Pegasus-monitord
Type: Integer

Defaullt: 10

Since: 31

134

Reference Manual

See Also: ‘ pegasus.monitord.notifications

See Also: ‘ pegasus.monitord.notifications.timeout

This property determines how many notification scripts pegasus-monitord will call concurrently. Upon reaching this
limit, pegasus-monitord will wait for one natification script to finish before issuing another one. Thisis a way to
keep the number of processes under control at the submit host. Setting this property to 0 will disable notifications

completely.

pegasus.monitord.notifications.timeout

System: Pegasus-monitord

Type: Integer

Default: 0

Since: 31

See Also: pegasus.monitord.notifications
See Also: pegasus.monitord.notifications.max

This property determines how long will pegasus-monitord let notification scripts run before terminating them. When
this property is set to 0 (default), pegasus-monitord will not terminate any notification scripts, letting them run indef-
initely. If some notification scripts missbehave, this has the potential problem of starving pegasus-monitord's notifi-
cation slots (see the pegasus.monitord.notifications.max property), and block further notifications. In addition, users
should be aware that pegasus-monitord will not exit until all notification scripts are finished.

pegasus.monitord.stdout.disable.parsing

System: Pegasus-monitord
Type: Boolean

Default: False

Since: 311

By default, pegasus-monitord parses the stdout/stderr section of the kickstart to populate the applications captured
stdout and stderr in the job instance tabl e for the stampede schema. For large workflows, thismay slow down monitord
especialy if the application is generating a lot of output to it's stdout and stderr. This property, can be used to turn

of the database population.

Job Clustering Properties

pegasus.clusterer.job.aggregator

System: Job Clustering
Since: 20

Type: String
Valuel0]: segexec
Value[1]: mpiexec
Defaullt: segexec

A large number of workflows executed through the Virtual Data System, are composed of severa jobs that run for
only afew seconds or so. The overhead of running any job on the grid is usually 60 seconds or more. Hence, it makes
sense to collapse small independent jobs into a larger job. This property determines, the executable that will be used
for running the larger job on the remote site.

135

Reference Manual

segexec In this mode, the executable used to run the merged job is seqgexec that runs each of the smaller jobs
sequentially onthe samenode. The executable"segexec" isaPEGASUStool distributedinthe PEGASUS
worker package, and can be usually found at { pegasus.home} /bin/segexec.

mpiexec Inthismode, the executable used to run the merged job is mpiexec that runsthe smaller jobsviampi onn
nodeswhere nisthe nodecount associated with the merged job. The executable"mpiexec” isaPEGASUS
tool distributed in the PEGASUS worker package, and can be usually found at { pegasus.home}/bin/
mpiexec.

pegasus.clusterer.job.aggregator.seqexec.log

System: Job Clustering

Type: Boolean

Default: false

Since: 23

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.segexec.log.global

Seqgexec logsthe progress of thejobsthat are being run by it in aprogressfile onthe remote cluster whereit is executed.

This property sets the Boolean flag, that indicates whether to turn on the logging or not.

pegasus.clusterer.job.aggregator.segexec.log.global

System: Job Clustering

Type: Boolean

Defaullt: true

Since: 23

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.segexec.log

Old Name: pegasus.clusterer.job.aggregator.seqexec.hasgloballog

Seqgexec logs the progress of the jobs that are being run by it in a progress file on the remote cluster where it is
executed. The progress log is useful for you to track the progress of your computations and remote grid debugging.
The progress log file can be shared by multiple segexec jobs that are running on a particular cluster as part of the
same workflow. Or it can be per job.

This property sets the Boolean flag, that indicates whether to have a single global log for al the segexec jobs on a
particular cluster or progress log per job.

pegasus.clusterer.job.aggregator.segexec.firstjobfail

System: Job Clustering

Type: Boolean

Default: true

Since: 2.2

See also: pegasus.clusterer.job.aggregator

By default segexec does not stop execution even if one of the clustered jobs it is executing fails. This is because
segexec triesto get as much work done as possible.

This property sets the Boolean flag, that indicates whether to make segexec stop on the first job failureit detects.

136

Reference Manual

pegasus.clusterer.label.key

System: Job Clustering

Type: String

Default: label

Since: 20

See also: pegasus.partitioner.label .key

While clustering jobs in the workflow into larger jobs, you can optionally label your graph to control which jobs are
clustered and to which clustered job they belong. This done using a label based clustering scheme and is done by
associating a profile/label key in the PEGASUS namespace with the jobs in the DAX. Each job that has the same
value/label value for this profile key, is put in the same clustered job.

This property allows you to specify the PEGASUS profile key that you want to use for |abel based clustering.

Logging Properties

pegasus.log.manager

System: Pegasus

Since: 220

Type: Enumeration

Value[0]: Default

Value[1]: Log4j

Default: Default

See also: pegasus.|og.manager.formatter

This property sets the logging implementation to use for logging.

Default Thisimplementation refersto thelegacy Pegasuslogger, that logsdirectly to stdout and stderr. It however,
does have the concept of levels similar to log4j or syslog.

Log4j This implementation, uses Log4j to log messages. The log4j properties can be specified in a properties
file, the location of which is specified by the property

pegasus. | og. manager . | 0g4j . conf

pegasus.log.manager.formatter

System: Pegasus

Since: 220

Type: Enumeration

Value[0]: Simple

Value[1]: Netlogger

Default: Simple

See also: pegasus.|og.manager.formatter

This property sets the formatter to use for formatting the log messages while logging.

Simple Thisformats the messagesin asimpleformat. The messages are logged asiswith minimal formatting.
Below are sample log messages in this format while ranking a dax according to performance.

Reference Manual

event. pegasus. ranki ng dax.id sel8-gda.dax - STARTED

event. pegasus. par si ng. dax dax.id sel8-gda-nested.dax - STARTED
event. pegasus. par si ng. dax dax.id sel8-gda-nested.dax - FI N SHED
job.id jobGDA

job.id jobGDA query. nane getpredicted performace tinme 10.00
event. pegasus. ranki ng dax.id sel8-gda.dax - FIN SHED

Netlogger This formats the messages in the Netlogger format , that is based on key value pairs. The netlogger
format isuseful for loading thelogsinto adatabase to do some meaningful analysis. Below are sample
log messages in this format while ranking a dax according to performance.

ts=2008- 09- 06T12: 26: 20. 100502Z event =event . pegasus. ranki ng. start \

negi d=6bc49c1f - 112e- 4cdb- af 54- 3e0af b5d593c \

event | d=event . pegasus. r anki ng_8d7c0a3c- 9271- 4c9c- a0f 2- 1f b57¢c6394d5 \
dax. i d=sel8- gda. dax prog=Pegasus

t$=2008- 09- 06T12: 26: 20. 100750Z event =event . pegasus. par si ng. dax. start \
msgi d=f ed3ebdf - 68e6- 4711- 8224- al6bb1lad2969 \

event | d=event . pegasus. par si ng. dax_887134a8- 39cbh- 40f 1- b1lc- b49def 0c5232\
dax. i d=sel8- gda- nest ed. dax prog=Pegasus

ts=2008- 09- 06T12: 26: 20. 100894Z event =event . pegasus. par si ng. dax. end \
negi d=a8le92ba- 27df - 451f - bb2b- b60d232edlad \

event | d=event . pegasus. par si ng. dax_887134a8- 39cbh- 40f 1- b11c- b49def 0c5232
ts=2008- 09- 06T12: 26: 20. 100395Z event =event . pegasus. ranki ng \

negi d=4dcech68- 74f e- 4f d5- aa9e- ealcee88727d \

event | d=event . pegasus. r anki ng_8d7c0a3c- 9271- 4c9c- a0f 2- 1f b57c6394d5 \
job.id="j obGDA"

ts=2008- 09- 06T12: 26: 20. 100395Z event =event . pegasus. ranki ng \

negi d=4dcech68- 74f e- 4f d5- aa9e- ealcee88727d \

event | d=event . pegasus. r anki ng_8d7c0a3c- 9271- 4c9c- a0f 2- 1f b57¢c6394d5 \
job.id="j obGDA" query.nane="getpredicted performce" tine="10.00"

t s=2008- 09- 06T12: 26: 20. 102003Z event =event . pegasus. r anki ng. end \

msgi d=31f 50f 39- ef e2- 47f c- 9f 4c- 07121280cd64 \

event | d=event . pegasus. r anki ng_8d7c0a3c- 9271- 4c9c- a0f 2- 1f b57c6394d5

pegasus.log.*

System: Pegasus
Since: 20

Type: String
Defaullt: No default

This property sets the path to the file where all the logging for Pegasus can be redirected to. Both stdout and stderr
are logged to the file specified.

pegasus.log.metrics

System: Pegasus

Since: 210

Type: Boolean

Default: true

See also: pegasus.log.metrics.file

This property enables the logging of certain planning and workflow metrics to aglobal log file. By default the file to
which the metrics are logged is ${ pegasus.home} /var/pegasus.log.

pegasus.log.metrics.file

System: Pegasus
Since: 210

138

Reference Manual

Type:

Boolean

Default:

${ pegasus.home} /var/pegasus.log

See also:

pegasus.log.metrics

This property determines the file to which the workflow and planning metrics are logged if enabled.

pegasus.metrics.app

System: Pegasus
Since: 430

Type: String

See also: pegasus.log.metrics

This property namespace allows usersto pass application level metricsto the metrics server. The value of this property
isthe name of the application.

Additional application specific attributes can be passed by using the prefix pegasus.metrics.app

pegasus. netri cs. app. [arri but e- nane] attribute-val ue

Note: the attribute cannot be named name. This attribute is automatically assigned the value from pegasus.metrics.app

Miscellaneous Properties

pegasus.code.generator

System: Pegasus
Since: 3.0

Type: enumeration
Value[0]: Condor
Value[1]: Shell
Vaue[2]: PMC
Default: Condor

This property is used to load the appropriate Code Generator to use for writing out the executable workflow.

Condor

Shell

PMC

This is the default code generator for Pegasus . This generator generates the executable workflow as a
Condor DAG file and associated job submit files. The Condor DAG file is passed as input to Condor
DAGMan for job execution.

This Code Generator generates the executable workflow asashell script that can be executed on the submit
host. While using this code generator, all the jobs should be mapped to site locd i.e specify --sites local
to pegasus-plan.

This Code Generator generates the executable workflow as a PMC task workflow. This is useful to run
on platforms where it not feasible to run Condor such as the new X SEDE machines such as Blue Waters.
In this mode, Pegasus will generate the executable workflow as a PMC task workflow and a sample PBS
submit script that submits this workflow.

pegasus.register

System:

Pegasus

139

Reference Manual

Since: 4.1.0
Type: Boolean
Default: true

Pegasus creates registration jobs to register the output filesin the replica catalog. An output file isregistered only if

1) a user has configured a replica catalog in the properties 2) the register flags for the output files in the DAX are
set to true

This property can be used to turn off the creation of the registration jobs even though the files maybe marked to be
registered in the replica catal og.

pegasus.job.priority.assign

System: Pegasus
Since: 303
Type: Boolean
Default: true

This property can be used to turn off the default level based condor prioritiesthat are assigned to jobsin the executable
workflow.

pegasus.file.cleanup.strategy

System: Pegasus
Since: 22

Type: enumeration
Value[0]: InPlace
Default: InPlace

This property is used to select the strategy of how the the cleanup nodes are added to the executable workflow.

InPlace Thisisthe only mode available .

pegasus.file.cleanup.impl

System: Pegasus
Since: 22

Type: enumeration
Vaue[0]: Cleanup
Value[1]: RM
Vaue[2]: S3

Default: Cleanup

This property is used to select the executable that is used to create the working directory on the compute sites.

Cleanup The default executable that is used to delete files is the dirmanager executable shipped with Pegasus. It
isfound at SPEGASUS_HOME/bin/dirmanager in the pegasus distribution. An entry for transformation
pegasus::dirmanager needsto exist in the Transformation Catal og or the PEGASUS _HOM E environment
variable should be specified in the site catal og for the sites for this mode to work.

RM This mode results in the rm executable to be used to delete files from remote directories. The rm exe-
cutable is standard on * nix systems and is usually found at /bin/rm location.

140

Reference Manual

S3 Thismode is used to delete files/objects from the buckets in S3 instead of adirectory. This should be set
when running workflows on Amazon EC2. This implementation relies on s3cmd command line client
to create the bucket. An entry for transformation amazon::s3cmd needs to exist in the Transformation

Catalog for thisto work.

pegasus.file.cleanup.clusters.num

System: Pegasus
Since: 4.2
Type: Integer
Default: 2

In case of the InPlace strategy for adding the cleanup nodes to the workflow, this property specifies the maximum
number of cleanup jobs that are added to the executable workflow on each level.

pegasus.file.cleanup.clusters.size

System: Pegasus
Since: 421
Type: Integer
Defaullt: 2

In case of the InPlace strategy this property sets the number of cleanup jobs that get clustered into a bigger cleanup
job. This parametersisonly used if pegasus.file.cleanup.clusters.num is not set.

pegasus.file.cleanup.scope

System: Pegasus
Since: 230

Type: enumeration
Value[0]: fullahead
Value[1]: deferred
Default: fullahead

By default in case of deferred planning InPlacefile cleanup isturned OFF. Thisis because the cleanup algorithm does
not work across partitions. This property can be used to turn on the cleanup in case of deferred planning.

fullahead Thisis the default scope. The pegasus cleanup agorithm does not work across partitions in deferred
planning. Hence the cleanup isalways turned OFF , when deferred planning occurs and cleanup scope
is set to full ahead.

deferred If the scope is set to deferred, then Pegasus will not disable file cleanup in case of deferred planning.

Thisis useful for scenarios where the partitions themselves are independant (i.e. dont share files).
Even if the scope is set to deferred, users can turn off cleanup by specifying --nocleanup option to

pegasus-plan.

pegasus.catalog.transformation.mapper

System:

Staging of Executables

Since:

20

141

Reference Manual

Type: enumeration

Value[0]: All

Value[1]: Installed

Value[2]: Staged

Value[3]: Submit

Default: All

See also: pegasus.transformation.sel ector

Pegasus now supports transfer of statically linked executables as part of the concrete workflow. At present, there
is only support for staging of executables referred to by the compute jobs specified in the DAX file. Pegasus de-
termines the source locations of the binaries from the transformation catalog, where it searches for entries of type
STATIC_BINARY for a particular architecture type. The PFN for these entries should refer to a globus-url-copy
valid and accessible remote URL. For transfer of executables, Pegasus constructs a soft state map that resides on top
of the transformation catalog, that helps in determining the locations from where an executable can be staged to the
remote site.

This property determines, how that map is created.

All In this mode, all sources with entries of type STATIC_BINARY for a particular transformation are
considered valid sources for the transfer of executables. This the most general mode, and results in
the constructing the map as aresult of the cartesian product of the matches.

Installed In thismode, only entriesthat are of type INSTALLED are used while constructing the soft state map.
This results in Pegasus never doing any transfer of executables as part of the workflow. It aways
prefersthe installed executables at the remote sites.

Staged Inthismode, only entriesthat are of type STATIC_BINARY are used while constructing the soft state
map. Thisresultsin the concrete workflow referring only to the staged executables, irrespective of the
fact that the executables are already installed at the remote end.

Submit Inthismode, only entriesthat are of type STATIC_BINARY and reside at the submit host (pool local),
are used while constructing the soft state map. Thisis especially helpful, when the user wants to use
the latest compute code for his computations on the grid and that relies on his submit host.

pegasus.selector.transformation

System: Staging of Executables

Since: 20

Type: enumeration

Value[0]: Random

Value[1]: Installed

Value2]: Staged

Value[3]: Submit

Default: Random

See also: pegasus.catal og.transformation

In case of transfer of executables, Pegasus could have various transformations to select from when it schedulesto run
a particular compute job at a remote site. For e.g it can have the choice of staging an executable from a particular
remote pool, from the local (submit host) only, use the one that isinstalled on the remote site only.

This property determines, how a transformation amongst the various candidate transformations is selected, and
is applied after the property pegasus.tc has been applied. For eg specifying pegasustc as Staged and then
pegasus.transformation.selector as INSTALLED does not work, as by the time this property is applied, the soft state
map only has entries of type STAGED.

142

Reference Manual

Random In this mode, a random matching candidate transformation is selected to be staged to the remote ex-
ecution pool.
Installed In this mode, only entries that are of type INSTALLED are selected. This means that the concrete

workflow only refers to the transformations already preinstalled on the remote pools.

Staged In this mode, only entries that are of type STATIC_BINARY are selected, ignoring the ones that are
installed at the remote site.

Submit Inthismode, only entriesthat are of type STATIC_BINARY and reside at the submit host (pool local),
are selected as sources for staging the executables to the remote execution pools.

pegasus.execute.*.filesystem.local

System: Pegasus
Type: Boolean

Default: false

Since: 210

See dso: pegasus.data.configuration

Normally, Pegasus transfers the data to and from a directory on the shared filesystem on the head node of a compute
site. The directory needs to be visible to both the head node and the worker nodes for the compute jobs to execute

correctly.

By setting this property to true, you can get Pegasus to execute jobs on the worker node filesystem. In this case, when
thejobs arelaunched on the worker nodes, the jobs grab the input data from the workflow specific execution directory
on the compute site and push the output data to the same directory after completion. The transfer of datato and from
the worker node directory is referred to as Second Level Staging (SLS).

pegasus.parser.dax.preserver.linebreaks

System: Pegasus
Type: Boolean
Defaullt: false
Since: 220

The DAX Parser normally does not preserve line breaks while parsing the CDATA section that appears in the argu-
ments section of the job element in the DAX. On setting this to true, the DAX Parser preserves any line line breaks
that appear in the CDATA section.

Profiles

The Pegasus Workflow Mapper usesthe concept of profilesto encapsulate configurationsfor various aspects of dealing
with the Grid infrastructure. Profiles provide an abstract yet uniform interface to specify configuration options for
various layers from planner/mapper behavior to remote environment settings. At various stages during the mapping
process, profiles may be added associated with the job.

This document describes various types of profiles, levels of priorities for intersecting profiles, and how to specify
profilesin different contexts.

Profile Structure Heading

All profiles are triples comprised of a namespace, a name or key, and a value. The namespace is asimple identifier.
The key has only meaning within its namespace, and it’s yet another identifier. There are no constraints on
the contents of avalue

143

Reference Manual

Profiles may be represented with different syntaxes in different context. However, each syntax will describe the un-
derlying triple.

Profile Namespaces

Each namespace refers to a different aspect of ajob’s runtime settings. A profile& rsquor;s representation in
the concrete plan (e.g. the Condor submit files) depends its namespace. Pegasus supports the following Namespaces
for profiles:

¢ env permits remote environment variables to be set.

¢ globus sets Globus RSL parameters.

« condor sets Condor configuration parameters for the submit file.

« dagman introduces Condor DAGMan configuration parameters.

« pegasus configures the behaviour of various planner/mapper components.

The env Profile Namespace

The env namespace allows users to specify environment variables of remote jobs. Globus transports the environment
variables, and ensure that they are set before the job starts.

The key used in conjunction with an env profile denotes the name of the environment variable. The value of the profile
becomes the value of the remote environment variable.

Grid jobs usually only set a minimum of environment variables by virtue of Globus. Y ou cannot compare the envi-
ronment variables visible from an interactive login with those visible to a grid job. Thus, it often becomes necessary
to set environment variableslike LD_LIBRARY _PATH for remote jobs.

If you use any of the Pegasus worker package tools like transfer or the rc-client, it becomes necessary to set
PEGASUS HOME and GLOBUS_LOCATION even for jobs that run locally

Table 10.1. Table 1: Useful Environment Settings

Environment Variable Description

PEGASUS HOME Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

GLOBUS LOCATION Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usualy set in the Site
Catalog for the sites

LD_LIBRARY_PATH Point this to $GLOBUS LOCATION/lib, except you
cannot use the dollar variable. Y ou must use the full path.
Applies to both, local and remote jobs that use Globus
components and should be usually set in the site catalog
for the sites

Even though Condor and Globus both permit environment variable settings through their profiles, al remote environ-
ment variables must be set through the means of env profiles.

The Globus Profile Namespace

The globus profile namespace encapsul ates Globus resource specification language (RSL) instructions. The RSL con-
figures settings and behavior of the remote scheduling system. Some systems require queue name to schedule jobs, a
project name for accounting purposes, or a run-time estimate to schedule jobs. The Globus RSL addresses all these
issues.

144

Reference Manual

A key in the globus namespace denotes the command name of an RLS instruction. The profile value becomes the
RSL value. Even though Globus RSL is typically shown using parentheses around the instruction, the out pair of
parentheses is not necessary in globus profile specifications

Table 2 shows some commonly used RSL instructions. For an authoritative list of all possible RSL instructions refer

to the Globus RSL specification.

Table 10.2. Table 2;: Useful Globus RSL I nstructions

Key Description

count the number of times an executable is started.

jobtype specifies how the job manager should start the remotejob.
While Pegasus defaults to single, use mpi when running
MPI jobs.

maxcputime the max cpu time for a single execution of ajob.

maxmemory the maximum memory in MB reguired for the job

maxtime the maximum time or walltime for a single execution of
ajob.

maxwalltime the maximum walltime for a single execution of ajob.

minmemory the minumum amount of memory required for thisjob

project associates an account with ajob at the remote end.

queue the remote queue in which the job should be run. Used
when remote scheduler is PBS that supports queues.

Pegasus prevents the user from specifying certain RSL instructions as globus profiles, because they are either auto-
matically generated or can be overridden through some different means. For instance, if you need to specify remote
environment settings, do not use the environment key in the globus profiles. Use one or more env profilesinstead.

Table 10.3. Table 3: RSL Instructionsthat are not permissible

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
inthe DAX

directory the site catalog and properties determine which directory
ajobwill runin.

environment use multiple env profilesinstead

executable the physical executableto beused isspecified inthetrans-
formation catalog and is also dependant on the gridstart
module being used. If you are launching jobs viakickstart
then the executabl e created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

stdin you specify in the DAX for the job

stdout you specify in the DAX for the job

stderr you specify in the DAX for the job

The Condor Profile Namespace

The Condor submit file controlsevery detail how and whereajobisrun. The condor profiles permit to add or overwrite

instructions in the Condor submit file.

The condor namespace directly sets commands in the Condor submit file for a job the profile applies to. Keys in
the condor profile namespace denote the name of the Condor command. The profile value becomes the command's
argument. All condor profiles are translated into key=value lines in the Condor submit file

145

Reference Manual

Some of the common condor commands that a user may need to specify are listed below. For an authoritative list
refer to the online condor documentation. Note: Pegasus Workflow Planner/Mapper by default specify alot of condor
commands in the submit files depending upon the job, and where it is being run.

Table 10.4. Table 4: Useful Condor Commands

Key

Description

universe

Pegasus defaults to either globus or scheduler universes.
Set to standard for compute jobsthat require standard uni-
verse. Set to vanillato run natively in a condor pool, or to
run on resources grabbed via condor glidein.

periodic_release

is the number of times job is released back to the queue
if it goes to HOLD, e.g. due to Globus errors. Pegasus
defaultsto 3.

periodic_remove

is the number of timesajob is allowed to get into HOLD
state before being removed from the queue. Pegasus de-
faultsto 3.

filesystemdomain

Useful for Condor glide-insto pin ajob to aremote site.

stream_error

booleanto turn on the streaming of the stderr of the remote
job back to submit host.

stream_output

boolean to turn on the streaming of the stdout of the re-
mote job back to submit host.

priority integer value to assign the priority of ajob. Higher value
means higher priority. The priorities are only applied for
vanilla/ standard/ local universe jobs. Determines the or-
der in which ausers own jobs are executed.

request_cpus New in Condor 7.8.0 . Number of CPU's ajob requires.

request_memory

New in Condor 7.8.0 . Amount of memory ajob requires.

request_disk

New in Condor 7.8.0 . Amount of disk ajob requires.

Other useful condor keys, that advanced users may find useful and can be set by profiles are

1. should_transfer_files
2. transfer_output

3. transfer_error

4. whentotransferoutput
5. requirements

6. rank

Pegasus preventsthe user from specifying certain Condor commandsin condor profiles, becausethey are automatically
generated or can be overridden through some different means. Table 5 shows prohibited Condor commands.

Table 10.5. Table 5: Condor commands prohibited in condor profiles

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
inthe DAX

environment use multiple env profilesinstead

executable the physical executableto beused isspecified inthetrans-
formation catalog and is also dependant on the gridstart

146

Reference Manual

module being used. If you are launching jobs viakickstart
then the executable created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

The Dagman Profile Namespace

DAGMan is Condor's workflow manager. While planners generate most of DAGMan's configuration, it is possible to
tweak certain job-related characteristics using dagman profiles. A dagman profile can be used to specify aDAGMan
pre- or post-script.

Pre- and post-scripts execute on the submit machine. Both inherit the environment settings from the submit host when
pegasus-submit-dag or pegasus-run is invoked.

By default, kickstart launches all jobs except standard universe and MPI jobs. Kickstart tracks the execution of thejob,
and returns usage statistics for the job. A DAGMan post-script starts the Pegasus application exitcode to determine,
if the job succeeded. DAGMan receives the success indication as exit status from exitcode.

If you need to run your own post-script, you have to take over the job success parsing. The planner is set up to pass
the file name of the remote job's stdout, usually the output from kickstart, as sole argument to the post-script.

Table 6 shows the keys in the dagman profile domain that are understood by Pegasus and can be associated at a per
job basis.

Table 10.6. Table 6: Useful dagman Commandsthat can be associated at a per job basis

Key Description

PRE is the path to the pre-script. DAGMan executes the pre-
script before it runs the job.

PRE.ARGUMENTS are command-line arguments for the pre-script, if any.

POST is the postscript type/mode that a user wants to associate
with ajob.

1. pegasus-exitcode - pegasus will by default associate
this postscript with al jobs launched via kickstart, as
long the POST.SCOPE value is not set to NONE.

2. none -means that no postscript is generated for the
jobs. Thisis useful for MPI jobs that are not launched
viakickstart currently.

3. any legal identifier - Any other identifier of the form
([_A-Za-Z][_A-Z&-z0-9]*), than one of the 2 reserved
keywords above, signifies a user postscript. This al-
lows the user to specify their own postscript for the
jobsin the workflow. The path to the postscript can be
specified by the dagman profile POST.PATH .[valu€]
where[value] isthislegal identifier specified. The user
postscript is passed the name of the .out file of the job
asthe last argument on the command line.

For e.g. if the following dagman profiles were associ-
ated with ajob X

a. POST with value user_script /bin/user_postscript

b. POST.PATH.user_script with value /path/to/user/
script

c. POST.ARGUMENTS with value -verbose

147

Reference Manual

then the following postscript will be associated with
thejob X in the .dag file

Ipath/to/user/script -verbose X.out where X.out con-
tains the stdout of the job X

POST.PATH.* (where * is replaced by the value of the|the path to the post script on the submit host.

POST Profile)

POST.ARGUMENTS arethe command line argumentsfor the post script, if any.

RETRY isthe number of times DAGMan retriesthe full job cycle
from pre-script through post-script, if failure was detect-
ed.

CATEGORY the DAGMan category the job belongs to.

PRIORITY the priority to apply to ajob. DAGMan uses this to select
what jobs to release when MAXJOBS is enforced for the
DAG.

Table 7 shows the keys in the dagman profile domain that are understood by Pegasus and can be used to apply to the
whole workflow. These are used to control DAGMan's behavior at the workflow level, and are recommended to be
specified in the propertiesfile.

Table 10.7. Table 7: Useful dagman Commandsthat can be specified in the propertiesfile.

Key Description

MAXPRE sets the maximum number of PRE scriptswithinthe DAG
that may be running at one time

MAXPOST sets the maximum number of PRE scriptswithinthe DAG
that may be running at one time

MAXJOBS sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

MAXIDLE sets the maximum number of idle jobs within the DAG
that will be submitted to Condor at one time.

[CATEGORY-NAME].MAXJOBS isthevalue of maxjobsfor aparticular category. Userscan

associate different categoriesto thejobs at aper job basis.
However, the value of a dagman knaob for a category can
only be specified at aper workflow basisin the properties.

POST.SCOPE scope for the postscripts.

1. If settoall , means each job in the workflow will have
a postscript associated with it.

2. If set to none, means no job has postscript associated
with it. None mode should be used if you are running
vanilla/ standard/ local universe jobs, as in those cas-
es Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job isthe replicaregistration job.

The Pegasus Profile Namespace

The pegasus profiles allow users to configure extra options to the Pegasus Workflow Planner that can be applied
selectively to ajob or agroup of jobs. Site selectors may use a sub-set of pegasus profiles for their decision-making.

148

Reference Manual

Table 8 shows some of the useful configuration option Pegasus understands.

Table 10.8. Table 8: Useful pegasus Profiles.

Key

Description

workdir

Sets the remote initial dir for a Condor-G job. Overrides
thework directory algorithm that usesthe site catalog and
properties.

clusters.num

Please refer to the Pegasus Clustering Guide for detailed
description. This option determines the total number of
clusters per level. Jobs are evenly spread across clusters.

clusters.size

Please refer to the Pegasus Clustering Guide for detailed
description. This profile determines the number of jobsin
each cluster. The number of clusters depends on the total
number of jobs on the level.

cores

The number of cores, associated with thejob. Thisissole-
ly used for accounting purposesin the database while gen-
erating statistics. It correspondsto the multiplier_factor in
the job_instance table described here.

runtime

Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the expected runtime of
ajob.

clusters.maxruntime

Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the maximum runtime
of ajob.

job.aggregator Indicates the clustering executable that is used to run the
clustered job on the remote site.

gridstart Determines the executable for launching a job. Possible
valuesare Kickstart | NoGridStart at the moment.

gridstart.path Setsthe path to the gridstart . Thisprofileisbest set inthe

Site Catalog.

gridstart.arguments

Setsthe arguments with which GridStart is used to launch
ajob on the remote site.

stagein.clusters

This key determines the maximum number of stage-in
jobsthat are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, which isthe Default Refiner used in Pe-
gasus. Thisprofileis best set in the Site Catalog or in the
Propertiesfile

stagein.local.clusters

Thiskey providesfiner grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
ertiesfile

stagein.remote.clusters

Thiskey providesfiner grained control in determining the
number of stage-in jobsthat are executed remotely on the
remote site and are responsible for staging datato it. This
profile is best set in the Site Catalog or in the Properties
file

stageout.clusters

This key determines the maximum number of stage-out
jobsthat are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, , which is the Default Refiner used in

Pegasus.

149

Reference Manual

stageout.local.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed locally and are
responsible for staging data from a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
ertiesfile

stageout.remote.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed remotely onthe
remote site and are responsible for staging data from it.
This profile is best set in the Site Catalog or in the Prop-
ertiesfile

group Tags a job with an arbitrary group identifier. The group
site selector makes use of the tag.

change.dir If true, tells kickstart to change into the remote working
directory. Kickstart itself is executed in whichever direc-
tory the remote scheduling system chose for the job.

create.dir If true, tells kickstart to create the the remote working di-
rectory before changing into the remote working directo-
ry. Kickstart itself is executed in whichever directory the
remote scheduling system chose for the job.

transfer.proxy If true, tells Pegasus to explicitly transfer the proxy for
transfer jobs to the remote site. Thisis useful, when you
want to use afull proxy at the remote end, instead of the
limited proxy that is transferred by CondorG.

transfer.arguments Allows the user to specify the arguments with which the
transfer executable is invoked. However certain options
are always generated for the transfer executabl e(base-uri
se-mount-point).

style Sets the condor submit file style. If set to globus, submit
file generated refers to CondorG job submissions. If set
to condor, submit file generated refers to direct Condor
submission to thelocal Condor pool. It appliesfor glidein,
where nodes from remote grid sites are glided into the lo-
cal condor pool. Thedefault stylethat isappliedisglobus.

pmc_request_memory Thiskey isused to set the -m option for pegasus-mpi-clus-
ter. It specifiesthe amount of memory in MB that ajobre-
quires. Thisprofileisusually setinthe DAX for each job.

pmc_request_cpus Thiskey isused to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profileis usually set in the DAX for each job.

pmc_priority Thiskey isused to set the -p option for pegasus-mpi-clus-
ter. It specifies the priority for ajob . This profileis usu-
aly set in the DAX for each job. Negative values are al-
lowed for priorities.

pmc_task_arguments The key is used to pass any extra arguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for the task in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Sources for Profiles

Profiles may enter the job-processing stream at various stages. Depending on the requirements and scope a profile is
to apply, profiles can be associated at

150

Reference Manual

e asuser property settings.

o dax level

¢ inthesite catalog

« inthe transformation catalog

Unfortunately, a different syntax applies to each level and context. This section shows the different profile sources
and syntaxes. However, at the foundation of each profile lies the triple of namespace, key and value.

User Profiles in Properties

Users can specify all profiles in the properties files where the property name is [namespace].key and value of the
property isthe value of the profile.

Namespace can be env|condor|globus|dagman|pegasus

Any profile specified as a property applies to the whole workflow unless overridden at the DAX level , Site Catalog,
Transformation Catalog Level.
Some profiles that they can be set in the propertiesfile are listed below

env. JAVA_HOMVE "/ sof twar e/ bin/java"

condor. periodic_rel ease 5
condor. peri odi c_renove ny_own_expression
condor.streamerror true

condor. stream out put fa

gl obus. maxwal | time 1000

gl obus. maxti me 900

gl obus. maxcputi me 10

gl obus. proj ect test _project
gl obus. queue mai n_queue

dagman. post. argunents --test arguments

dagman.retry 4

dagman. post si npl e_exi t code

dagman. post . pat h. si npl e_exi t code /bin/exitcode/exitcode.sh
dagman. post . scope al

dagman. maxpre 12

dagman. priority 13

dagman. bi gj obs. maxj obs 1

pegasus. clusters.size 5

pegasus. stagei n. clusters 3

Profiles in DAX

The user can associate profiles with logical transformationsin DAX. Environment settings required by ajob's appli-
cation, or amaximum estimate on the run-time are examples for profiles at this stage.

<job id="1D000001" nanespace="asdf" nane="preprocess" version="1.0"
<argument>-a top -T10 -i <filenane file="voeckler.f.a"/>
-o <filenane file="voeckler.f.bl"/>
<filenane file="voeckler.f.b2"/></argunent>
<profil e namespace="pegasus" key="wal | tine">2</profile>
<profil e namespace="pegasus" key="di skspace">1</profile>
&l dr;
</ j ob>

Profiles in Site Catalog

If it becomes necessary to limit the scope of a profile to a single site, these profiles should go into the site catalog.
A profile in the site catalog applies to al jobs and all application run at the site. Commonly, site catalog profiles set
environment settings likethe LD_LIBRARY_PATH, or globus rsl parameters like queue and project names.

151

Reference Manual

Currently, there is no tool to manipulate the site catalog, e.g. by adding profiles. Modifying the site catalog requires
that you load it into your editor.

The XML version of the site catalog uses the following syntax:

<profil e namespace="nanespace" key="key">val ue</profile>

The XML schemarequires that profiles are the first children of a pool element. If the element ordering is wrong, the
XML parser will produce errors and warnings:

<pool handl e="isi _condor" gridl aunch="/home/ shar ed/ pegasus/ bi n/ ki ckstart">
<profil e namespace="env"
key="GLOBUS_LOCATI ON' >/ hone/ shar ed/ gl obus/ </ profil e>
<profil e namespace="env"
key="LD_LI BRARY_PATH"' >/ hone/ shared/ gl obus/1ib</profile>
<lrc url="rls://sukhna.isi.edu" />
& dr;
</ pool >

The multi-line textual version of the site catal og uses the following syntax:

profile namespace "key" "val ue"

The order within the textual pool definition is not important. Profiles can appear anywhere:

pool isi_condor {
gridlaunch "/ hone/ shar ed/ pegasus/ bi n/ ki ckstart"
profile env "GLOBUS_LOCATI ON' "/ hone/ shar ed/ gl obus"”
profile env "LD LI BRARY_PATH' "/ hone/ shared/ gl obus/|ib"
&l dr;

}

Profiles in Transformation Catalog

Some profiles require a narrower scope than the site catalog offers. Some profiles only apply to certain applications
on certain sites, or change with each application and site. Transformation-specific and CPU-specific environment
variables, or job clustering profiles are good candidates. Such profiles are best specified in the transformation catal og.

Profiles associate with a physical transformation and site in the transformation catalog. The Database version of the
transformation catal og also permits the convenience of connecting a transformation with a profile.

The Pegasus tc-client tool is a convenient helper to associate profiles with transformation catal og entries. As benefit,
the user does not have to worry about formats of profiles in the various transformation catal og instances.

tc-client -a -P -E -p /hone/ shar ed/ execut abl es/ anal yze -t | NSTALLED -r isi_condor -e
env: : GLOBUS_LOCATI ON=&r dquor ; / horme/ shar ed/ gl obus&r dquor ;

The above example adds an environment variable GLOBUS_LOCATION to the application /home/shared/executa-
bles/analyze on siteisi_condor. The transformation catalog guide has more details on the usage of the tc-client.

Profiles Conflict Resolution

Irrespective of where the profiles are specified, eventualy the profiles are associated with jobs. Multiple sources
may specify the same profile for the same job. For instance, DAX may specify an environment variable X. The site
catalog may also specify an environment variable X for the chosen site. The transformation catalog may specify an
environment variable X for the chosen site and application. When the job is concretized, these three conflicts need
to be resolved.

Pegasus defines a priority ordering of profiles. The higher priority takes precedence (overwrites) a profile of alower
priority.

1. Transformation Catalog Profiles
2. Site Catalog Profiles

3. DAX Profiles

152

Reference Manual

4. Profilesin Properties

Details of Profile Handling

The previous sections omitted some of the finer details for the sake of clarity. To understand some of the constraints
that Pegasus imposes, it is required to look at the way profiles affect jobs.

Details of env Profiles

Profiles in the env namespace are trandated to a semicolon-separated list of key-value pairs. The list becomes the
argument for the Condor environment command in the job's submit file.

Pegasus WV SUBM T FI LE GENERATOR
DAG : bl ack-di anond, Index = 0, Count =1
SUBM T FI LE NAME : findrange_| D000002. sub

gl obusrsl = (j obtype=single)

envi ronment =GLOBUS_LOCATI ON=/ shar ed/ gl obus; LD_LI BRARY_PATH=/ shar ed/ gl obus/ i b
execut abl e = /shared/ sof tware/ | inux/ pegasus/ def aul t/bi n/ ki ckstart

gl obusschedul er = col unbus. i si. edu/j obmanager - condor

rempte_initialdir = /shared/ CONDOR/ wor kdi r/i si _hourgl ass

uni verse = gl obus

& dr

queue

END OF SUBM T FILE

Condor-G, in turn, will transl ate the environment command for any remote job into Globus RSL environment settings,
and append them to any existing RSL syntax it generates. To permit proper mixing, all environment setting should
solely use the env profiles, and none of the Condor nor Globus environment settings.

If kickstart starts a job, it may make use of environment variables in its executable and arguments setting.

Details of globus Profiles

Profiles in the globus Namespaces are trandlated into a list of paranthesis-enclosed equal-separated key-value pairs.
The list becomes the value for the Condor globusrdl setting in the job's submit file:

Pegasus WWB SUBM T FI LE GENERATOR
DAG : bl ack-di anond, Index = 0, Count =1
SUBM T FI LE NAME : findrange_| DO00002. sub

gl obusrsl = (jobtype=singl e)(queue=fast) (project=nvo)

execut abl e = /shared/ sof twar e/ | i nux/ pegasus/ def aul t/ bi n/ ki ckstart
gl obusschedul er = col unbus. i si. edu/j obmanager - condor
renmote_initialdir = /shared/ CONDOR/ wor kdi r/i si _hourgl ass

uni verse = gl obus

&l dr;

queue

END OF SUBM T FILE

For this reason, Pegasus prohibits the use of the globusrsl key in the condor profile namespace.

Replica Selection

Each job in the DAX maybe associated with input LFN& rsquor;s denoting thefilesthat are required for the job to run.
To determine the physical replica (PFN) for a LFN, Pegasus queries the Replica catalog to get al the PFN& rsquor;s
(replicas) associated with aLFN. The Replica Catal og may return multiple PFN'sfor each of the LFN'squeried. Hence,
Pegasus needs to select a single PFN amongst the various PFN's returned for each LFN. This process is known as
replica selection in Pegasus. Users can specify the replica selector to use in the propertiesfile.

This document describes the various Replica Selection Strategies in Pegasus.

153

Reference Manual

Configuration

The user properties determine what replica selector Pegasus Workflow Mapper uses. The property
pegasus.selector .replicaisused to specify thereplicaselection strategy. Currently supported Replica Sel ection strate-
giesare

1. Default
2. Restricted
3. Regex

The values are case sensitive. For example the following property setting will throw a Factory Exception .

pegasus. sel ector.replica default

The correct way to specify is

pegasus. sel ector.replica Default

Supported Replica Selectors

The various Replica Selectors supported in Pegasus Workflow Mapper are explained below

Default

Thisis the default replica selector used in the Pegasus Workflow Mapper. If the property pegasus.selector.replicais
not defined in properties, then Pegasus uses this selector.

This selector looks at each PFN returned for aLFN and checks to see if
1. thePFN isafile URL (starting with file:///)

2. the PFN has a poal attribute matching to the site handle of the site where the compute job that requires the input
fileisto berun.

If a PFN matching the conditions above exists then that is returned by the selector .

Else, arandom PFN is selected amongst all the PFN’s that have a pool attribute matching to the site handle
of the site where a compute job isto be run.

Else, arandom pfn is selected amongst all the PFN& rsquor;s

To use thisreplica selector set the following property

pegasus. sel ector.replica Def aul t

Restricted

Thisreplicaselector, allows the user to specify good sites and bad sitesfor staging in datato a particular compute site.
A good site for acompute site X, is a preferred site from which replicas should be staged to site X. If there are more
than one good sites having a particular replica, then arandom site is selected amongst these preferred sites.

A bad sitefor acompute site X, isasitefrom which replica& rsguor;s should not be staged. The reason of not accessing
replicafrom abad site can vary from thelink being down, to the user not having permissionson that site& rsquor;s data.

The good | bad sites are specified by the following properties

pegasus.replica.*.prefer.stagein.sites
pegasus. replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is taken to mean all
sites. The value to these propertiesis a comma separated list of sites.

154

Reference Manual

For example the following settings

pegasus. sel ector.replica.*. prefer.stagein.sites usc
pegasus. replica. uwm prefer.stagein.sites isi,cit

meansthat prefer all replicasfrom siteusc for staging in to any compute site. However, for uwm use atighter constraint
and prefer only replicas from site isi or cit. The pool attribute associated with the PFN's tells the replica selector to
what site areplica/PFN is associated with.

The pegasus.replica* .prefer.stagein.sites property takes precedence over pegasus.replica* .ignore.stagein.sites prop-
erty i.e. if for asite X, asite Y is specified both in the ignored and the preferred set, then site Y is taken to mean as
only apreferred site for asite X.

To use thisreplica selector set the following property

pegasus. sel ector.replica Restricted

Regex
This replica selector allows the user alows the user to specific regex expressions that can be used to rank various
PFN& rsquor;s returned from the Replica Catalog for aparticular LFN. Thisreplica selector selects the highest ranked
PFN i.e the replicawith the lowest rank value.
The regular expressions are assigned different rank, that determine the order in which the expressions are employed.
The rank values for the regex can expressed in user properties using the property.
pegasus. sel ector. replica.regex.rank. [val ue] regex- expressi on
The [value] in the above property is an integer value that denotes the rank of an expression with a rank value of 1
being the highest rank.
For example, a user can specify the following regex expressions that will ask Pegasus to prefer file URL's over gsiftp
url's from example.isi.edu
pegasus. sel ector. replica.regex.rank. 1 filer//.*
pegasus. sel ector. replica.regex.rank. 2 gsiftp://exanple\.isi\.edu. *
User can specify as many regex expressions as they want.
Since Pegasusisin Java, the regex expression support is what Java supports. It is pretty close to what is supported by
Perl. More details can be found at http://java.sun.com/j2se/1.5.0/docs api/javalutil/regex/Pattern.html
Before applying any regular expressions on the PFN’s for a particular LFN that has to be staged to a site X,
the file URL & rsquor;s that don't match the site X are explicitly filtered out.
To use this replica selector set the following property
pegasus. sel ector.replica Regex

Local

This replica selector always prefers replicas from the local host (pool attribute set to local) and that start with afile:
URL scheme. It is useful, when users want to stagein files to a remote site from the submit host using the Condor
file transfer mechanism.

To use this replica selector set the following property

pegasus. sel ector.replica Def aul t

Job Clustering

A large number of workflows executed through the Pegasus Workflow Management System, are composed of several
jobsthat run for only afew seconds or so. The overhead of running any job on the grid is usually 60 seconds or more.
Hence, it makes sense to cluster small independent jobs into a larger job. This is done while mapping an abstract

155

Reference Manual

workflow to an executable workflow. Site specific or transformation specific criteriaaretaken into consideration while
clustering smaller jobs into alarger job in the executable workflow. The user is allowed to control the granularity of
this clustering on a per transformation per site basis.

Overview

The abstract workflow is mapped onto the various sites by the Site Selector. This semi executable workflow is then
passed to the clustering module. The clustering of the workflow can be either be

* level based (horizontal clustering)
* |abel based (Iabel clustering)

The clustering module clusters the jobs into larger/clustered jobs, that can then be executed on the remote sites. The
execution can either be sequential on a single node or on multiple nodes using MPI. To specify which clustering
technique to use the user has to pass the --cluster option to pegasus-plan .

Generating Clustered Executable Workflow

The clustering of aworkflow is activated by passing the --cluster|-C option to pegasus-plan. The clustering granu-
larity of aparticular logical transformation on aparticular site is dependant upon the clustering techniques being used.
The executable that is used for running the clustered job on a particular siteis determined as explained in section 7.

#Runni ng pegasus-plan to generate clustered workfl ows

$ pegasus-plan --dax exanple.dax --dir ./dags -p siteX --output |ocal
--cluster [comma separated |list of clustering techniques] -verbose

Valid clustering techniques are horizontal and | abel.

The naming convention of submit files of the clustered jobsismerge NAME_IDX.sub . TheNAME isderived from
the logical transformation name. The IDX is an integer number between 1 and the total number of jobsin a cluster.
Each of the submit files has a corresponding input file, following the naming convention merge NAME_IDX.in. The
input file contai nsthe respective execution targets and the argumentsfor each of thejobsthat make up the clustered job.

Horizontal Clustering

In case of horizontal clustering, each job in the workflow is associated with a level. The levels of the workflow are
determined by doing a modified Breadth First Traversal of the workflow starting from the root nodes. The level
associated with anode, is the furthest distance of it from the root node instead of it being the shortest distance asin
normal BFS. For each level the jobs are grouped by the site on which they have been scheduled by the Site Selector.
Only jobs of sametype (txnamespace, txname, txversion) can be clustered into alarger job. To use horizontal clustering
the user needs to set the --cluster option of pegasus-plan to horizontal .

Controlling Clustering Granularity

The number of jobs that have to be clustered into a single large job, is determined by the value of two parameters
associated with the smaller jobs. Both these parameters are specified by the use of a PEGASUS namespace profile
keys. The keys can be specified at any of the placeholders for the profiles (abstract transformation in the DAX, site
in the site catalog, transformation in the transformation catalog). The normal overloading semantics apply i.e. profile
in transformation catalog overrides the one in the site catalog and that in turn overrides the one in the DAX. The two
parameters are described below.

¢ clusters.sizefactor

The clusters.size factor denotes how many jobs need to be merged into asingle clustered job. It is specified viathe
use of a PEGA SUS namespace profile key & ldquo;clusters.size& rdquor;. for e.g. if at aparticular level, say 4 jobs
referring to logical transformation B have been scheduled to asiteX. The clusters.size factor associated with job B
for siteX issay 3. Thiswill result in 2 clustered jobs, one composed of 3 jobs and another of 2 jobs. The clusters.size
factor can be specified in the transformation catalog as follows

#site transformation pfn type architecture profiles

156

Reference Manual

siteX B / shar ed/ PEGASUS/ bi n/ j obB | NSTALLED I NTEL32: : LI NUX PEGASUS: : cl usters. si ze=3
siteX C / shar ed/ PEGASUS/ bi n/ j obC | NSTALLED I NTEL32: : LI NUX PEGASUS: : cl usters. si ze=2

Figure 10.1. Clustering by clusters.size

Clustering by specifying
"elusters.size" factor per
transformation

i

1. Original Workflow

Specified a “clusters.size” facior
of 3 in the transformation
catalog for B

C
.

2. Workflow After Clustering

A

Specified a "clusters.size” factpr,
of 2 in the transformation
catalog for C

.

¢ clusters.num factor

157

Reference Manual

The clusters.num factor denotes how many clustered jobs does the user want to see per level per site. It is specified
via the use of a PEGASUS namespace profile key “clusters.numé”. for e.g. if at a particular level,
say 4 jobsreferring to logical transformation B have been scheduled to a siteX. The & ldquo;clusters.numé& rdquor;
factor associated with job B for siteX issay 3. Thiswill result in 3 clustered jobs, one composed of 2 jobs and others
of asinglejob each. The clusters.num factor in the transformation catalog can be specified as follows

#site transformation pfn type architecture profiles
siteX B / shar ed/ PEGASUS/ bi n/ j obB | NSTALLED I NTEL32: : LI NUX PEGASUS: : cl ust ers. nunr3
siteX C / shar ed/ PEGASUS/ bi n/ j obC | NSTALLED I NTEL32: : LI NUX PEGASUS: : cl ust ers. nums2

In the case, where both the factors are associated with the job, the clusters.num value supersedes the clusters.size
value.

#site transformation pfn type architecture profiles

siteX B / shar ed/ PEGASUS/ bi n/ j obB | NSTALLED | NTEL32: : LI NUX
PEGASUS: : cl ust ers. si ze=3, cl usters. num=3

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered on the basis
of “clusters.num” value. Hence, if there are 4 jobs referring to logical transformation B scheduled
to siteX, then 3 clustered jobs will be created.

158

Reference Manual

Figure 10.2. Clustering by clusters.num

Clustering by specifying
“elusters.num” factor per

transformation

1. Original Workflow

i

Specified a "elusters.num” facfor,
of 3 in the transformation
catalog for B

Specified a "elusters.num” fa
of 2 in the transformation
catalog for C

"

® 0®

A

b

K

2. Workflow After Clustering

159

Reference Manual

Runtime Clustering

Workflows often consist of jobs of same type, but have varying run times. Two or more instances of the same job,
with varying inputs can differ significantly in their runtimes. A simple way to think about this is running the same
program on two distinct input sets, where one input is smaller (1 MB) as compared to the other which is 10 GB in
size. In such a case the two jobs will having significantly differing run times. When such jobs are clustered using
horizontal clustering, the benefits of job clustering may be lost if all smaller jobs get clustered together, while the
larger jobs are clustered together. In such scenarios it would be beneficia to be able to cluster jobs together such that
all clustered jobs have similar runtimes.

In case of runtime clustering, jobs in the workflow are associated with alevel. The levels of the workflow are deter-
mined in the same manner as in horizontal clustering. For each level the jobs are grouped by the site on which they
have been scheduled by the Site Selector. Only jobs of same type (txnamespace, txname, txversion) can be clustered
into alarger job. To use runtime clustering the user needs to set the --cluster option of pegasus-plan to horizontal.

Basic Algorithm of grouping jobsinto clustersis as follows

/'l cluster.maxruntinme - I's the maxi numruntinme for which the clustered job should run.
/1 j.runtine - Is the runtinme of the job j.
1. Create a set of jobs of the same type (txnanespace, txnanme, txversion), and that run on the sane
site.
2. Sort the jobs in decreasing order of their runtinme.
3. For each job j, repeat

a. If j.runtime > cluster.maxruntine then

ignore j.

/1 Sum of runtinme of jobs already in the bin + j.runtine <= cluster.maxruntine
If j can be added to any existing bin (clustered job) then
Add j to bin
El se
Add a new bin
Add job j to newy added bin

The runtime of ajob, and maximum runtime for which a clustered jobs should run, is determined by the value of two
parameters associated with the jobs.

e runtime
expected runtime for ajob
e clustersmaxruntime
maxruntime for the clustered job
Both these parameters are specified by the use of a PEGASUS namespace profile keys. The keys can be specified at
any of the placeholders for the profiles (abstract transformation in the DA X, sitein the site catalog, transformation in

the transformation catalog). The normal overloading semantics apply i.e. profile in transformation catalog overrides
the onein the site catalog and that in turn overrides the one in the DAX. The two parameters are described below.

#site transformation pfn type architecture profiles
siteX B / shar ed/ PEGASUS/ bi n/ j obB | NSTALLED I NTEL32: : LI NUX

PEGASUS: : cl ust er s. maxr unt i me=250, runt i me=100
siteX C / shar ed/ PEGASUS/ bi n/ j obC | NSTALLED I NTEL32: : LI NUX

PEGASUS: : cl ust er s. maxr unt i ne=300, r unt i ne=100

160

Reference Manual

Figure 10.3. Clustering by runtime

Runtime Based Clustering by specifying
‘clusters. maxruntime, job.runtime” per
transformation

"job.runtime” indicates
how long each job will run

"elusters.maxruntime” indicate
maxruntime for a clustered job

1. Original Workflow

Specified a
"job.runtime" factor of 100
and i
“clusters.maxruntime” factor
of 250 in the transformation
catalog for B

Specified a -
"job.runtime” factor of 100
and
“clusters.maxruntime” facio
of 300 in the transformation
catalog for C

2. Workflow After Runtime Clustering

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered such that all
clustered jobs will run approximately for the same duration specified by the clusters.maxruntime property. In the

161

Reference Manual

above case we assume all jobs referring to transformation B run for 100 seconds. For jobs with significantly differing
runtime, the runtime property will be associated with the jobsin the DAX.

In addition to the above two profiles, we need to inform pegasus-plan to use runtime clustering. Thisisdone by setting
the following property .

pegasus. cl usterer. preference Runti me

Label Clustering

In label based clustering, the user 1abels the workflow. All jobs having the same label value are clustered into asingle
clustered job. This allows the user to create clusters or use a clustering technique that is specific to his workflows. If
thereis no label associated with the job, the job is not clustered and is executed asis

162

Reference Manual

Figure 10.4. L abel-based clustering

Label Based Clustering
by labeling jobs in the DAX

label =
cluster

el =
cluster_

label = label = l label =
cluster_1 ‘ cluster_2 cluster |

label =
cluster_1

1. Original Workflow

The Dotted Arrows indicate

the topological sort ordering . .
in the cluster of the jobs. | A
[lustef 2

- = - 1
I cluster_1 !
*]
\ .

I
1
This is the order with which the]] ilr s

jobs will be executed on

the single node.
2. Workflow After Label
Clustering

Since, the jobs in a cluster in this case are not independent, it is important the jobs are executed in the correct order.
Thisis done by doing a topological sort on the jobs in each cluster. To use label based clustering the user needs to
set the --cluster option of pegasus-plan to label.

163

Reference Manual

Labelling the Workflow

Thelabelsfor thejobsin the workflow are specified by associated pegasus profile keyswith thejobs during the DAX
generation process. The user can choose which profile key to use for labeling the workflow. By default, it is assumed
that the user is using the PEGASUS profile key label to associate the labels. To use another key, in the pegasus
namespace the user needs to set the following property

¢ pegasus.clusterer.label .key

For example if the user sets pegasus.clusterer.label.key to user_label then the job description in the DAX looks
asfollows

<adag >

<j ob id="1D000004" namespace="app" name="anal yze" version="1.0" |evel="1" >

<argument>-a bottom-T60 -i <filename file="user.f.cl"/> -o <filenane file="user.f.d"/></
ar gunent >
<profil e namespace="pegasus" key="user_| abel ">pl</profil e>
<uses file="user.f.cl" link="input" dontRegister="false" dontTransfer="fal se"/>
<uses file="user.f.c2" link="input" dontRegister="false" dontTransfer="fal se"/>
<uses file="user.f.d" link="output" dontRegister="false" dontTransfer="fal se"/>
</j ob>
</ adag>

« The above states that the pegasus profiles with key as user_label are to be used for designating clusters.
« Each job with the same value for pegasus profile key user_label appearsin the same cluster.
Recursive Clustering

In some cases, a user may want to use a combination of clustering techniques. For e.g. a user may want some jobsin
the workflow to be horizontally clustered and someto be label clustered. This can be achieved by specifying acomma
separated list of clustering techniques to the --cluster option of pegasus-plan. In this case the clustering techniques
are applied one after the other on the workflow in the order specified on the command line.

For example

$ pegasus-plan --dax exanple.dax --dir ./dags --cluster |abel, horizontal -s siteX --output |ocal --
ver bose

164

Reference Manual

Figure 10.5. Recursive clustering

Overlaying one clustering
technique over other

label =
cluster

el =
cluster

label = label =
cluster_2

cluster_1 I cluster_1 I

1. Original Workflow

The Dotted Arrows indicate
the topological sort ardering
in the cluster of the jobs.
This is the order with which the|j
jobs will be executed on
the single node.

2. Workflow After Label
Clustering

The Dotted Arrows indicate .
the topalogical sort ordering

in the cluster of the jobs.

H
This is the order with which thej #,," . - !
Jobs will be executed on -
the single node. . .

3. Workflow After Horizontal Clustering
applied to Label based Clustered Workflow

Execution of the Clustered Job

The execution of the clustered job on the remote site, involves the execution of the smaller constituent jobs either

165

Reference Manual

¢ sequentially on a single node of theremote site

The clustered job is executed using pegasus-cluster, a wrapper tool written in C that is distributed as part of the
PEGASUS. It takes in the jobs passed to it, and ends up executing them sequentially on a single node. To use
pegasus-cluster for executing any clustered job on a siteX, there needs to be an entry in the transformation catalog
for an executable with the logical name segexec and namespace as pegasus.

#site transformation pfn type architecture profiles
siteX pegasus: : segexec / usr/ pegasus/ bi n/ pegasus-cl uster | NSTALLED I NTEL32: : LI NUX
NULL

If the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile
PEGASUS HOME specified in the site catalog for the remote site.

« On multiple nodes of the remote site using MPI based task management tool called Pegasus MPI Cluster
(PMC)

The clustered job is executed using pegasus-mpi-cluster, awrapper MPI program written in C that is distributed
as part of the PEGASUS. A PMC job consists of a single master process (this process is rank 0 in MPI parlance)
and several worker processes. These processes follow the standard master-worker architecture. The master process
manages the workflow and assigns workflow tasks to workers for execution. The workers execute the tasks and
return the results to the master. Communication between the master and the workers is accomplished using asim-
ple text-based protocol implemented using MPI_Send and MPI_Recv. PMC relies on a shared filesystem on the
remote site to manage the individual tasks stdout and stderr and stage it back to the submit host as part of it's own
stdout/stderr.

The input format for PMC is a DAG based format similar to Condor DAGMan's. PMC follows the dependencies
specified in the DAG to release the jobs in the right order and executes parallel jobs viathe workers when possible.
Theinput filefor PMC isautomatically generated by the Pegasus Planner when generating the executable workflow.
PMC alows for a finer grained control on how each task is executed. This can be enabled by associating the
following pegasus profiles with the jobs in the DAX

Table 10.9. Table: Pegasus Profilesthat can be associated with jobsin the DAX for PMC

Key Description

pmc_request_memory This key is used to set the -m option for pegasus-mpi-
cluster. It specifies the amount of memory in MB that a
job requires. This profile is usually set in the DAX for
each job.

pmc_request_cpus Thiskey isused to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profileis usually set in the DAX for each job.

pmc_priority This key is used to set the -p option for pegasus-mpi-
cluster. It specifiesthe priority for ajob . This profileis
usually set inthe DAX for each job. Negative values are
allowed for priorities.

pmc_task_arguments The key is used to pass any extraarguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for thetask in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Refer to the pegasus-mpi-cluster man page in the command line tools chapter to know more about PMC and how
it schedulesindividual tasks.

It is recommended to have a pegasus::mpiexec entry in the transformation catalog to specify the path to PMC on
the remote and specify the relevant globus profiles such as xcount, host_xcount and maxwalltime to control size
of the MPI job.

166

Reference Manual

#site transformation pfn type architecture profiles

siteX pegasus: : npi exec / usr/ pegasus/ bi n/ pegasus- npi - cl ust er | NSTALLED I NTEL32: : LI NUX
gl obus: : xcount =32; gl obus: : host _xcount =1

If the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile
PEGASUS HOME specified in the site catalog for the remote site.

Tip
Users are encouraged to use label based clustering in conjunction with PMC

Specification of Method of Execution for Clustered Jobs
The method execution of the clustered job(whether to launch via mpiexec or segexec) can be specified
1. globally in the propertiesfile

The user can set aproperty in the propertiesfilethat resultsin all the clustered jobs of the workflow being executed
by the same type of executable.

#PEGASUS PROPERTI ES FI LE
pegasus. cl usterer.job. aggregator segexec| npi exec

In the above example, al the clustered jobs on the remote sites are going to be launched via the property value, as
long as the property valueis not overridden in the site catalog.

2. associating profile key job.aggregator with the sitein the site catalog

<site handl e="siteX" gridlaunch = "/shared/ PEGASUS/ bi n/ ki ckstart">
<profil e namespace="env" key="CGLOBUS_LOCATI ON' >/ homne/ shar ed/ gl obus</profil e>
<profil e namespace="env" key="LD_ LI BRARY_PATH'>/ hone/ shared/ gl obus/|ib</profile>
<profil e namespace="pegasus" key="job. aggregator" >seqgexec</profile>
<lrc url="rls://siteX edu" />
<gridftp wurl="gsiftp://siteX edu/" storage="/hone/shared/ work" major="2" mnor="4"
patch="0" />
<j obmanager universe="transfer" url ="siteX edu/jobnmanager-fork" major="2" mnor="4"
patch="0" />

<wor kdi rectory >/ home/ shar ed/ st or age</ wor kdi r ect ory>
</site>

In the above example, all the clustered jobs on a siteX are going to be executed via segexec, as long as the value
is not overridden in the transformation catalog.

3. associating profile key job.aggregator with the transformation that isbeing clustered, in thetransformation

catalog
#site transformation pfn type architecture profiles
siteX B / shar ed/ PEGASUS/ bi n/ j obB | NSTALLED I NTEL32: : LI NUX

pegasus: : cl usters. si ze=3, j ob. aggr egat or =npi exec

In the above example, al the clustered jobsthat consist of transformation B on siteX will be executed via mpiexec.

Note

The clustering of jobs on a site only happens only if

« thereexistsanentry inthetransformation catal og for the clustering executabl e that has been determined
by the above 3 rules

« the number of jobs being clustered on the site are more than 1

167

Reference Manual

Outstanding Issues
1. Label Clustering

More rigorous checks are required to ensure that the labeling scheme applied by the user isvalid.

Data Transfers

As part of the Workflow Mapping Process, Pegasus does data management for the executable workflow . It queries
a Replica Catalog to discover the locations of the input datasets and adds data movement and registration nodes in
the workflow to

1. stage-in input data to the staging sites (a site associated with the compute job to be used for staging. In the shared
filesystem setup, staging site is the same as the execution sites where the jobs in the workflow are executed)

2. stage-out output data generated by the workflow to the final storage site.
3. stage-in intermediate data between compute sitesif required.
4. dataregistration nodes to catalog the locations of the output data on the final storage site into the replica catal og.

The separate datamovement jobs that are added to the executable workflow are responsible for staging datato awork-
flow specific directory accessible to the staging server on a staging site associated with the compute sites. Depending
on the data staging configuration, the staging site for a compute site is the compute site itself. In the default case,
the staging server is usually on the headnode of the compute site and has access to the shared filesystem between the
worker nodes and the head node. Pegasus adds a directory creation job in the executable workflow that creates the
workflow specific directory on the staging server.

In addition to data, Pegasus does transfer user executables to the compute sites if the executables are not installed on
the remote sites before hand. This chapter gives an overview of how transfers of data and executables is managed
in Pegasus.

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations
¢ Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in adirectory on the shared filesystem.

¢ NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share afilesystem. Compute jobs
in the workflow run in alocal directory on the worker node

e Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. Al
data |0 is achieved using Condor File 10. Thisis a specia case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File 10 is used.

For the purposes of data configuration various sites, and directories are defined below.
1. Submit Host

The host from where the workflows are submitted . Thisiswhere Pegasus and Condor DAGMan areinstalled. This
isreferred to asthe " local" siteinthesitecatalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

168

Reference Manual

3. Staging Site

A siteto which the separate transfer jobsin the executable workflow (jobswith stage in, stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is aways the compute site where the jobs execute.

4. QOutput Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input datais stored. The locations of the input data are catalogued in the Replica Catalog, and
the pooal attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

Thisisthedirectory created by the create dir jobsin the executable workflow on the Staging Site. Thisisadirectory
per workflow per staging site. Currently, the Staging site is aways the Compute Site.

7. Worker Node Directory

Thisisthe directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of acluster share afilesystem.

Figure 10.6. Shared File System Setup

Input Site
-
COMPUTE SITE
IL'I. STAGING SITE
Input -
Bia1 ' - 2_ - WH
o 1 HEAD MODE -
S 1 - ..-_.r =3
™ Can Execute on Submit I
Host or Head Mode
ﬂﬂﬂﬂ - W
iy
-
.‘: e Staging Job Transfer
-~ Can Exscute on Submit umnﬂﬁfzsus-
Host or Heed Mode Computs Joo Posix
-— s}

WN | warker Node

Stegein Job
. Stegeout Job

DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES RELYING QM A
. Compute Job

SHARED FILESYSTEM
COMPUTE AND STAGING SITE ARE SAME

169

Reference Manual

The dataflow is asfollowsin this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on aworker node in the workflow execution directory. Accesses the input data using Posix 10

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
10

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

Tip
Set pegasus.data.configuration to sharedfsto run in this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be afile server on the head node of a cluster or can be on a separate machine.

Setup

« compute and staging site are the different

« head node and worker nodes of compute site don't share a filesystem
¢ Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

Figure 10.7. Non Shared Filesystem Setup

i A

CBHPUTE‘
4

a*‘ —

< i] STAGING SITE
™ < FILE Server 2
Can Execute on Submit - -__—_—_—'_-_'_____"'_'
Host or Head Mode E
————__ b |
I I
Fed T~ #we
. A

Staging Job Trensfer
- using pegasus-transtar

- © Can Execute on Submit

Heat or Head Made —— Compute Job Posix 1O

Compute Job Staging
- using pegasus-transter

WN ‘Worker Node

Stagein Job

. Stageout Job
DATA FLOW TO COMPUTE JOBS ON THE WORKER NODES AND NO
SHARED FILESYSTEM
COMPUTE AND STAGING SITE ARE DIFFERENT . Compute Joo

170

Reference Manual

The dataflow is asfollowsin this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
aworkflow specific execution directory on the staging site.

2. Compute Job starts on aworker node in alocal execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to alocal directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.
4. The compute Job writes out output data to the local directory on the worker node using Posix 10
5. Output Datais pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonshar edfs to run in this configuration. The staging site can be spec-

ified using the --staging-site option to pegasus-plan.
In this setup, Pegasus always stages the input files through the staging sitei.e the stage-in job stagesin data from the
input site to the staging site. The PegasusL ite jobs that start up on the worker nodes, then pull the input data from the
staging site for each job. In some cases, it might be useful to setup the PegasusLite jobs to pull input data directly
from the input site without going through the staging server. This is based on the assumption that the worker nodes
can access the input site. Starting 4.3 release, users can enable this. However, you should be aware that the access to

theinput siteisno longer throttled (asin case of stagein jobs). If large number of compute jobs start at the same time
in aworkflow, theinput server will see a connection from each job.

Tip

Set pegasus.transfer .bypass.input.staging to true to enable the bypass of staging of input files via the
staging server.

Condor Pool Without a Shared Filesystem
This setup appliesto acondor pool where the worker nodes making up acondor pool don't share afilesystem. All data
10 isachieved using Condor File |O. Thisisaspecial case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File 1O is used.
Setup
e Submit Host and staging site are same
« head node and worker nodes of compute site don't share a filesystem

¢ Input Datais staged from remote sites.

* Remote Output Sitei.e site other than compute site. Can be submit host.

171

Reference Manual

Figure 10.8. Condor Pool Without a Shared Filesystem

-
CONDOR POOL OF
NODES
4

3*: WH

_F--F:

I

Staging Job Transfer
using pegasus-transfer

-——»

\ g Can Execute on Submit

Host or Head Node —_—— Compute Job Posix 10

. Condor File 10

WH ‘Worker Node

Stagein Job

. Stageout Job
DATA FLOW TO COMPUTE JOBS ON A CONDOR POOL WITH NO SHARED
FILESYSTEM AND USING CONDOR 10
SUBMIT HOST AND STAGING SITE ARE SAME . Compute Job

The dataflow is asfollowsin this case

1

Stagein Job executeson the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

. Compute Job starts on aworker nodein alocal execution directory. Before the compute job starts, Condor transfers

the input data for the job from the workflow execution directory on thesubmit host to the local execution directory
on the worker node.

. The compute job executes in the worker node, and executes on the worker node.
. The compute Job writes out output data to the local directory on the worker node using Posix 1O

. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on

the worker node to the workflow execution directory on the submit host.

. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific

execution directory to adirectory on the final output site.

In this case, the compute jobs are wrapped as PegasusL ite instances.

Thismodeisespecially useful for running in the cloud environments where you don't want to setup ashared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

In this setup, Pegasus always stages the input files through the submit host i.e the stage-in job stagesin data from the
input site to the submit host (local site). The input data is then transferred to remote worker nodes from the submit

172

Reference Manual

host using Condor file transfers. In the case, where the input datais locally accessible at the submit host i.e the input
site and the submit host are the same, then it is possible to bypass the creation of separate stage in jobs that copy the
data to the workflow specific directory on the submit host. Instead, Condor file transfers can be setup to transfer the
input files directly from the locally accessible input locations (file URL's with site attribute set to local) specified in
the replica catalog. Starting 4.3 release, users can enable this.

Tip
Set pegasus.transfer .bypass.input.staging to trueto bypass the creation of separate stage in jobs.

Local versus Remote Transfers

As far as possible, Pegasus will ensure that the transfer jobs added to the executable workflow are executed on the
submit host. By default, Pegasus will schedule a transfer to be executed on the remote staging site only if there is
no way to execute it on the submit host. For e.g if the file server specified for the staging site/compute site is afile
server, then Pegasus will schedule al the stage in data movement jobs on the compute site to stage-in the input data
for the workflow. Another case would beif auser has symlinking turned on. In that case, the transfer jobsthat symlink
against the input data on the compute site, will be executed remotely (on the compute site).

Users can specify the property pegasus.transfer.*.remote.sites to change the default behaviour of Pegasus and force
pegasus to run different types of transfer jobs for the sites specified on the remote site. The value of the property isa
comma separated list of compute sites for which you want the transfer jobs to run remotely.

The table below illustrates al the possible variations of the property.

Table 10.10. Property Variationsfor pegasus.transfer.*.remote.sites

Property Name Appliesto
pegasus.transfer.stagein.remote.sites the stage in transfer jobs
pegasus.transfer.stageout.remote.sites the stage out transfer jobs
pegasus.transfer.inter.remote.sites theinter site transfer jobs
pegasus.transfer.* .remote.sites all types of transfer jobs

The prefix for the transfer job name indicates whether the transfer job is to be executed locallly (on the submit host)
or remotely (on the compute site). For example stage_in_loca_ in a transfer job name stage in_loca_isi_viz_ 0
indicates that the transfer job is a stage in transfer job that is executed locally and is used to transfer input data to
compute siteisi_viz. The prefix naming scheme for the transfer jobsis [stage in|stage_out|inter]_[local|remote]_ .

Symlinking Against Input Data

If input data for a job aready exists on a compute site, then it is possible for Pegasus to symlink against that data.
In this case, the remote stage in transfer jobs that Pegasus adds to the executable workflow will symlink instead of
doing a copy of the data.

Pegasus determines whether afileis on the same site as the compute site, by inspecting the pool attribute associated
with the URL in the Replica Catal og. If the pool attribute of an input file location matches the compute site where the
job is scheduled, then that particular input file is a candidate for symlinking.

For Pegasus to symlink against existing input data on a compute site, following must be true

1. Property pegasus.transfer.linksis set to true

2. Theinput file location in the Replica Catal og has the pool attribute matching the compute site.
Tip

To confirm if a particular input file is symlinked instead of being copied, look for the destination URL for
that filein stage_in_remote*.in file. The destination URL will start with symlink:// .

173

Reference Manual

In the symlinking case, Pegasus strips out URL prefix from a URL and replacesit with afile URL.

For example if a user has the following URL catalogued in the Replica Catalog for an input file f.input

f.input gsiftp://server.isi.edu/shared/storage/input/data/f.input pool="isi"

and the compute job that requires this file executes on a compute site named isi , then if symlinking is turned on the
datastagein job (stage_in_remote_viz_0) will have the following source and destination specified for the file

#viz viz
file://lshared/storage/input/data/f.input symink://shared-scratch/workflow exec-dir/f.input

Addition of Separate Data Movement Nodes to Executable
Workflow

Pegasus relies on a Transfer Refiner that comes up with the strategy on how many data movement nodes are added
to the executable workflow. All the compute jobs scheduled to a site share the same workflow specific directory. The
transfer refiners ensure that only one copy of the input data is transferred to the workflow execution directory. This
is to prevent data clobbering . Data clobbering can occur when compute jobs of a workflow share some input files,
and have different stage in transfer jobs associated with them that are staging the shared files to the same destination
workflow execution directory.

The default Transfer Refiner used in Pegasus is the Bundle Refiner that allows the user to specify how many local |re-
mote stagein|stageout jobs are created per execution site.

The behavior of the refiner is controlled by specifying certain pegasus profiles
1. either with the execution sites in the site catalog

2. OR globally in the propertiesfile

Table 10.11. Pegasus Profile Keys For the Cluster Transfer Refiner

Profile Key Description

stagein.clusters This key determines the maximum number of stage-in
jobsthat are can executed locally or remotely per compute
site per workflow.

stagein.local.clusters Thiskey providesfiner grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.

stagein.remote.clusters Thiskey providesfiner grained control in determining the
number of stage-in jobsthat are executed remotely on the
remote site and are responsible for staging data to it.

stageout.clusters This key determines the maximum number of stage-out
jobsthat are can executed locally or remotely per compute
site per workflow.

stageout.local.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed locally and are
responsible for staging data from a particular remote site.

stageout.remote.clusters Thiskey providesfiner grained control in determining the
number of stage-out jobsthat are executed remotely onthe
remote site and are responsible for staging datafrom it.

174

Reference Manual

Figure 10.9. Default Transfer Case: Input Data To Workflow Specific Directory on Shared
File System

Addition of Data Stage-In and Stage-Out Nodes by the Cluster Transfer Refiner

1. Original Workflow

f.b2,fb2'
f.od.fbd'

f.b1,tb1"
1.b3,1.b3"

Pegasus Profiles For Cluster Refine
stagein.clusters setto 2
stageout.clusters set to 2

Stage-In
Transfer Node
f.d1, fd1' f.d2, f.d2'

Stage-Out 193 103 f.04, 1.04"

Transfer Node

Compute Job
scheduled at
same site

090

2. Workflow After Adding the Stage-In and Stage-Out Nodes

Output Mappers

Starting 4.3 release, Pegasus has support for output mappers, that allow users fine grained control over how the output
files on the output site are laid out. By default, Pegasus stages output products to the storage directory specified in
the site catalog for the output site. Output mappers allow users finer grained control over where the output files are
placed on the output site.

The following mappers are supported currently

1. Flat : By default, Pegasus will place the output files in the storage directory specified in the site catalog for the
output site.

2. Fixed : This mapper allows users to specify an externally accesible url to the storage directory in their properties
file. To use this mapper, the following property needs to be set.

* pegasus.dir.storage.mapper.fixed.url an externally accessible URL to the storage directory on the output site e.g.
gsiftp://outputs.isi.edu/shared/outputs

Note: For hierarchal workflows, the above property needsto be set separately for each dax job, if you want the sub
workflow outputs to goto a different directory.

3. Hashed : This mapper resultsin the creation of a deep directory structure on the output site, while populating the
results. The base directory on the remote end is determined from the site catalog. Depending on the number of
files being staged to the remote site a Hashed File Structure is created that ensures that only 256 filesreside in one

175

Reference Manual

directory. To create this directory structure on the storage site, Pegasus relies on the directory creation feature of
the underlying file servers such as theGrid FTP server, which appeared in globus 4.0.x

4. Replica: Thismapper determinesthe path for an output file on the output site by querying an output replica catal og.
Theoutput siteisonethat is passed on the command line. The output replicacatal og can be configured by specifying
the properties

 pegasus.dir.storage.mapper.replica Regex|File

» pegasus.dir.storage.mapper.replicafile the RC file at the backend to use
Tip
The mappers can be configured by setting the property pegasus.dir .stor age.mapper

Note

The Fixed mapper will be available starting 4.3.1 release.

Executable Used for Transfer Jobs

Pegasus refers to a python script called pegasus-transfer as the executable in the transfer jobs to transfer the data.
pegasus-transfer is a python based wrapper around various transfer clients . pegasus-transfer looks at source and
destination url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the
PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

Currently, pegasus-transfer interfaces with the following transfer clients

Table 10.12. Transfer Clientsinterfaced to by pegasus-transfer

Transfer Client Used For

globus-url-copy staging files to and from a gridftp server.

Icg-copy staging filesto and from a SRM server.

wget staging filesfrom aHTTP server.

cp copying filesfrom a POSIX filesystem .

In symlinking against input files.

pegasus-s3/s3cmd staging files to and from s3 bucket in the amazon cloud
scp staging files using scp

iget staging filesto and from airods server.

For remote sites, Pegasus constructsthe default path to pegasus-transfer on the basis of PEGASUS HOME env profile
specified in the site catalog. To specify a different path to the pegasus-transfer client , users can add an entry into the
transformation catalog with fully qualified logical name as pegasus:: pegasus-tr ansfer

Executables used for Directory Creation and Cleanup Jobs

Starting 4.0, Pegasus has changed the way how the scratch directories are created on the staging site. The planner
now prefers to schedule the directory creation and cleanup jobslocally. Thejobs refer to python based tools, that call
out to protocol specific clients to determine what client is picked up. For protocols, where specific remate cleanup
and directory creation clients don't exist (for example gridftp), the python tools rely on the corresponding transfer
tool to create a directory by initiating a transfer of an empty file. The python clients used to create directories and
removefilesare called

¢ pegasus-create-dir
* pegasus-cleanup

Both these clients inspect the URL's to to determine what underlying client to pick up.

176

Reference Manual

Table 10.13. Clientsinterfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server
srm-mkdir to create directories against a SRM server.
mkdir to create adirectory on the local filesystem
pegasus-s3 to create a s3 bucket in the amazon cloud

scp staging files using scp

imkdir to create adirectory against an IRODS server

Table 10.14. Clientsinterfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove afile against a gridftp/ftp server. Inthiscase a
zero bytefileis created

srm-rm to removefiles against a SRM server.

rm to remove afile on the local filesystem

pegasus-s3 to remove afile from the s3 bucket.

scp to remove afile against a scp server. In this case a zero
bytefileis created.

irm to remove afile against an IRODS server

The only case, where the create dir and cleanup jobs are scheduled to run remotely is when for the staging site, a
file server is specified.

Credentials Staging

Pegasus tries to do data staging from localhost by default, but some data scenarios makes some remote jobs do data
staging. An example of such a case is when running in nonsharedfs mode. Depending on the transfer protocols used,
the job may have to carry credentials to enable these datat transfers. To specify where which credential to use and
where Pegasus can find it, use environment variable profiles in your site catalog. The supported credential types are
X.509 grid proxies, Amazon AWS S3 keys, iRods password and SSH keys.

X.509 Grid Proxies

If the grid proxy isrequired by transfer jobs, and the proxy isin the standard location, Pegasus will pick the proxy up
automatically. For non-standard proxy locations, you can use the X509 _USER_PROXY environment variable. Site

catalog example:
<profil e namespace="env" key="X509_USER PROXY" >/sone/l ocati on/x509up</profile>

Amazon AWS S3

If aworkflow isusing s3 URLSs, Pegasus hasto be told where to find the .s3cfg file. Thisformat of thefileisdescribed
in the pegaus-s3 command line client's man page. For the file to be picked up by the workflow, set the S3CFG envi-
ronment profile to the location of thefile. Site catalog example:

<profil e namespace="env" key="S3CFG' >/ home/user/.s3cfg</profile>

iRods Password

If aworkflow is using irods URLS, Pegasus has to be given an irodsEnv file. It is a standard file, with the addtion
of an password attribute. Example:

i RODS personal configuration file.
#

i RODS server host name:

irodsHost 'iren.renci.org'

i RODS server port number:

177

Reference Manual

irodsPort 1259

Default storage resource nane:
i rodsDef Resource 'renResc’

Hone directory in i RODS:

i rodsHome '/tip-renci/home/ mats'
Current directory in i RODS:
irodsOm '/tip-renci/home/ mats'
Account nane:

i rodsUser Name ' mats'

Zone:

irodsZone 'tip-renci'

this is used with Pegasus
i rodsPassword ' sonmesecr et passwor d'

The location of the file can be given to the workflow using the i r odsEnvFi | e environment profile. Site catalog
example:

<profil e namespace="env" key="irodsEnvFile" >/ home/user/.irods/.irodsEnv</profile>

SSH Keys

New in Pegasus 4.0 is the support for data staging with scp using ssh public/private key authentication. In this mode,
Pegasus transports a private key with the jobs. The storage machineswill have to have the public part of the key listed
in ~/.ssh/authorized_keys.

Warning

SSH keys should be handled in a secure manner. In order to keep your personal ssh keys secure, It is rec-
ommended that a specia set of keys are created for use with the workflow. Note that Pegasus will not pick
up ssh keys automatically. The user will have to specify which key to use with SSH_PRI VATE_KEY.

The location of the ssh private key can be specified with the SSH_PRI VATE_KEY environment profile. Site catalog
example:

<profil e namespace="env" key="SSH PRI VATE_KEY" >/home/user/w /W sshkey</profil e>

Staging of Executables

Users can get Pegasusto stage the user executables (executablesthat thejobsinthe DAX refer to) aspart of thetransfer
jobs to the workflow specific execution directory on the compute site. The URL locations of the executables need to
be specified in the transformation catalog as the PFN and the type of executable needs to be set to STAGEABLE .

The location of atransformation can be specified either in
¢ DAX in the executables section. More details here .
¢ Transformation Catalog. More details here .

A particular transformation catalog entry of type STAGEABLE is compatible with a compute site only if al the
System | nformation attributes associated with the entry match with the System Information attributes for the compute
sitein the Site Catalog. The following attributes make up the System Information attributes

1. arch
2. 0s

3. osrelease
4, osversion
Transformation Mappers

Pegasus has a notion of transformation mappers that determines what type of executables are picked up when a job
is executed on a remote compute site. For transfer of executables, Pegasus constructs a soft state map that resides
on top of the transformation catalog, that helps in determining the locations from where an executable can be staged
to the remote site.

178

Reference Manual

Users can specify the following property to pick up a specific transformation mapper

pegasus. cat al og. t ransf or mat i on. mapper

Currently, the following transformation mappers are supported.

Table 10.15. Transformation Mappers Supported in Pegasus

Transformation Mapper Description

Installed This mapper only relies on transformation catalog entries
that are of type INSTALLED to construct the soft state
map. This results in Pegasus never doing any transfer of
executables as part of the workflow. It always prefersthe
installed executables at the remote sites

Staged This mapper only relies on matching transformation cata-
log entries that are of type STAGEABLE to construct the
soft state map. Thisresultsin the executable workflow re-
ferring only to the staged executables, irrespective of the
fact that the executables are already installed at theremote
end

All Thismapper relies on al matching transformation catalog
entries of type STAGEABLE or INSTALLED for a par-
ticular transformation as valid sources for the transfer of
executables. This the most general mode, and results in
the constructing the map as aresult of the cartesian prod-
uct of the matches.

Submit This mapper only on matching transformation catal og en-
tries that are of type STAGEABLE and reside at the sub-
mit host (pool local), are used while constructing the soft
state map. Thisis especially helpful, when the user wants
to usethelatest compute code for his computations on the
grid and that relies on his submit host.

Staging of Pegasus Worker Package

Pegasus can optionally stage the pegasus worker package as part of the executable workflow to remote workflow
specific execution directory. The pegasus worker package contains the pegasus auxillary executables that are required
on the remote site. If the worker package is not staged as part of the executable workflow, then Pegasus relies on
the installed version of the worker package on the remote site. To determine the location of the installed version of
the worker package on aremote site, Pegasus looks for an environment profile PEGASUS HOME for the site in the
Site Catalog.

Users can set the following property to true to turn on worker package staging
pegasus. transf er. wor ker . package true

By default, when worker package staging is turned on pegasus pulls the compatible worker package from the Pegasus
Website. To specify a different worker package location, users can specify the transformation pegasus::worker in
the transformation catalog with

e typesetto STAGEABLE

¢ System Information attributes of the transformation catalog entry match the System Information attributes of the
compute site.

 the PFN specified should be aremote URL that can be pulled to the compute site.

Worker Package Staging in Non Shared Filesystem setup

Worker package staging is automatically set to true , when workflows are setup to run in anon shared filesystem setup
i.e. pegasus.data.configuration is set to nonsharedfs or condorio . In these configurations, a stage_worker job is
created that brings in the worker package to the submit directory of the workflow. For each job, the worker package

179

Reference Manual

is then transferred with the job using Condor File Transfers (transfer_input_files) . This transfer always happens
unless, PEGASUS HOME is specified in the site catalog for the site on which the job is scheduled to run.

Users can explicitly set the following property to false, to turn off worker package staging by the Planner. Thisis
applicable , when running in the cloud and virtual machines / worker nodes aready have the pegasus worker tools
installed.

pegasus. transf er. wor ker . package fal se

Using Amazon S3 as a Staging Site

Pegasus can be configured to use Amazon S3 as a staging site. In this mode, Pegasus transfers workflow inputs from
theinput siteto S3. When ajob runs, theinputsfor that job are fetched from S3 to the worker node, thejob is executed,
then the output files are transferred from the worker node back to S3. When the jobs are complete, Pegasus transfers
the output data from S3 to the output site.

In order to use S3, it is necessary to create a config file for the S3 transfer client, pegasus-s3. See the man page for
details on how to create the config file. Y ou aso need to specify S3 as a staging site.

Next, you need to modify your site catalog to tell the location of your s3cfg file. See the section on credential staging.

The following site catalog shows how to specify the location of the s3cfg file on the local site and how to specify
an Amazon S3 staging site:

<sitecatal og xm ns="http://pegasus.isi.edu/ schema/sitecatal og"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schenmaLocation="http://pegasus.isi.edu/ schena/sitecatal og
http://pegasus.isi.edu/ schema/sc-3. 0. xsd" version="3.0">
<site handl e="l ocal " arch="x86_64" os="LI NUX">
<head- f s>
<scrat ch>
<shar ed>
<file-server protocol ="file" url="file://" mount-point="/tnp/w/work"/>
<i nt ernal - mount - poi nt nount - poi nt ="/t mp/ Wf / wor k" / >
</ shar ed>
</ scratch>
<storage>
<shar ed>
<file-server protocol ="file" url="file://" mount-point="/tnmp/wW/storage"/>
<i nt ernal - mount - poi nt nount - poi nt ="/t np/ wf/ st or age"/ >
</ shar ed>
</ st or age>
</ head-f s>
<profil e namespace="env" key="S3CFG'>/ home/ usernane/.s3cfg</profil e>

</site>
<site handl e="s3" arch="x86_64" os="LI NUX">
<head- f s>
<scratch>
<shar ed>
<I-- wf-scratch is the name of the S3 bucket that will be used -->

<file-server protocol ="s3" url="s3://user @mazon" nount-poi nt="/wf-scratch"/>
<i nt ernal - mount - poi nt nount - poi nt ="/ wf -scratch"/>
</ shar ed>
</ scratch>
</ head-f s>

</site>
<si te handl e="condor pool " arch="x86_64" os="LI NUX">
<head- f s>

<scratch/>
<st or age/ >
</ head-f s>
<profil e namespace="pegasus" key="styl e">condor</profile>
<profil e namespace="condor" key="universe">vanilla</profile>
<profil e namespace="condor" key="requirements">(Target.Arch == "X86_64")</profil e>
</site>
</sitecatal og>

IRODS data access

iRODS can be used as a input data location, a storage site for intermediate data during workflow execution, or a
location for final output data. Pegasus uses a URL notation to identify iRODS files. Example:

180

Reference Manual

irods://some-host.org/path/to/file.txt

The path to thefileisrelative to the internal iRODS location. In the example above, the path used to refer to the file
in iRODS is path/to/file.txt (no leading /).

See the section on credential staging for information on how to set up an irodsEnv file to be used by Pegasus.

Hierarchical Workflows

Introduction

The Abstract Workflow in addition to containing compute jobs, can also contain jobs that refer to other workflows.
Thisisuseful for running large workflows or ensembles of workflows.

Users can embed two types of workflow jobsin the DAX

1. daxjob - refers to a sub workflow represented as a DAX. During the planning of a workflow, the DAX jobs are

mapped to condor dagman jobs that have pegasus plan invocation on the dax (referred to in the DAX job) as
the prescript.

Figure 10.10. Planning of a DAX Job

JOB IN THE ABSTRACT JOB AFTER PLANNING IN
WORKFLOW THE EXECUTABLE WORKFLOW

black.dax

black.dax /_‘_‘_H__'“" pegasus-plan invoked as prescript on black.dax
creating a black-0.dag file

DAX ______ » DAG

Job DAG Job executes condor dagman on the

Job
\/ black-0.dag file created by pegasus plan

2. dagjob - refers to a sub workflow represented as a DAG. During the planning of a workflow, the DAG jobs are
mapped to condor dagman and refer to the DAG file mentioned in the DAG job.

Figure 10.11. Planning of a DAG Job

JOB IN THE ABSTRACT JOB AFTER PLANNING IN
WORKFLOW THE EXECUTABLE WORKFLOW
black.dag
black.dag
DAG DAG
—————— » B DAG .Job executes condor dagman on the
Job Job g

black-0.dag file created by pegasus plan

181

Reference Manual

Specifying a DAX Job in the DAX

SpecifyingaDAXJobinaDAX ispretty similar to how normal computejobsare specified. Thereare minor differences
in terms of the xml element name (dax vsjob) and the attributes specified. DAXJob XML specification is described
in detail in the chapter on DAX API . An example DAX Job in aDAX is shown below

<dax i d="1D000002" name="bl ack. dax" node-|abel ="bar" >
<profil e namespace="dagman" key="maxj obs">10</profile>
<ar gument >- Xnx1024 - Xns512 - Dpegasus. dir.storage=storagedir -Dpegasus.dir.exec=execdir -o |ocal
-vvvvv --force -s dax_site </argunent>
</ dax>

DAX File Locations

The name attribute in the dax element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX .
Note
Currently, only file url's on the local site (submit host) can be specified as DAX file locations.

Arguments for a DAX Job

Users can specify specific arguments to the DAX Jobs. The arguments specified for the DAX Jobs are passed to the
pegasus-plan invocation in the prescript for the corresponding condor dagman job in the executable workflow.

The following options for pegasus-plan are inherited from the pegasus-plan invocation of the parent workflow. If an
option is specified in the arguments section for the DAX Job then that overrides what is inherited.

Table 10.16. Optionsinherited from parent workflow

Option Name Description
--sites list of execution sites.

Itishighly recommended that users dont specify directory related optionsin the arguments section for the DAX Jobs.
Pegasus assigns val ues to these options for the sub workflows automatically.

1. --relative-dir
2. --dir

3. --relative-submit-dir

Profiles for DAX Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above maxjobsis set to 10 for the sub workflow.

Execution of the PRE script and Condor DAGMan instance

The pegasus plan that isinvoked as part of the prescript to the condor dagman job is executed on the submit host. The
log from the output of pegasus plan is redirected to afile (ending with suffix pre.log) in the submit directory of the
workflow that contains the DAX Job. The path to pegasus-plan is automatically determined.

The DAX Job maps to a Condor DAGMan job. The path to condor dagman binary is determined according to the
following rules -

182

Reference Manual

1. entry in the transformation catalog for condor::dagman for site local, else

2. pick up the value of CONDOR_HOME from the environment if specified and set path to condor dagman as
$CONDOR_HOME/bin/condor_dagman , else

3. pick up the value of CONDOR_LOCATION from the environment if specified and set path to condor dagman as
$CONDOR_LOCATION/bin/condor_dagman , else

4. pick up the path to condor dagman from what is defined in the user's PATH
Tip

It is recommended that user dagman.maxpre in their properties file to control the maximum number of
pegasus plan instances launched by each running dagman instance.

Specifying a DAG Job in the DAX

SpecifyingaDAGJobinaDAX ispretty similar to how normal computejobsare specified. Thereare minor differences
in terms of the xml element name (dag vs job) and the attributes specified. For DAGJob XML details,see the API
Reference chapter . An example DAG Job in aDAX is shown below

<dag i d="1D000003" name="bl ack. dag" node-| abel ="fo0" >
<profil e namespace="dagman" key="naxj obs">10</profile>
<profil e namespace="dagman" key="DIR'>/dag-dir/test</profile>
</ dag>

DAG File Locations

The name attribute in the dag element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. ReplicaCatalog

2. Replica Catalog Section in the DAX.

Note

Currently, only file url's on the local site (submit host) can be specified as DAG file locations.

Profiles for DAG Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above, maxjobsis set to 10 for the sub workflow.

The dagman profile DIR alows users to specify the directory in which they want the condor dagman instance to
execute. In the example above black.dag is set to be executed in directory /dag-dir/test . The /dag-dir/test should be
created beforehand.

File Dependencies Across DAX Jobs

In hierarchal workflows, if a sub workflow generates some output files required by another sub workflow then there
should be an edge connecting the two dax jobs. Pegasus will ensure that the prescript for the child sub-workflow,
has the path to the cache file generated during the planning of the parent sub workflow. The cache file in the submit
directory for aworkflow is atextual replica catal og that lists the locations of all the output files created in the remote
workflow execution directory when the workflow executes.

This automatic passing of the cache file to a child sub-workflow ensures that the datasets from the same workflow
run are used. However, the passing of the locations in a cache file also ensures that Pegasus will prefer them over all

183

Reference Manual

other locations in the Replica Catalog. If you need the Replica Selection to consider locations in the Replica Catalog
also, then set the following property.

pegasus. cat al og. repl i ca. cache.asrc true
The above is useful in the case, where you are staging out the output files to a storage site, and you want the child

sub workflow to stage these files from the storage output site instead of the workflow execution directory where the
files were originally created.

Recursion in Hierarchal Workflows

It is possible for a user to add a dax jobs to a dax that already contain dax jobs in them. Pegasus does not place a
limit on how many levels of recursion a user can have in their workflows. From Pegasus perspective recursion in
hierarchal workflows ends when a DAX with only computejobsis encountered . However, the levels of recursion are
limited by the system resources consumed by the DAGMan processes that are running (each level of nesting produces
another DAGMan process) .

The figure below illustrates an example with recursion 2 levels deep.

Figure 10.12. Recursion in Hierarchal Workflows

HIERARCHAL WORKFLOWS

[wesssmoowso

Al

"

A2 A3 _

DAX A

DAXC
A Cc1

\\ y,
N DAX B y
B1 #
s
A4 . /\ ’ o c3

C4

DAX D
D1
Compute Job - D3
Pegasus Plan \ /
And Execute

Job
D4

The execution time-line of the various jobs in the above figureisillustrated bel ow.

184

Reference Manual

Figure 10.13. Execution Time-line for Hierarchal Workflows

HIERARCHAL DAX EXECUTION TIMELINE

PR} | A1 | A2 A4

[Pegasus Planning

Compute Job

Pegasus Plan And Execute Job

Example

The Galactic Plane workflow is a Hierarchical workflow of many Montage workflows. For details, see Workflow
of Workflows.

Notifications

The Pegasus Workflow Mapper now supportsjob and workflow level notifications. Y ou can specify in the DAX with
the job or the workflow

« the event when the notification needs to be sent

« the executable that needs to be invoked.

The notifications are issued from the submit host by the pegasus-monitord daemon that monitors the Condor logs for
the workflow. When a natification is issued, pegasus-monitord while invoking the notifying executable sets certain

environment variables that contain information about the job and workflow state.

The Pegasus release comes with default notification clients that send notifications via email or jabber.
Specifying Notifications in the DAX
Currently, you can specify notifications for the jobs and the workflow by the use of invoke elements.

Invoke elements can be sub elements for the following elementsin the DAX schema.

« job - to associate notifications with a compute job in the DAX.

185

Reference Manual

 dax - to associate notifications with a dax job in the DAX.

« dag - to associate notifications with adag job in the DAX.

« executable - to associate notifications with ajob that uses a particular notification

The invoke element can be specified at the root element level of the DAX to indicate workflow level notifications.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set

Table 10.17. Table 1. Invoke Element attributes and meaning.

Enumeration of Valuesfor when attribute Meaning
never (default). Never notify of anything. Thisisuseful to tem-
porarily disable an existing notifications.
start create a notification when the job is submitted.
on_error after ajob finishes with failure (exitcode != 0).
on_success after ajob finishes with success (exitcode == 0).
a_end after ajob finishes, regardless of exitcode.
al like start and at_end combined.

Y ou can specify multiple invoke elements corresponding to same when attribute value in the DAX. This will allow
you to have multiple notifications for the same event.

Hereis an example that illustrates that.

<job id="1D000001" nanespace="exanple" name="nDi ffFit" version="1.0"
node- | abel =" preprocess" >
<argument>-a top -T 6 -i <file nane="f.a"/> -o <file nane="f.bl"/></argunent>

<!-- profiles are optional -->
<profil e namespace="execution" key="site">isi_viz</profile>
<profil e namespace="condor" key="getenv">true</profile>

<uses nane="f.a" link="input" register="false" transfer="true" type="data" />
<uses nane="f.b" |ink="output" register="false" transfer="true" type="data" />
<l-- '"WHEN enuneration: never, start, on_error, on_success, on_end, all -->

<i nvoke when="start">/path/to/notifyl argl arg2</invoke>

<i nvoke when="start">/path/to/notifyl arg3 arg4</invoke>

<i nvoke when="on_success" >/ path/to/notify2 arg3 arg4</invoke>
</j ob>

In the above example the executable notify1 will beinvoked twice when ajob is submitted (when="start"), oncewith
arguments argl and arg2 and second time with arguments arg3 and arg4.

The DAX Generator API chapter has information about how to add notifications to the DAX using the DAX api's.

Notify File created by Pegasus in the submit directory

Pegasus while planning a workflow writes out a notify file in the submit directory that contains all the notifications
that need to be sent for the workflow. pegasus-monitord picks up this notificationsfile to determine what notifications
need to be sent and when.

1. ENTITY_TYPEID NOTIFICATION_CONDITION ACTION
¢ ENTITY_TY PE can be either of the following keywords
* WORKFLOW - indicates workflow level notification
« JOB - indicates notifications for ajob in the executable workflow

* DAXJOB - indicates notifications for aDAX Job in the executable workflow

186

Reference Manual

+ DAGJOB - indicates notifications for a DAG Job in the executable workflow

« ID indicates the identifier for the entity. It has different meaning depending on the entity type - -
e workflow - ID iswf_uuid
« JOB|DAXJOB|DAGJOB - ID isthejob identifier in the executable workflow (DAG).

« NOTIFICATION_CONDITION isthe condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

« ACTION iswhat needs to happen when condition is satisfied. It is executable + arguments
2. INVOCATION JOB_IDENTIFIER INV.ID NOTIFICATION_CONDITION ACTION

The INVOCATION lines are only generated for clustered jobs, to specifiy the finer grained notifications for each
constitutent job/invocation .

« JOB IDENTIFIER isthe job identifier in the executable workflow (DAG).

« INV.ID indicates the index of the task in the clustered job for which the notification needs to be sent.

NOTIFICATION_CONDITION isthe condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

« ACTION iswhat needs to happen when condition is satisfied. It is executable + arguments

A sample notifications file generated is listed below.
WORKFLOW d2c4f 79c- 8d5b- 4577- 8c46- 5031f 4d704e8 on_error /bin/datel

I NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I D1 1 on_success /bin/date_executable
I NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I D1 1 on_success /bin/date_executable
I NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_ID1 1 on_error /bin/date_executable

I NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I D1 2 on_success /bin/date_executabl e
I NVOCATI ON ner ge_vahi - preprocess-1.0_PID1_I D1 2 on_error /bin/date_executable

DAXJOB subdax_bl ack_| DO0O0003 on_error /bin/datel3
JOB anal yze_| D0O0004 on_success /bin/date

Configuring pegasus-monitord for notifications

Whenever pegasus-monitord entersaworkflow (or sub-workflow) directory, it will read the notificationsfile generated
by Pegasus. Pegasus-monitord will match events in the running workflow against the notifications specified in the
notifications file and will initiate the script specified in a notification when that notification matches an event in the
workflow. It is important to note that there will be a delay between a certain event happening in the workflow, and
pegasus-monitord processing the log file and executing the corresponding notification script.

The following command line options (and properties) can change how pegasus-monitord handles notifications:
« --no-notifications (pegasus.monitord.notifications=False): Will disable notifications completely.

 --notifications-max=nn (pegasus.monitord.notifications.max=nn): Will limit the number of concurrent notification
scripts to nn. Once pegasus-monitord reaches this number, it will wait until one notification script finishes before
starting a new one. Notifications happening during this time will be queued by the system. The default number of
concurrent notification scripts for pegasus-monitord is 10.

« --notifications-timeout=nn (pegasus.monitord.notifications.timeout=nn): This setting is used to change how long
will pegasus-monitord wait for a notification script to finish. By default pegasus-monitord will wait for aslong as
it takes (possibly indefinitely) until a notification script ends. With this option, pegasus-monitord will wait for at
most nn seconds before killing the notification script.

It is also important to understand that pegasus-monitord will not issue any notifications when it is executed in replay
mode.

187

Reference Manual

Environment set for the notification scripts

Whenever a notification in the notifications file matches an event in the running workflow, pegasus-monitord will
run the corresponding script specified in the ACTION field of the notifications file. Pegasus-monitord will set the
following environment variables for each notification script is starts:

e PEGASUS EVENT: The NOTIFICATION_CONDITION that caused the notification. In the case of the"all" con-
dition, pegasus-monitord will substitute it for the actual event that caused the match (e.g. "start" or "at_end").

e PEGASUS EVENT_TIMESTAMP: Timestamp in EPOCH format for the event (better for automated processing).
e PEGASUS EVENT_TIMESTAMP_ISO: Same as above, but in SO format (better for human readability).

e PEGASUS SUBMIT_DIR: The submit directory for the workflow (usually the value from "submit_dir" in the
braindump.txt file)

¢ PEGASUS STDOUT: For workflow notifications, this will correspond to the dagman.out file for that workflow.
For job and invocation notifications, this field will contain the output file (stdout) for that particular job instance.

* PEGASUS STDERR: For job and invocation notifications, this field will contain the error file (stderr) for the
particular executable job instance. This field does not exist in case of workflow notifications.

¢ PEGASUS WFID: Contains the workflow id for this notification in the form of DAX_LABEL + DAX_INDEX
(from the braindump.txt file).

« PEGASUS JOBID: For workflow notifications, this contains the worfkflow wf_uuid (from the braindump.txt file).
For job and invocation notifications, this field contains the job identifier in the executable workflow (DAG) for
the particular notification.

* PEGASUS INVID: Contains the index of the task in the clustered job for the notification.
¢ PEGASUS STATUS: For workflow natifications, this contains DAGMan's exit code. For job and invocation no-

tifications, this field contains the exit code for the particular job/task. Please note that this field is not present for
‘start’ notification events.

Default Notification Scripts

Pegasus ships with two reference notification scripts. These can be used as starting point when creating your own
notification scripts, or if the default oneisall you need, you can use them directly in your workflows. The scripts are:

« libexec/notification/email - sends email, including the output from pegasus-status (default) or pegasus-analyzer.

$./libexec/notification/enail --help
Usage: enmil [options]
Opti ons:
-h, --help show this hel p nessage and exit

-t TO_ADDRESS, --to=TO ADDRESS
The To: enmmil| address. Defines the recipient for the
notification.

-f FROM_ADDRESS, - -from=FROM ADDRESS
The From enmil address. Defaults to the required To:
addr ess.

-r REPORT, --report=REPCORT
I ncl ude workflow report. Valid values are: none
pegasus- anal yzer pegasus-status (default)

« libexec/notification/jabber - sends simple notifications to Jabber/GTalk. This can be useful for job failures.

$./libexec/notification/jabber --help
Usage: jabber [options]

Opt i ons:
-h, --help show this hel p nessage and exit
-i JABBER_ID, --jabberid=JABBER_|D
Your jabber id. Exanple: user @ abberhost.com

188

Reference Manual

-p PASSWORD, - - passwor d=PASSWORD
Your j abber password

-s HOST, --host=HOST Jabber host, if different fromthe host in your jabber
id. For Google talk, set this to talk.google.com

-r RECI PIENT, --recipient=RECI Pl ENT
Jabber id of the recipient. Not necessary if you want
to send to your own jabber id

For example, if the DAX generator is written in Python and you want notifications on 'at_end' events (successful or
failed):

job level notifications - in this case for at_end events
job.invoke('at_end', pegasus_home + "/libexec/notifications/email --to nme@onewhere.edu")

Please see the natifications example to see a full workflow using notifications.

Monitoring

Pegasus launches a monitoring daemon called pegasus-monitord per workflow (a single daemon is launched if a
user submits a hierarchal workflow) . pegasus-monitord parses the workflow and job logs in the submit directory
and populates to a database. This chapter gives an overview of the pegasus-monitord and describes the schema of
the runtime database.

pegasus-monitord

Pegasus-monitord is used to follow workflows, parsing the output of DAGMan's dagman.out file. In addition to gen-
erating the jobstate.log file, which contains the various states that ajob goes through during the workflow execution,
pegasus-monitord can aso be used to mine information from jobs' submit and output files, and either populate a
database, or write a file with NetLogger events containing this information. Pegasus-monitord can also send notifi-
cations to usersin real-time as it parses the workflow execution logs.

Pegasus-monitord is automatically invoked by pegasus-run, and tracks workflows in real-time. By default, it pro-
duces the jobstate.log file, and a SQL ite database, which contains all the information listed in the Stampede schema.
When aworkflow fails, and is re-submitted with a rescue DAG, pegasus-monitord will automatically pick up from
where it left previously and continue to write the jobstate.log file and popul ate the database.

If, after the workflow has already finished, users need to re-create the jobstate.log file, or re-populate the database
from scratch, pegasus-monitord's --r eplay option should be used when running it manually.

Populating to different backend databases

In addition to SQLite, pegasus-monitord supports other types of databases, such as MySQL and Postgres.
Users will need to install the low-level database drivers, and can use the --dest command-line option, or the
pegasus.monitord.output property to select where the logs should go.

As an example, the command:

$ pegasus-nonitord -r di anmond- 0. dag. dagnan. out

will launch pegasus-monitord in replay mode. In this case, if ajobstate.log file already exists, it will be rotated and
anew file will be created. It will also create/use a SQL ite database in the workflow's run directory, with the name
of diamond-0.stampede.db. If the database already exists, it will make sure to remove any references to the current
workflow before it populates the database. In this case, pegasus-monitord will process the workflow information
from start to finish, including any restarts that may have happened.

Users can specify an alternative database for the events, asillustrated by the following examples:

$ pegasus-nonitord -r -d nysql://username: user pass@ost nane/ dat abase_nanme di anond- 0. dag. dagnan. out

$ pegasus-nonitord -r -d sqglite:////tnp/dianmond-0.db di anond- 0. dag. dagnan. out

Inthefirst example, pegasus-monitord will send the datato the database_name database located at server hosthname,

using the username and user pass provided. In the second example, pegasus-monitord will store the data in the /
tmp/diamond-0.db SQL ite database.

189

Reference Manual

Note

For absolute paths four slashes are required when specifying an alternative database path in SQLite.

Users should also be aware that in &l cases, with the exception of SQLite, the database should exist before pega-
sus-monitord isrun (asit creates all needed tables but does not create the database itself).

Finaly, the following example:

$ pegasus-nonitord -r --dest dianond-0.bp dianond-0. dag. dagnan. out
sends events to the diamond-0.bp file. (please note that in replay mode, any data on the file will be overwritten).

One important detail is that while processing a workflow, pegasus-monitord will automatically detect if/when sub-
workflowsareinitiated, and will automatically track those sub-workflowsaswell. Inthis case, although pegasus-mon-
itord will create a separate jobstate.log file in each workflow directory, the database at the top-level workflow will
contain the information from not only the main workflow, but also from all sub-workflows.

Monitoring related files in the workflow directory
Pegasus-monitord generates a number of filesin each workflow directory:
 jobstate.log: contains asummary of workflow and job execution.

« monitord.log: contains any log messages generated by pegasus-monitord. It is not overwritten when it restarts.
Thisfile is not generated in replay mode, as all log messages from pegasus-monitord are output to the console.
Also, when sub-workflows are involved, only the top-level workflow will have this log file. Starting with release
4.0and 3.1.1, monitord.log fileis rotated if it exists already.

e monitord.started: contains atimestamp indicating when pegasus-monitord was started. Thisfile get overwritten
every time pegasus-monitord starts.

¢ monitord.done: contains a timestamp indicating when pegasus-monitord finished. Thisfileis overwritten every
time pegasus-monitord starts.

* monitord.info: contains pegasus-monitord state information, which allows it to resume processing if aworkflow
does not finish properly and a rescue dag is submitted. This file is erased when pegasus-monitord is executed in
replay mode.

* monitord.recover: contains pegasus-monitord state information that allows it to detect that a previous instance
of pegasus-monitord failed (or was killed) midway through parsing a workflow's execution logs. Thisfileis only
present while pegasus-monitord is running, asit is deleted when it ends and the monitord.info file is generated.

« monitord.subwf.db: contains information that aids pegasus-monitord to track when sub-workflows fail and are
re-planned/re-tried. It is overwritten when pegasus-monitord is started in replay mode.

« monitord-notifications.log: containsthelog filefor notification-related messages. Normally, thisfile only includes
logs for failed notifications, but can be populated with all notification information when pegasus-monitord isrun
in verbose mode via the -v command-line option.

Overview of the Stampede Database Schema.

Pegasustakesin aDAX which is composed of tasks. Pegasus plansit into a Condor DAG / Executable workflow that
consists of Jobs. In case of Clustering, multiple tasks in the DAX can be captured into asingle job in the Executable
workflow. When DAGMan executes a job, ajob instance is populated . Job instances capture information as seen by
DAGMan. In case DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan
finds a job instance has finished , an invocation is associated with job instance. In case of clustered job, multiple
invocationswill be associated with asingle job instance. If a Pre script or Post Script is associated with ajob instance,
then invocations are populated in the database for the corresponding job instance.

The current schema version is 4.0 that is stored in the schema._info table.

190

Reference Manual

Figure 10.14. Stampede Database Schema

task_edge file { _
Wi id file_id { jobstate host
parent_abs task_id task_id i [job_instance_id host_id
child_abs_task_id lin § [state wiid
estimated_size ¢ [timestamp site
md_checksum { [jobstate_submit seq | [hostname
type 1 ip
i uname
ek 5 | [jobmstance total_mermon
Job_id job id { ob.instance id |
wiid Wi id i [
abs_task_id exec_job_id host_id
Transformation Submit e [ob_Subri_s6q
argv type_desc), _Fere
type_desc (dax/ clustered 1
dag/job) max_refries 1 B
CTEEY { cluster_start
cluster_duration
task_count local_duration
subw_id
i [stdout file
i [stdout text
§ stderr_file
stderr_text
job_edge stdin_file
workflow wi id multiplier_factor
wi_id { parent_exec_job_id exitcode
wi_uuid L[[ehild_exec job id
dag_file_name
fimestamp
Submil_hostname
submit_dir
planner_arguments

user

grid_dn _ _ K
planner_version _ _invocation
dax_label id

dax_version job_instance_id

dax_file task_submit_seq
parent_wf_id start_time
root_wi_id remote_duration H N
remote_cpu_time’ o 1P
exitcode g invocation id_____|
Transformation i 4
workflow_state
Lid argv
stale [abs Task 1d (derivation] |
timestamp I

restart_count
status

Stampede Schema Upgrade Tool

Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sgl/schema._tool.py or /path/to/pegasus-4.x/share/pegasus/sgl/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQL ite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workfl ow directory/w th/3.x.nmonitord. db
Check the db version

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tolthe/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 29: 43. 330476Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. i nit |
2012- 02-29T01: 29: 43. 330708Z | NFO
net | ogger . anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |
2012-02-29T01: 29: 43. 348995Z I NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 29: 43. 349133Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Schena version 3.1 found - expecting 4.0 - database admn will
need to run upgrade tool.

Convert the Database to be version 4.x conpliant

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=sqlite:////tolthe/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 35: 35. 046317Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |
2012- 02-29T01: 35: 35. 046554Z | NFO

net | ogger . anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |

101

Reference Manual

2012- 02-29T01: 35: 35. 064762Z | NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 35: 35. 064902Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Schenma version 3.1 found - expecting 4.0 - database admn will
need to run upgrade tool.
2012- 02-29T01: 35: 35. 065001Z | NFO
net | ogger. anal ysi s. schenma. schenma_check. SchemaCheck. upgrade_to_4_0
| Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tolthe/ workflow directory/wth/

wor kf | ow. st anpede. db

2012- 02-29T01: 39: 17. 218902Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. i nit |

2012- 02-29T01: 39: 17.219141Z | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |

2012- 02-29T01: 39: 17. 237492Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. check_schema |
Current version set to: 4.0.

2012- 02-29T01: 39: 17. 237624Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. check_schema |
Schema up to date.

For upgrading a MySQL dat abase the steps renmin the sane. The only thing that changes is the
connection String to the database
E. g.

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=nysql ://usernane: passwor d@er ver : port/ dbnane

After the database has been upgraded you can use either 3.x or 4.x clientsto query the database with pegasus-statistics,
aswell as pegasus-plots and pegasus-analyzer.

Storing of Exitcode in the database

Kickstart records capture raw status in addition to the exitcode . The exitcode is derived from the raw status. Starting
with Pegasus 4.0 release, all exitcode columns (i.einvocation and job instance table columns) are stored with theraw
status by pegasus-monitord. If an exitcode is encountered while parsing the dagman log files, the value is converted
to the corresponding raw status beforeit is stored. All user tools, pegasus-analyzer and pegasus-statistics then convert
the raw status to exitcode when retrieving from the database.

Multiplier Factor

Starting with the 4.0 release, there is a multiplier factor associated with the jobsin the job_instance table. It defaults
to one, unless the user associates a Pegasus profile key named cor es with the job in the DAX. The factor can be used
for getting more accurate statistics for jobs that run on multiple processors/cores or mpi jobs.

The multiplier factor is used for computing the following metrics by pegasus statistics.
¢ Inthe summary, the workflow cumulative job walltime

 Inthe summary, the cumulative job walltime as seen from the submit side

¢ Inthejobsfile, the multiplier factor islisted along-with the multiplied kickstart time.

« In the breakdown file, where statistics are listed per transformation the mean, min , max and average values take
into account the multiplier factor.

API| Reference
DAX XML Schema

The DAX format is described by the XML schema instance document dax-3.3.xsd [http://pegasus.isi.edu/wms/docs/
schemas/dax-3.3/dax-3.3.xsd]. A local copy of the schemadefinition is provided in the“etc” directory. The documen-
tation of the XML schema and its elements can be found in dax-3.3.html [http://pegasus.isi.edu/wms/docs/schemas/
dax-3.3/dax-3.3.html] aswell aslocaly indoc/ schermas/ dax- 3. 3/ dax- 3. 3. ht ml inyour Pegasus distribu-
tion.

192

http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html

Reference Manual

DAX XML Schema In Detail

The DAX file format has four major sections, with the second section divided into more sub-sections. The DAX
format works on the abstract or logical level, letting you focus on the shape of the workflows, what to do and what
to work upon.

1. Workflow-level Notifications

Very simple workflow-level notifications. These are defined in the Notification section.

2. Catalogs

XML Intro

Thefirst section deals with included catal ogs. While we do recommend to use externa replica- and transformation
catalogs, it is possible to include some replicas and transformations into the DAX file itself. Any DAX-included
entry takes precedence over regular replica catalog (RC) and transformation catalog (TC) entries.

Thefirst section (and any of its sub-sections) is completely optional.
a. Thefirst sub-section deals with included replica descriptions.
b. The second sub-section deals with included transformation descriptions.

c. Thethird sub-section declares multi-item executables.

. Job List

Thejobs section definesthe job- or task descriptions. For each task to conduct, athree-part logical name declaresthe
task and aides identifying it in the transformation catal og or one of the executable section above. During planning,
the logical name is translated into the physical executable location on the chosen target site. By declaring jobs
abstractly, physical layout consideration of the target sites do not matter. The job's id uniquley identifies the job
within this workflow.

The arguments declare what command-line arguments to pass to the job. If you are passing filenames, you should
refer to the logical filename using the file element in the argument list.

Important for properly planning thetask isthelist of filesconsumed by thetask, itsinput files, and the files produced
by the task, its output files. Each file is described with a uses element inside the task.

Elements exist to link a logical file to any of the stdio file descriptors. The profile element is Pegasus's way to
abstract site-specific data.

Jobs are nodes in the workflow graph. Other nodes include unplanned workflows (DA X), which are planned and
then run when the node runs, and planned workflows (DAG), which are simply executed.

. Control-flow Dependencies

The third section lists the dependencies between the tasks. The relationships are defined as child parent relation-
ships, and thus impacts the order in which tasks are run. No cyclic dependencies are permitted.

Dependencies are directed edges in the workflow graph.

If you have seen the DAX schema before, not alot of new itemsin the root element. However, we did retire the (old)
attributes ending in Count.

<?xm version="1.0" encodi ng="UTF-8"?>

<l--

generated: 2011-07-28T18:29:57Z -->

<adag xm ns="http://pegasus.isi.edu/ schema/ DAX"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://pegasus.isi.edu/ schema/ DAX http://pegasus.isi.edu/ schema/

dax- 3. 3. xsd"

ver si on="3. 3"
name="di anond"
i ndex="0"

193

Reference Manual

count="1">

The following attributes are supported for the root element adag.

Table 10.18.
attribute optional? type meaning
version required VersionPattern Version number of DAX in-
stance document. Must be
33.
name required string name of this DAX (or set of
DAXes).
count optional positivel nteger size of list of DAXes with
this name. Defaultsto 1.
index optional nonNegativel nteger current index of DAX with
same name. Defaultsto O.
fileCount removed nonNegativel nteger Old 2.1 attribute, removed,
do not use.
jobCount removed positivel nteger Old 2.1 attribute, removed,
do not use.
childCount removed nonNegativel nteger Old 2.1 attribute, removed,
do not use.

The version attribute is restricted to the regular expression \ d+(\ .\ d+(\ .\ d+) ?) ?.This expression represents
the VersionPattern type that is used in other places, too. It is a more restrictive expression than before, but allows us
to compute comparable version number using the following formula:

versionl: ab.c version2: d.e.f
n=a* 1,000,000+ b* 1,000 + ¢ m=d* 1,000,000 + e* 1,000 + f

versionl > version2if n>m

Workflow-level Notifications

(something to be said here.)

<!-- part 1.1: invocations -->
<i nvoke when="at_end">/bin/date -Ins >&t; ny.l|og</invoke>

The above snippet will append the current timeto alog filein the current directory. Thisiswith regardsto the monitord
instance acting on the natification.

The Catalogs Section
Theiinitial section features three sub-sections:
1. acatalog of files used,
2. acatalog of transformations used, and
3. compound transformation declarations.

The Replica Catalog Section

Thefile section acts asin in-file replica catalog (RC). Any files declared in this section take precedence over filesin
external replica catalogs during planning.

<l-- part 1.2: included replica catalog -->
<file nane="exanple.a" >
<!-- profiles are optional -->

194

Reference Manual

<l-- The "stat" namespace is ONLY AN EXAMPLE -->

<profil e namespace="stat" key="size">/* integer to be defined */</profile>
<profile namespace="stat" key="nmd5sunmt>/* 32 char hex string */</profile>
<profil e namespace="stat" key="ntinme">/* | SO 8601 tinmestanmp */</profile>

<l-- nmetadata is currently NOT SUPPORTED - ->
<met adat a key="ti mestanp" type="int">/* | SO 8601 *or* 20100417134523:int */</metadata>
<met adat a key="origin" type="string">ocean</ netadata>

<!-- PFN to by-pass replica catalog -->
<l-- The "site attribute is optional -->
<pfn url="file:///tnp/exanple.a" site="local ">
<profil e namespace="stat" key="owner">voeckl er</profil e>

</ pf n>

<pfn url="file:///storage/funky.a" site="local"/>
</file>
<l-- a nore typical exanple fromthe black dianmond -->

<file name="f.a">
<pfn url="file:///Users/voeckler/f.a" site="local "/>
</file>

The first file entry above is an example of adata file with two replicas. The file element requires alogical file name.
Each logical filename may have additional information associated with it, enumerated by profile elements. Each file
entry may have 0 or more metadata associated with it. Each piece of metadata has a key string and type attribute
describing the element's value.

Warning

The metadata element is not support as of thiswriting! Details may change in the future.

The file element can provide 0 or more pfn locations, taking precedence over the replica catalog. A file element that
does not name any pfn children-elements will still require look-ups in external replica catalogs. Each pfn element
names a concrete location of a file. Multiple locations constitute replicas of the same file, and are assumed to be
usable interchangably. The url attribute is mandatory, and typically would use a file schema URL. The site attribute
isoptional, and defaults to value local if missing. A pfn element may have profile children-elements, which refer to
attributes of the physical file. The file-level profiles refer to attributes of the logical file.

Note

Thest at profile namespace is ony an example, and details about stat are not yet implemented. The proper
namespaces pegasus, condor , dagman, env, hi nt s, gl obus andsel ect or enjoy full support.

The second file entry above shows a usage example from the black-diamond example workflow that you are more
likely to encouter or write.

The presence of an in-file replica catalog lets you declare a couple of interesting advanced features. The DAG and
DAX file declarations are just files for all practical purposes. For deferred planning, the location of the site catalog
(SC) can be captured in afile, too, that is passed to the job dealing with the deferred planning as logical filename.

<fil e name="bl ack. dax" >

<I-- specify the location of the DAX file -->

<pfn url="file:///Users/vahi/Pegasus/ work/ dax- 3. 0/ bl ackdi anond_dax. xm " site="local "/>
</file>

<fil e name="bl ack. dag" >

<I-- specify the location of the DAG file -->

<pfn url="file:///Users/vahi/Pegasus/ work/ dax- 3. 0/ bl ackdi anond. dag" site="local "/>
</file>

<file name="sites.xm" >

<I-- specify the location of a site catalog to use for deferred planning -->
<pfn url="file:///Users/vahi/Pegasus/ work/ dax-3.0/conf/sites.xm" site="local"/>
</file>

The Transformation Catalog Section

The executable section acts as an in-file transformation catalog (TC). Any transformations declared in this section
take precedence over the external transformation catalog during planning.

195

Reference Manual

<l-- part 1.3: included transfornation catalog -->
<execut abl e namespace="exanpl e" nanme="nDi ffFit" version="1.0"
arch="x86_64" os="linux" installed="true" >
<!-- profiles are optional -->

<l-- The "stat" namespace is ONLY AN EXAMPLE! -->

<profil e namespace="stat" key="size">5000</profil e>

<profile namespace="stat" key="nmd5sunt >AB454DSSDA4646DS</ profi | e>

<profil e namespace="stat" key="ntinme">2010-11-22T10: 05: 55. 470606000- 0800</ profi | e>

<l-- metadata is currently NOT SUPPORTEDH -->
<met adat a key="ti mestanp" type="int">/* see above */</netadata>
<met adat a key="origin" type="string">ocean</ netadata>

<!-- PFN to by-pass transformation catalog -->
<l-- The "site" attribute is optional -->
<pfn url="file:///tmp/nDiffFit" site="local "/ >

<pfn url="file:///tnp/storage/nDiffFit" site="local"/>
</ execut abl e>

<l-- to be used in compound transformation |later -->
<execut abl e namespace="exanpl e" name="nDi ff" version="1.0"
arch="x86_64" os="linux" installed="true" >

<pfn url="file:///tmp/nDiff" site="local"/>
</ execut abl e>

<l-- to be used in compound transformation later -->
<execut abl e namespace="exanpl e" name="nFi t pl ane" version="1.0"
arch="x86_64" os="linux" installed="true" >

<pfn url="file:///tmp/nDiffFitplane" site="local">
<profil e namespace="stat" key="mi5sunm'>0a9c38b919c7809ch645f c09011588a6</ profil e>
</ pf n>
<i nvoke when="at _end">/path/to/ my_send_enail|l some args</invoke>
</ execut abl e>

<l-- anore likely exanple fromthe bl ack dianmond -->

<execut abl e namespace="di anond" nane="preprocess" version="2.0"
ar ch="x86_64"
os="1i nux"

osversi on="2.6.18">
<pfn url="file:///opt/pegasus/ defaul t/bin/keg" site="local" />
</ execut abl e>

Logical filenames pertaining to a single executables in the transformation catalog use the executable element. Any
executable element features the optional namespace attribute, a mandatory name attribute, and an optional version
attribute. The version attribute defaults to "1.0" when absent. An executable typically needs additional attributes to
describe it properly, like the architecture, OS release and other flags typically seen with transformations, or found in
the transformation catal og.

Table 10.19.

attribute optional? type meaning

name required string logical transformation name

namespace optional string namespace of logical trans-
formation, default to null
value.

version optional VersionPattern version of logical transfor-
mation, defaultsto "1.0".

installed optional boolean whether to stage the file
(false), or not (true, defaullt).

arch optional Architecture restricted set of tokens, see
schema definition file.

0s optional OSType restricted set of tokens, see
schema definition file.

osversion optional VersionPattern kernel version as beginning
of ‘uname-r’.

glibc optional VersionPattern version of libc.

196

Reference Manual

Therationalefor giving these flagsin the executable element header isthat PFNsarejust identical replicas or instances
of agiven LFN. If you need a different 32/64 bit-ed-ness or OS release, the underlying PFN would be different, and
thus the LFN for it should be different, too.

Note

We are still discussing some details and implications of this decision.

The initial examples come with the same caveats as for the included replica catal og.

Warning
The metadata element is not support as of thiswriting! Details may change in the future.

Similar to the replica catalog, each executable element may have O or more profile elements abstracting away site-
specific details, zero or more metadata elements, and zero or more pfn elements. If there are no pfn elements, the
transformation must still be searched for in the external transformation catalog. As before, the pfn element may have
profile children-elements, referring to attributes of the physical filename itself.

Each executable element may also feature invoke elements. These enable notifications at the appropriate point when
every job that uses this executable reaches the point of notification. Please refer to the notification section for details
and caveats.

The last example above comes from the black diamond example workflow, and presents the kind and extend of
attributes you are most likely to see and use in your own workflows.

The Compound Transformation Section

The compound transformation section declares a transformation that comprises multiple plain transformation. Y ou
can think of a compound transformation like a script interpreter and the script itself. In order to properly run the
application, you must start both, the script interpreter and the script passed to it. The compound transformation helps
Pegasus to properly deal with this case, especially when it needs to stage executables.

<transfornmati on namespace="exanpl e" version="1.0" nane="nDiffFit" >
<uses name="nDi ffFit" />
<uses nane="nDi ff" nanespace="exanpl e" version="2.0" />
<uses name="nFitPlane" />
<uses nane="nDi ffFit.config" executable="false" />
</transformation>

A transformation element declares a set of purely logical entities, executables and config (data) files, that are al
required together for the same job. Being purely logical entities, the lookup happens only when the transformation
element is referenced (or instantiated) by ajob element later on.

The namespace and version attributes of the transformation element are optional, and provide the defaultsfor theinner
uses elements. They are also essential for matching the transformation with ajob.

The transformation is made up of 1 or more uses element. Each uses has a boolean attribute executable, t r ue by
default, or f al se to indicate a data file. The name is a mandatory attribute, refering to an LFN declared previously
in the File Catalog (executableisf al se), Executable Catalog (executableist r ue), or to be looked up as necessary
at instantiation time. The lookup catalog is determined by the executable attribute.

After uses elements, any number of invoke elements may occur to add anotification each whenever thistransformation
isinstantiated.

The namespace and version attributes default values inside uses elements are inherited from the transformation at-
tributes of the same name. There is no such inheritance for uses elements with executable attribute of f al se.

Graph Nodes

The nodes in the DAX comprise regular job nodes, already instantiated sub-workflows as dag nodes, and still to
be instantiated dax nodes. Each of the graph nodes can has a mandatory id attribute. The id attribute is currently a

197

Reference Manual

restriction of type Nodel dentifier Pattern type, whichisarestriction of thexs: NMITOKENtypeto letters, digits, hyphen
and underscore.

The level attribute is deprecated, as the planner will trust its own re-computation more than user input. Please do not
use nor produce any level attribute.

The node-label attribute is optional. It applies to the use-case when every transformation has the same name, but its
arguments determine what it really does. In the presence of anode-label value, aworkflow grapher could use the label
value to show graph nodesto the user. It may also come in handy while debugging.

Any job-like graph node has the following set of children elements, as defined in the AbstractJobType declaration
in the schema definition:

e Oor 1 argument element to declare the command-line of the job'sinvocation.

« 0 or more profile elements to abstract away site-specific or job-specific details.

e Oor 1lstdinelement tolink alogical file the the job's standard input.

¢ Oor 1stdout element to link alogical file to the job's standard output.

e Oor1lstderr element to link alogical fileto the job's standard error.

« 0 or more uses elements to declare consumed data files and produced datafiles.

« 0 or more invoke elements to solicit notifications whence ajob reaches a certain state in its life-cycle.
Job Nodes

A job element has a number of attributes. In addition to the id and node-label described in (Graph Nodes)above,
the optional namespace, mandatory name and optional version identify the transformation, and provide the look-
up handle: first in the DAX's transformation elements, then in the executable elements, and finaly in an externa
transformation catal og.

<!-- part 2: definition of all jobs (at |east one) -->
<job id="1D000001" nanespace="exanpl e" name="nDi ffFit" version="1.0"
node- | abel =" preprocess" >
<argument>-a top -T 6 -i <file nanme="f.a"/> -o <file nanme="f.bl"/></argunent>

<!-- profiles are optional -->
<profil e namespace="execution" key="site">isi_viz</profile>
<profil e namespace="condor" key="getenv">true</profile>

<uses nane="f.a" link="input" register="false" transfer="true" type="data" />
<uses nane="f.b" |ink="output" register="false" transfer="true" type="data" />

<l-- '"WHEN enuneration: never, start, on_error, on_success, on_end, all -->
<!-- PEGASUS * env-vars: event, status, submt dir, wf/job id, stdout, stderr -->
<i nvoke when="start">/path/to arg arg</invoke>
<i nvoke when="on_success"><![CDATA[/path/to arg arg]]></invoke>
<i nvoke when="on_end"><![CDATA[/ path/to arg arg]]></invoke>
</j ob>

The argument element contains the complete command-line that is needed to invoke the executable. The only variable
components are logical filenames, as included file elements.

The profile argument lets you encapsul ate site-specific knowledge .

The stdin, stdout and stderr element permits you to connect a stdio file descriptor to alogical filename. Note that you
will gtill have to declare these filesin the uses section below.

The uses element enumerates all the files that the task consumes or produces. While it is not necessary nor required
to have all files appear on the command-line, it isimperative that you declare even hidden files that your task requires
in this section, so that the proper ancilliary staging- and clean-up tasks can be generated during planning.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set:

198

Reference Manual

Table 10.20.
keyword job life-cycle state meaning

never never (default). Never notify of anything.
This is useful to temporarily disable
an existing notifications.

start submit create a notification when the job is
submitted.

on_error end after a job finishes with failure (exit-
code !=0).

on_success end after ajob finishes with success (exit-
code == 0).

a_end end after ajob finishes, regardless of exit-
code.

al aways like start and at_end combined.

Warning

In clustered jobs, anotification can only be sent at the start or end of the clustered job, not for each member.

Each invokeisasimplelocal invocation of an executable or script with the specified arguments. The executableinside
the invoke body will see the following environment variables:

Table 10.21.
variable job life-cycle state meaning

PEGASUS EVENT aways The value of thewhen attribute

PEGASUS STATUS end Theexit status of the graph node. Only
available for end notifications.

PEGASUS SUBMIT_DIR aways In which directory to find the job (or
workflow).

PEGASUS JOBID aways Thejob (or workflow) identifier. This
is potentially more than merely the
vaue of theid attribute.

PEGASUS_STDOUT aways The filename where stdout goes.
Empty and possibly non-existent at
submit time (though we still have the
filename). Thekickstart record for job
nodes.

PEGASUS STDERR aways Thefilenamewhere stderr goes. Emp-

ty and possibly non-existent at sub-
mit time (though we till havethefile-
name).

Generators should use CDATA encapsulated values to the invoke element to minimize interference. Unfortunately,
CDATA cannot be nested, so if the user invocation containsa CDATA section, we suggest that they use careful XML-
entity escaped strings. The notifications section describes these in further detail.

DAG Nodes

A workflow that has already been concretized, either by an earlier run of Pegasus, or otherwise constructed for DAG-
Man execution, can be included into the current workflow using the dag element.

<dag i d="1D000003" name="bl ack. dag" node-| abel ="fo0" >

<profil e namespace="dagnman"

key="Dl R">/ dag-dir/test</profile>

199

Reference Manual

<invoke> <!-- optional, should be possible --> </invoke>
<uses file="sites.xm" link="input" register="false" transfer="true" type="data"/>
</ dag>

Theid and node-label attributes were described previously. The name attribute refers to afile from the File Catalog
that provides the actual DAGMan DAG as data content. The dag element features optional profile elements. These
would most likely pertain to the dagnan and env profile namespaces. It should be possible to have the optional
notify element in the same manner as for jobs.

A graph node that is a dag instead of a job would just use a different submit file generator to create a DAGMan
invocation. There can be an argument element to modify the command-line passed to DAGMan.

DAX Nodes

A till to be planned workflow incurs an invocation of the Pegasus planner as part of the workflow. This still abstract
sub-workflow uses the dax element.

<dax id="1D000002" nane="bl ack. dax" node-| abel ="bar" >
<profil e namespace="env" key="foo0">bar</profile>
<ar gument >- Xmx1024 - Xms512 - Dpegasus. di r. st orage=storagedir -Dpegasus.dir.exec=execdir -o | ocal
--dir ./datafind -vvvvv --force -s dax_site </argunent>

<invoke> <!-- optional, may not be possible here --> </invoke>
<uses file="sites.xm" link="input" register="false" transfer="true" type="data" />
</ dax>

In addition to the id and node-label attributes, See Graph Nodes. The name attribute refers to a file from the File
Catalog that provides the to be planned DAX as external file data content. The dax element features optional profile
elements. Thesewould most likely pertainto the pegasus, dagnan and env profile namespaces. It may be possible
to have the optional notify element in the same manner asfor jobs.

A graph node that is a dax instead of ajob would just use yet another submit file and pre-script generator to create a
DAGMan invocation. The argument string pertains to the command line of the to-be-generated DAGMan invocation.

Inner ADAG Nodes

While completeness would argue to have a recursive nesting of adag elements, such recursive nestings are currently
not supported, not even in the schema. If you need to nest workflows, please use the dax or dag element to achieve
the same goal .

The Dependency Section

This section describes the dependencies between the jobs.

<l-- part 3: list of control-flow dependencies -->
<child ref="1D000002">

<parent ref="1D000001" edge-| abel ="edgel" />
</child>
<child ref="1D000003">

<parent ref="1D000001" edge-| abel ="edge2" />
</child>
<child ref="1D000004" >

<parent ref="1D000002" edge-| abel

<parent ref="1D000003" edge-| abel
</child>

"edge3" />
"edged" />

Each child element contains one or more parent element. Either element refers to a job, dag or dax element id at-
tribute using the ref attribute. In this version, we relaxed the xs: | DREF constraint in favor of a restriction on the
xs: NMTOKEN type to permit alarger set of identifiers.

The parent element has an optional edge-label attribute.

Warning
The edge-label attribute is currently unused.

Its goal is to annotate edges when drawing workflow graphs.

200

Reference Manual

Closing

Asany XML element, the root element needs to be closed.

</ adag>

DAX XML Schema Example

The following code example shows the XML instance document representing the diamond workflow.

<?xm version="1.0" encodi ng="UTF-8"?>
<adag xm ns="http://pegasus.isi.edu/ schema/ DAX"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://pegasus.isi.edu/ schema/ DAX http://pegasus.isi.edu/ schena/ dax- 3. 3. xsd"
version="3.3" nane="di anond" index="0" count="1">
<!-- part 1.1: invocations -->
<i nvoke when="on_error">/bin/milx -s ' di anond fail ed&pos; use@one. donai n</i nvoke>

<l-- part 1.2: included replica catalog -->
<file name="f.a">
<pfn url="file:///lfs/voeckl er/src/svn/pegasus/trunk/exanpl es/grid-bl ackdi anond-perl/f.a"
site="local" />

</file>
<l-- part 1.3: included transformation catalog -->
<execut abl e namespace="di anond" name="preprocess" version="2.0" arch="x86_64" os="linux"

nstal | ed="f al se">
<profil e namespace="gl obus" key="maxti me">2</profil e>
<profil e namespace="dagman" key="RETRY">3</profil e>
<pfn url="file:///opt/pegasus/|atest/bin/keg" site="local" />
</ execut abl e>
<execut abl e namespace="di anond" nane="anal yze" version="2.0" arch="x86_64" os="linux"
nstal | ed="f al se">
<profil e namespace="gl obus" key="maxti me">2</profil e>
<profil e namespace="dagman" key="RETRY">3</profil e>
<pfn url="file:///opt/pegasus/|atest/bin/keg" site="local" />
</ execut abl e>
<execut abl e namespace="di anond" nanme="findrange" version="2.0" arch="x86_64" os="linux"
nstal | ed="f al se">
<profil e namespace="gl obus" key="maxti me">2</profil e>
<profil e namespace="dagman" key="RETRY">3</profil e>
<pfn url="file:///opt/pegasus/|atest/bin/keg" site="local" />
</ execut abl e>

<l-- part 2: definition of all jobs (at |east one) -->
<j ob namespace="di anond" nane="preprocess" version="2.0" id="1D000001">
<argument >-a preprocess -T60 -i <file name="f.a" /> -0 <file name="f.bl" /> <file nanme="f.b2" /
></ ar gunent >
<uses nane="f.b2" |ink="output" register="false" transfer="true" />
<uses nane="f.bl" |ink="output" register="false" transfer="true" />
<uses nane="f.a" |ink="input" />
</j ob>
<j ob namespace="di anond" nane="fi ndrange" version="2.0" id="1D000002">
<argument>-a findrange -T60 -i <file nane="f.bl" /> -0 <file nane="f.cl" /></argunent>
<uses nane="f.bl" |ink="input" register="false" transfer="true" />
<uses nane="f.cl" |ink="output" register="false" transfer="true" />
</j ob>
<j ob namespace="di anond" nane="fi ndrange" version="2.0" id="1D000003">
<argument>-a findrange -T60 -i <file nane="f.b2" /> -0 <file nane="f.c2" /></argunent>
<uses nane="f.b2" |ink="input" register="false" transfer="true" />
<uses nane="f.c2" |ink="output" register="false" transfer="true" />
</j ob>
<j ob namespace="di anond" nane="anal yze" version="2.0" id="1D000004" >
<argument>-a anal yze -T60 -i <file name="f.cl" /> <file nane="f.c2" /> -0 <file nane="f.d" /></
ar gunent >
<uses nane="f.c2" link="input" register="false" transfer="true" />
<uses nane="f.d" |ink="output" register="false" transfer="true" />
<uses nane="f.cl" link="input" register="false" transfer="true" />
</j ob>
<l-- part 3: list of control-flow dependencies -->

<child ref="1D000002">
<parent ref="1D000001" />

</child>

<child ref="1D000003">

201

Reference Manual

</

<parent ref="1D000001" />
</ child>
<child ref="1D000004" >
<parent ref="1D000002" />
<parent ref="1D000003" />
</ child>
adag>

The above workflow defines the black diamond from the abstract workflow section of the Introduction chapter. It will
reguire minimal configuration, because the catal og sections include all necessary declarations.

The file element defines the location of the required input file in terms of the local machine. Please note that

The file element declares the required input file "f.a" in terms of the local machine. Please note that if you plan the
workflow for a remote site, the has to be some way for the file to be staged from the local site to the remote site.
While Pegasus will augment the workflow with such ancillary jobs, the site catalog aswell aslocal and remote site
have to be set up properlyl. For alocally run workflow you don't need to do anything.

The executable elements declare the same executable keg that is to be run for each the logical transformation in
terms of the remote site futuregrid. To declareit for alocal site, you would have to adjust the site attribute's value
tol ocal . This section aso shows that the same executable may come in different guises as transformation.

The job elements define the workflow's logical constituents, the way to invoke the keg command, where to put
filenames on the commandline, and what files are consumed or produced. In addition to the direction of files, further
attributes determine whether to register the file with areplica catalog and whether to transfer it to the output sitein
case of aproduct. We are only interested in the final data product "f.d" in this workflow, and not any intermediary
files. Typically, youwould also want to register thedataproductsinthereplicacatal og, especially inlarger scenarios.

The child elements define the control flow between the jobs.

DAX Generator API

The DAX generating APIs support Java, Perl and Python. This section will show in each language the necessary code,
using Pegasus-provided libraries, to generate the diamond DAX example above. There may be minor differencesin
details, e.g. to show-case certain features, but effectively all generate the same basic diamond.

The Java DAX Generator API

The JavaDAX API provided with the Pegasus distribution allows easy creation of complex and huge workflows. This
API isused by several applications to generate their abstract DAX. SCEC, which is Southern California Earthquake
Center, uses this API in their CyberShake workflow generator to generate huge DAX containing 10& rsquor;s of
thousands of tasks with 100& rsquor;s of thousands of input and output files. The Java API [javadoc/index.html] is
well documented using Javadoc for ADAGs [javadoc/edu/isi/pegasus/planner/dax/ADAG.html] .

The stepsinvolved in creating aDAX using the APl are

1

2.

Create anew ADAG object

Add any Workflow natification elements

. Create File objects as necessary. Y ou can augment the files with physical information, if you want to include them

into your DAX. Otherwise, the physical information is determined from the replica catal og.

. (Optional) Create Executable objects, if you want to includeyour transformation catalog into your DAX. Otherwise,

the tranglation of ajob/task into executable location happens with the transformation catalog.

. Create anew Job object.

. Add arguments, files, profiles, notifications and other information to the Job object
. Add the job object to the ADAG object

. Repeat step 4-6 as necessary.

. Add al dependenciesto the ADAG object.

202

javadoc/index.html
javadoc/index.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html

Reference Manual

10.Cdll the writeToFile() method on the ADAG object to render the XML DAX file.

An example Java code that generates the diamond dax show aboveislisted below. This same code can befound in the
Pegasus distribution in the exanpl es/ gri d- bl ackdi anond- j ava directory asBl ackDi anmonDAX. j ava:

/ *
Copyri ght 2007-2008 University O Southern California

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |law or agreed to in witing,

software distributed under the License is distributed on an "AS |IS" BASIS,
W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perni ssions and
limtations under the License.

B T T T T

/

i mport edu.isi.pegasus. pl anner. dax. *;

/**

* An exanpl e class to highlight how to use the JAVA DAX APl to generate a di anond
* DAX.

*

*/

public class Dianmond {

publ i c ADAG generate(String site_handle, String pegasus_|location) throws Exception {

java.io.File cwdFile = new java.io.File (".");
String cwd = cwdFi |l e. get Canoni cal Pat h();

ADAG dax = new ADAG " bl ackdi anond");

dax. addNoti fi cati on(l nvoke. WHEN. st art, "/ pegasus/|ibexec/notification/emil -t
noti fy@xanpl e. cont');
dax. addNoti fi cati on(l nvoke. WHEN. at _end, "/ pegasus/ | i bexec/ notification/email -t

notify@xanpl e. com');
File fa = new File("f.a");
fa.addPhysical File("file://" + cwd + "/f.a", "local");
dax. addFi l e(fa);

File fbl = new File("f.bl");
File fb2 = new File("f.b2");
File fcl = new File("f.cl1l");
File fc2 = new File("f.c2");

File fd = new File("f.d");
fd. set Regi ster(true);

Execut abl e preprocess = new Execut abl e(" pegasus", "preprocess", "4.0");

preprocess. set Archi t ect ur e(Execut abl e. ARCH. X86) . set OS(Execut abl e. CS. LI NUX) ;
preprocess. setlnstalled(true);

preprocess. addPhysi cal File("file://" + pegasus_|location + "/bin/keg", site_handle);

Execut abl e fi ndrange = new Execut abl e("pegasus", "findrange", "4.0");

findrange. set Archi t ect ur e(Execut abl e. ARCH. X86) . set OS(Execut abl e. CS. LI NUX) ;
findrange. setlnstalled(true);

findrange. addPhysical File("file://" + pegasus_|location + "/bin/keg", site_handle);

Execut abl e anal yze = new Execut abl e("pegasus", "anal yze", "4.0");

anal yze. set Archi t ect ur e(Execut abl e. ARCH. X86) . set OS(Execut abl e. OS. LI NUX) ;

anal yze. setlnstall ed(true);

anal yze. addPhysical File("file://" + pegasus_|l ocation + "/bin/keg", site_handle);

dax. addExecut abl e(preprocess) . addExecut abl e(fi ndrange) . addExecut abl e(anal yze);

/1 Add a preprocess job

Job j1 = new Job("j1", "pegasus", "preprocess", "4.0");

j 1. addArgunent ("-a preprocess -T 60 -i ").addArgunent(fa);
j 1. addArgunent ("-o ").addArgunent (fbl);

j 1. addArgunent (" ").addArgunent (fb2);

203

Reference Manual

j1l.uses(fa, File.LINK INPUT);
j 1.uses(fbl, File.LlINK QUTPUT);
1.uses(fb2, File.LlNK QUTPUT);

j1.addNotification(lnvoke. WHEN. start,"/pegasus/|ibexec/notification/enuil

noti fy@xanpl e. cont');

j1.addNotification(lnvoke. WHEN. at _end, "/ pegasus/|ibexec/notification/email

noti fy@xanpl e. cont');
dax. addJob(j 1);

/1 Add Ieft Fi ndr ange job
Job j2 = new Job("j2", "pegasus", "findrange", "4.0");

JZ.addArgunent("-a findrange -T 60 -i ").addArgunent (fbl);

j 2. addArgunent ("-o0 ").addArgunent (fcl);
j2.uses(fbl, File.LINK |INPUT);
j2.uses(fc1 Fi | e. LI NK. QUTPUT) ;

j2.addNotification(lnvoke. WHEN. start,"/pegasus/|ibexec/notification/enuil

not i fy@xanpl e.cont');

j 2. addNotification(lnvoke. WHEN. at _end, "/ pegasus/|ibexec/notification/email

noti fy@xanpl e. cont') ;
dax. addJob(j 2);

/1 Add ri ght Fi ndrange job
Job j3 = new Job("j3", "pegasus", "findrange", "4.0");

JS.addArgunent("-a findrange -T 60 -i ").addArgunent (fb2);

j 3. addArgunent ("-o0 ").addArgunent (fc2);
j3.uses(fb2, File.LINK |INPUT);
j 3. uses(fc2, File.LlINK QUTPUT);

j 3. addNotification(lnvoke. WHEN. start,"/pegasus/|ibexec/notification/enuil

not i fy@xanpl e.cont');

j 3. addNotification(lnvoke. WHEN. at _end, "/ pegasus/|ibexec/notification/email

noti fy@xanpl e. cont');
dax. addJob(j 3);

/1 Add anal yze job
Job j4 = new Job("j4", "pegasus", "analyze", "4.0");

j4.addArgunment ("-a analyze -T 60 -i ").addArgunent (fcl);

j 4. addArgunent (" ").addArgunent (fc2);
j 4. addArgunent ("-o0 ").addArgunent (fd);
j4.uses(fcl, File.LINK |INPUT);
j4.uses(fc2, File.LINK |INPUT);
j4.uses(fd, File.LlINK OQUTPUT);

j4.addNoti fication(lnvoke. WHEN. start, "/ pegasus/|ibexec/notification/email

noti fy@xanpl e. cont') ;

j4.addNotification(lnvoke. WHEN. at _end, "/ pegasus/|ibexec/notification/email

noti fy@xanpl e. cont');
dax. addJob(j 4);

dax. addDependency("j 1", "j
dax. addDependency("j 1", "j
dax. addDependency("j 2", "j
dax. addDependency("j 3", "j
return dax;

}

/**

* Create an exanpl e DI AMOND DAX

* @aram args

*/

public static void nmain(String[] args) {
if (args.length = 1) {

-t

-t

-t

-t

-t

-t

-t

-t

System out. println("Usage: java GenerateD anondDAX <pegasus_location> ");

Systemexit(1);
}

try {
Di anond di anond = new Di anond() ;
String pegasusHone = args[0];
String site = "TestCluster";
ADAG dag = di anond. generate(site, pegasusHone);
dag. writeToSTDOUT() ;
//generate(args[0], args[1]).witeToFile(args[2]);

catch (Exception e) {
e.printStackTrace();

}

204

Reference Manual

Of course, you will have to set up some catalogs and properties to run this example. The details are catpured in the
examples directory exanpl es/ gri d- bl ackdi anond-j ava.

The Python DAX Generator API

Refer to the auto-generated python documentation [python/] explaining this API.

#!'/ usr/ bi n/ env python

from Pegasus. DAX3 inport *
inport sys
i mport os

if len(sys.argv) != 2:
print "Usage: % PEGASUS HOVE' % (sys.argv[O0])
sys.exit(1)

Create a abstract dag
di amond = ADAG " di anpond")

Add input file to the DAX-level replica catal og

a = File("f.a")

a. addPFN(PFN("file://" + os.getcwd() + "/f.a", "local"))
di amond. addFi | e(a)

Add executables to the DAX-level replica catal og

In this case the binary is keg, which is shipped with Pegasus, so we use

the renote PEGASUS_HOME to build the path.

e_preprocess = Executabl e(nanespace="di anond", name="preprocess", version="4.0", os="linux",
arch="x86_64")

e_preprocess. addPFN(PFN("file://" + sys.argv[1l] + "/bin/keg", "TestCuster"))

di anond. addExecut abl e(e_pr eprocess)

e_findrange = Execut abl e(nanespace="di anond", name="findrange", version="4.0", os="linux",
arch="x86_64")

e_findrange. addPFN(PFN("file://" + sys.argv[1l] + "/bin/keg", "TestCluster"))

di amond. addExecut abl e(e_f i ndrange)

e_anal yze = Execut abl e(namespace="di anond", nane="anal yze", version="4.0", os="linux",
arch="x86_64")

e_anal yze. addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCOuster"))

di anond. addExecut abl e(e_anal yze)

Add a preprocess job

preprocess = Job(nanespace="di anond", name="preprocess", version="4.0")
bl = File("f.b1l")

b2 = File("f.b2")

preprocess. addArgunents("-a preprocess”,"-T60","-i",a,"-0", bl, b2)
preprocess. uses(a, |ink=Link.|NPUT)

preprocess. uses(bl, |ink=Link. QUTPUT)

preprocess. uses(b2, |ink=Link. QUTPUT)

di anond. addJob(pr epr ocess)

Add | eft Findrange job

frl = Job(nanespace="di anond", name="findrange", version="4.0")
cl = File("f.c1")
frl.addArgunents("-a findrange","-T60","-i", bl,"-0",cl)

frl.uses(bl, I|ink=Link.|NPUT)
frl.uses(cl, |ink=Link. QUTPUT)
di anond. addJob(frl)

Add right Findrange job

frr = Job(nanespace="di anond", nanme="findrange", version="4.0")
c2 = File("f.c2")

frr.addArgunents("-a findrange","-T60","-i", b2,"-0", c2)
frr.uses(b2, |ink=Link.|NPUT)

frr.uses(c2, |ink=Link. QUTPUT)

di anond. addJob(frr)

Add Anal yze job

anal yze = Job(nanespace="di anond", nanme="anal yze", version="4.0")
d=File("f.d")

anal yze. addAr gunent s("-a anal yze","-T60","-i",cl1,¢c2,"-0",d)

205

python/
python/

Reference Manual

anal yze. uses(c1, |ink=Link.|NPUT)

anal yze. uses(c2, |ink=Link.|NPUT)

anal yze. uses(d, |ink=Link. QUTPUT, register=True)
di anond. addJob(anal yze)

Add control -fl ow dependenci es

di anmond. depends(par ent =pr eprocess, child=frl)
di anmond. depends(par ent =pr eprocess, child=frr)
di anond. depends(parent=frl, child=anal yze)

di anond. depends(parent=frr, child=anal yze)

Add notification for analyze job
anal yze. i nvoke(Wien. ON_ERROR, '/hone/user/bin/email -s "Analyze job failed" user@xanple.com)

Add notification for workflow
di anond. i nvoke(\When. AT_END, '/hone/user/bin/enmail -s "Workflow finished" user@xanpl e. coni)
di amond. i nvoke(When. ON_SUCCESS, '/ hone/ user/bin/publish_workflow result')

Wite the DAX to stdout
di amond. wri t eXM_(sys. st dout)

The Perl DAX Generator

The Perl APl example below can be found in file bl ackdi anond. pl in directory exanpl es/ gri d- bl ack-
di anond- per | . It requires that you set the environment variable PEGASUS HOVE to the installation directory of
Pegasus, and includeinto PERL5LI Bthe pathtothedirectory | i b/ per | of the Pegasusinstallation. The actual code
islonger, and will not require these settings, only the example below does. The Perl API is documented using perl-
doc [http://pegasus.isi.edu/wms/docs/3.0/perl/]. For each of the modules you can invoke perldoc, if your PERL5LI B
variable is set.

The steps to generate a DAX from Perl are similar to the Java steps. However, since most methods to the classes are
deeply within the Perl class modules, the convenience module Per | : : DAX: : Fact or y makes most constructors
accessible without you needing to type your fingers raw:

. Create anew ADAG object.

. Create Job objects as necessary.

. Asexample, therequired input file "f.a" is declared as File object and linked to the ADAG object.

. Thefirst job arguments and files are filled into the job, and the job is added to the ADAG object.

. Repeat step 4 for the remaining jobs.

. Add dependenciesfor al jobs. Y ou have the option of assigning label text to edges, though these are not used (yet).

N o g b~ WO N P

. To generate the DAX file, invoke the toXML() method on the ADAG object. The first argument is an opened file
handleor | O : Handl e descriptor scalar to write to, the second the default indentation for the root element, and
the third the XML namespace to use for elements and attributes. The latter is typically unused unless you want to
include your output into another XML document.

#!'/usr/bin/env perl
#

use 5.006;

use strict;

use | G : Handl e;

use Owd;

use File:: Spec;

use File::Basenane;
use Sys:: Host nane;

use PCSIX ();
BEG N { $ENV{' PEGASUS_HOME' } || = "pegasus-config --nocrlf --hone” }
use |lib File::Spec->catdir($ENV{' PEGASUS HOME' }, 'lib', 'perl');

use Pegasus:: DAX: :Factory gw(:all);
use constant NS => 'dianond';

ny $adag = newADAG nane => NS);

ny $j obl = newJob(namespace => NS, nane => 'preprocess', version => '2.0");
ny $j ob2 = newJob(namespace => NS, nane => 'findrange', version => '2.0");
ny $j ob3 = newJob(namespace => NS, nane => 'findrange', version =>'2.0");

206

http://pegasus.isi.edu/wms/docs/3.0/perl/
http://pegasus.isi.edu/wms/docs/3.0/perl/
http://pegasus.isi.edu/wms/docs/3.0/perl/

Reference Manual

ny $j ob4 = newdob(namespace => NS, nane => 'analyze', version => "'2.0");

create "f.a" locally
ny $fn = "f.a";
open(F, ">$fn") || die "FATAL: Unable to open $fn: $!'\n";
nmy @ow = gntine();
printf F "9%04u-%02u- %02u %02u: ¥02u: ¥O2uzZ\ n",
$nowf 5] +1900, $nowf 4] +1, @owf 3,2, 1,0];
close F;

ny $file = newFile(name => 'f.a');

$file->addPFN(newPFN(url => 'file://' . Owd::abs_path($fn),
site => "local'));

$adag- >addFil e($file);

follow this path, if the PEGASUS HOMVE was determ ned
if (exists $ENV{' PEGASUS HOME' }) {
ny $keg = File::Spec->catfile($ENV{' PEGASUS HOVE }, 'bin', 'keg');

ny @s = POSI X::unanme();
$0s[2] =~ s/A(\d+(\.\d+(\.\d+)?)?).*/$1/; ## create a proper osversion
$os[4] =~ s/i.86/x86/;

add Executabl e instances to DAX-included TC. This will only work,
if we know how to access the keg executable. HONEVER, for a grid
workflow, these entries are not used, and you need to
[1] install the work tools remotely
[2] create a TC with the proper entries
if (-x $keg) {
for ny $§ ($jobl, $job2, $jobs) {
ny $app = newExecut abl e(namespace => $j - >nanespace,
nane => $j - >nane,
version => $j->version,
installed => 'fal se',
arch => $os[4],
os => | c($"0);
$app->addProfile('globus', 'maxtine', '2');
$app->addProfil e('dagman', 'RETRY', '3');

$app- >addPFN(newPFN(url => "file://$keg", site => "local'));
$adag- >addExecut abl e($app) ;
}
}
}
ny %ash = (link => LINK_QUT, register => 'false', transfer => "true');
ny $fna = newFil enane(nane => $file->name, link => LINK_IN);
ny $fnbl = newFil enane(nane => 'f.bl", %ash);
ny $fnb2 = newFil enane(nane => 'f.b2', %ash);
$j obl->addArgunent ('-a', $jobl->nane, '-T60', '-i', $fna,
‘-0, $fnbl, $fnb2);
$adag- >addJob($j obl);
ny $fncl = newFil enane(nane => 'f.cl', %ash);
$fnbl->link(LINKIN);
$j ob2- >addArgunent (' -a', $job2->nane, '-T60', '-i', $fnbil,
‘-0, $fncl);
$adag- >addJob($j 0b2) ;
ny $fnc2 = newFil enane(nane => 'f.c2', %ash);
$fnb2->link(LINKIN);
$j ob3->addArgunent ('-a', $job3->nane, '-T60', '-i', $fnb2,
‘-0, $fnc2);
$adag- >addJob($j ob3);
a conveni ence function -- you can specify nultiple dependents
$adag- >addDependency($jobl, $job2, $job3);
ny $fnd = newFil enane(nane => 'f.d', %ash);
$fncl->link(LINKIN);
$fnc2->link(LINKIN);
$j ob4- >separator(''); # just to show the difference wt default
$j ob4- >addArgunent ('-a ', $job4->nane, ' -T60 -i ', $fncl, ' ', $fnc2,
‘-0 ', $fnd);

$adag- >addJob($j ob4) ;

this is a convenience function adding parents to a child.
it is clearer than overl oadi ng addDependency

$adag- >addl nver se($j ob4, $job2, $job3);

workflow | evel notification in case of failure

207

Reference Manual

refer to Pegasus::DAX :Invoke for details
ny $user = $ENV{USER} || $ENV{LOGNAME} || scal ar getpwui d($>);
$adag- >i nvoke(| NVOKE_ON_ERROR,

"/bin/mailx -s 'blackdianond failed $user");

ny $xmns = shift;
$adag- >t oXM_(*STDOUT, '', $xnins);

DAX Generator without a Pegasus DAX API

If you are using some other scripting or programming environment, you can directly write out the DAX format using
the provided schema using any language. For instance, L1GO, the Laser Interferometer Gravitational Wave Observa-
tory, generate their DAX files as XML using their own Python code, not using our provided API.

If you write your own XML, you must ensure that the generated XML is well formed and valid with respect to the
DAX schema. You can use the pegasus-dax-validator to verify the validity of your generated file. Typically, you
generate asmallish test file to, validate that your generator creates valid XML using the validator, and then ramp it up
to produce the full workflow(s) you want to run. At this point the pegasus-dax-validator is a very simple program
that will only take exactly one argument, the name of the file to check.The following snippet checks a black-diamond
file that uses an improper osversion attribute in its executable element:

$ pegasus-dax-validator bl ackdi anond. dax
ERROR cvc-pattern-valid: Value '2.6.18-194.26.1.el5 is not facet-valid
with respect to pattern '[0-9]+(\.[0-9]+(\.[0-9]+)?)?" for type 'VersionPattern'.
ERROR cvc-attribute.3: The value '2.6.18-194.26.1.el5 of attribute 'osversion'
on el ement 'executable' is not valid with respect to its type, 'VersionPattern'.

0 warnings, 2 errors, and O fatal errors detected.

We are working on improving this program, e.g. provide output with regards to the line number where the issue
occurred. However, it will return with a non-zero exit code whenever errors were detected.

Command Line Tools

208

Reference Manual

Name

pegasus-analyzer — debugs a workflow.

Synopsis

pegasus-analyzer [--help|-h] [--quiet|-q] [--strict]-S]
[--monitord|-m|-t] [--verbose]-v]
[--output-dir|-o output_dir]
[--dag dag_filename] [--dir|-d|-i input_dir]
[--print]-p print_options] [--type workflow_type]
[--debug-job job][--debug-dir debug_dir]
[--local-executable local user executable]
[--conf|-c property_file] [--files]
[--top-dir dir_name] [workflow_directory]

Description

pegasus-analyzer is acommand-line utility for parsing the jobstate.log file and reporting successful and failed jobs.
When executed without any options, it will query the SQLite or MySQL database and retrieve failed job information
for the particular workflow. When invoked with the --files option, it will retrieve information from severa log files,
isolating jobs that did not complete successfully, and printing their stdout and stderr so that users can get detailed
information about their workflow runs.

Options
-h, --help
-q, --quiet
-s, --strict
-m, -t, --monitord
-v, --verbose
-0 output_dir , --output-dir
output_dir

Prints a usage summary with all the available command-line options.
Only print the the output and error filenames instead of their contents.
Get jobs' output and error filenames from the job’ s submit file.

Invoke pegasus-monitor d before analyzing the jobstate.log file. Although pe-
gasus-analyzer can be executed during the workflow execution as well as
after the workflow has aready completed execution, pegasus-monitord” is
aways invoked with the --replay option. Since multiple instances of pega-
sus-monitord” should not be executed simultaneously in the same workflow
directory, the user should ensure that no other instances of pegasus-monitord
are running. If the run_directory is writable, pegasus-analyzer will create a
jobstate.log file there, rotating an older log, if it is found. If the run_directory
isnot writable (e.g. when the user debugging the workflow is not the same user
that ran the workflow), pegasus-analyzer will exit and ask the user to provide
the --output-dir option, in order to provide an alternative location for pega-
sus-monitord log files.

Setsthelog level for pegasus-analyzer. If omitted, the default level will be set
to WARNING. When this option is given, the log level is changed to INFO. If
this option is repeated, the log level will be changed to DEBUG.

This option provides an aternative location for al monitoring log files for a
particular workflow. It is mainly used when an user does not have write privi-
legesto aworkflow directory and needs to generate the log files needed by pe-
gasus-analyzer. If this option is used in conjunction with the --monitord op-
tion, it will invoke pegasus-monitord using output_dir to store al output files.
Because workflows can have sub-workflows, pegasus-monitord will create
its files prepending the workflow wf_uuid to each filename. This way, mul-
tiple workflow files can be stored in the same directory. pegasus-analyzer
has built-in logic to find the specific jobstate.log file by looking at the work-
flow braindump.txt file first and figuring out the corresponding wf_uuid. If
output_dir does not exigt, it will be created.

209

Reference Manual

--dag 'dag_filename

-d input_dir , -i input_dir , --dir
input_dir

-p print_options, --print
print_options

--debug-job job

--debug-dir debug_dir

--local-executable local user exe-
cutable

--type workflow_type
-c property_file, --conf

property_file

--files

--top-dir dir_name

Environment Variables

In this option, dag_filename specifies the path to the DAG file to use. pega-
sus-analyzer will get the directory information from the dag_filename. This
option overrides the --dir option below.

Makes pegasus-analyzer look for the jobstate.log filein theinput_dir directo-
ry. If thisoptionisomitted, pegasus-analyzer will look in the current directory.

Tells pegasus-analyzer what extra information it should print for failed jobs.
print_options is a comma-delimited list of options, that include pre, invoca-
tion, and/or all, which activates all printing options. With the pre option, pega-
sus-analyzer will print the pre-script information for failed jobs. For the invo-
cation option, pegasus-analyzer will print the invocation command, so users
can manually run the failed job.

When given this option, pegasus-analyzer turns on its debug_mode, when it
can be used to debug a particular Pegasus Lite job. In this mode, pegasus-ana-
lyzer will createashell scriptinthedebug_dir (seebelow, for specifyingit) and
copy all necessary filesto thislocal directory and then execute the job locally.

When in debug_mode, pegasus-analyzer will create atemporary debug direc-
tory. Users can give this option in order to specify a particular debug_dir di-
rectory to be used instead.

Whenin debug job mode for Pegasus Litejobs, pegasus-analyzer creates ashell
script to execute the Pegasus Lite job locally in adebug directory. The Pegasus
Lite script refersto remote user executabl e path. This option can be used to pass
the local path to the user executable on the submit host. If the path to the user
executable in the Pegasus Lite job is same as the local installation.

In this options, users specify what workflow_type they want to debug. At this
moment, the only workflow_type availableis condor and it isthe default value
if this option is not specified.

Thisoptionisused to specify an alternative property file, which may containthe
path to the database to be used by pegasus-analyzer. If this option is not spec-
ified, the config file specified in the braindump.txt file will take precedence.

This option allows users to run pegasus-analyzer using the files in the work-
flow directory instead of the database asthe source of information. pegasus-an-
alyzer will output the same information, this option only changes where the
data comes from.

This option enables pegasus-analyzer to show information about sub-work-
flows when using the database mode. When debugging a top-level workflow
with failures in sub-workflows, the analyzer will automatically print the com-
mand users should useto debug afailed sub-workflow. Thisalowsthe analyzer
to find the database it needs to access.

pegasus-analyzer does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus bin directory.

Example

The simplest way to use pegasus-analyzer isto go to the run_directory and invoke the analyzer:

$ pegasus-anal yzer .

which will cause pegasus-analyzer to print information about the workflow in the current directory.

pegasus-analyzer output contains a summary, followed by detailed information about each job that either failed, or
isin an unknown state. Here is the summary section of the output:

210

Reference Manual

**************************Sum-rary***************************

Total jobs : 75 (100. 00%
j obs succeeded : 41 (54.67%
jobs failed : 0 (0.00%
jobs unsubmitted : 33 (44.00%
j obs unknown : 1 (1.33%

jobs_succeeded are jobs that have completed successfully. jobs failed are jobs that have finished, but that did not
complete successfully. jobs_unsubmitted are jobs that are listed in the dag_file, but no information about them was
found in the jobstate.log file. Finally, jobs_unknown are jobs that have started, but have not reached completion.

After the summary section, pegasus-analyzer will display information about each job in the job_failed and
job_unknown categories.

*kkkkkkkkkkkkk*kk***Fqi | ed] ObsS' detaj| s****kxkkkkhkhhkhhkkhhkkx

findrange_j 3

| ast state: POST_SCRI PT_FAI LURE
site: |ocal
subnit file: /hone/user/dianond-subnit/findrange_j3.sub
output file: /home/user/dianond-subm t/findrange_j 3. out.000
error file: /home/user/di amond-subm t/findrange_j3.err.000

———————————————————— Task #1 - Summary-----------------------

site : local

host nane : server-machi ne. domai n. com
executable : (null)

argunment s : -a findrange -T 60 -i f.b2 -0 f.c2
error 2

working dir :

Intheexample above, thefindrange_j3job hasfailed, and theanalyzer displaysinformation about thejob, showing that
the job finished with a POST_SCRIPT_FAILURE, and lists the submit, output and error files for this job. Whenever
pegasus-analyzer detectsthat the output file contains akickstart record, it will display the breakdown containing each
task in thejob (in this case we only have one task). Because pegasus-analyzer was not invoked with the --quiet flag,
it will also display the contents of the output and error files (or the stdout and stderr sections of the kickstart record),
which in this case are both empty.

In the case of SUBDAG and subdax jobs, pegasus-analyzer will indicate it, and show the command needed for the
user to debug that sub-workflow. For example:

ubdax_bl ack_| DO00009

last state: JOB_FAI LURE
site: |ocal
submt file: /honme/user/runl/subdax_bl ack_| DO00009. sub
output file: /honme/user/runl/subdax_bl ack_| DO00009. out
error file: /home/user/runl/subdax_bl ack_I DO00009. err
This job contains sub workfl ows!
Pl ease run the command bel ow for nmore information:
pegasus- anal yzer -d /home/ user/runl/ bl ackdi anond_| DO00009. 000

tells the user the subdax_black ID000009 sub-workflow failed, and that it can be debugged by using the indicated
pegasus-analyzer command.

See Also

pegasus-status(1), pegasus-monitord(1), pegasus-statistics(1).

Authors

Fabio Silva<f abi o at isi dot edu>

211

Reference Manual

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

212

http://pegasus.isi.edu

Reference Manual

Name

pegasus-archive — Compresses aworkflow submit directory in away that allows pegasus-dashboard, pegasus-statis-
tics, pegasus-plots, and pegasus-analyzer to keep working.

Synopsis
pegasus-ar chive [-h][-V][-X] submit_dir
Description
pegasus-ar chive significantly reduces the size of workflow submit directories by compressing the datain away such
that it remains accessible to tools such as pegasus-statistics, pegasus-plots, and pegasus-analyzer. It creates a .tar.gz

archive of the submit files and logs that excludes files such as the stampede database, braindump file, and monitord
logs, which are used by pegasus reporting tools.

Options
-h, --help Prints a usage summary with al the available command-line options.

-v, --verbose Print detailed messages about the archiving process.

-X , --extract Un-archive a previously archived submit directory. This option returns the submit directory to the
state it was before pegasus-ar chive was applied to it.

Authors
Gideon Juve <gideon@isi.edu [mailto:gideon@isi.edu]>

Pegasus Team http://pegasus.isi.edu

213

mailto:gideon@isi.edu
mailto:gideon@isi.edu
http://pegasus.isi.edu

Reference Manual

Name

pegasus-cleanup — Removes files during Pegasus workflows enactment.
Synopsis
pegasus-cleanup [-h][-I level][-f urlg]

Description

pegasus-cleanup removes the files associated with the given URL. Some of the protocolsit can handle are GridFTP,
SRM, Amazon S3, HTTP, and file://.

Options
-h, --help Prints a usage summary with all the available command-line options.
-l level , --loglevel level The debugging output level. Valid values are debug, info, warning, and error. Default
valueisinfo.
-furls, -fileurls Specifies the file with URLsto clean up (one per line). If thisoption is not given the list
of URLswill be read from stdin.
Example

echo gsiftp://sonmehost/some/ path | pegasus-cl eanup

Authors

Pegasus Team http://pegasus.isi.edu

214

http://pegasus.isi.edu

Reference Manual

Name

pegasus-cluster — run alist of applications
Synopsis

pegasus-cluster [-d] [-e|-f] [-Sec] [-sfn] [-R fn] [-n nr] [inputfile]
Description

Thepegasus-cluster tool executesalist of applicationin the order specified (assuming sequential mode.) Itisgenerally
used to do horizontal clustering of independent application, and does not care about any application failures. Such
failures should be caught by using pegasus-kickstart to start application.

In vertical clustering mode, the hard failure mode is encouraged, ending execution as soon as one application fails.
When running a complex workflow through pegasus-cluster , the order of applications in the input file must be
topologically sorted.

Applications are usually using pegasus-kickstart to execute. In the pegasus-kickstart case, all invocations of pega-
sus-kickstart except the first should add the pegasus-kickstart option -H to supress repeating the XML preamble
and certain other headers of no interest when repeated.

pegasus-cluster permits shell-style quoting. One level of quoting is removed from the arguments. Please note that
pegasus-kickstart will also remove one level of quoting.

Arguments

-d This option increases the debug level. Debug message are generated on stdout . By default, debug-
ging isminimal.

-e Thisflag turns on the old behavior of pegasus-cluster to always run everything and return success
no matter what. The -e flag is mutually exclusive with the -f flag. By default, all applications are
executed regardles of failures. Any detected application failure results in a non-zero exit status
from pegasus-cluster.

-f In hard failure mode, as soon as one application fails, either through a non-zero exit code, or by
dying on a signal, further execution is stopped. In parallel execution mode, one or more other
applications|ater in the sequence file may have been started already by the time failure is detected.
Pegasus-cluster will wait for the completion of these applications, but not start new ones. The -f
flag is mutually exclusive with the -e flag. By default, all applications are executed regardless of
failures. Any detected application failure results in anon-zero exit status from pegasus-cluster.

-h This option prints the help message and exits the program.

-sfn This option will send protocol message (for Mei) to the specified file. By default, all message are
written to stdout .

-Rfn The progress reporting feature, if turned on, will write one event record whenever an applica
tion is started, and one event record whenever an application finished. This is to enable track-
ing of jobs in progress. By default, track logs are not written, unless the environment variable
SEQEXEC_PROGRESS REPORT is set. If set, progress reports are appended to the file pointed
to by the environment variable.

-Sec Thisoption isamulti-option, which may be used multiple times. For each given non-zero exit-code
of an application, mark it as a form of success. In -f mode, this means that pegasus-cluster will
not fail when seeing this exit code from any application it runs. By default, all non-zero exit code
constitute failure.

-nnr This option determines the amount of parallel execution. Typically, parallel execution isonly rec-
ommended on multi-core systems, and must be deployed rather carefully, i.e. only completely in-
dependent jobs across of whole inpuitfile should ever be attempted to be run in parallel. The argu-

215

Reference Manual

ment nr is the number of parallel jobs that should be used. In addition to a non-negative integer,
the word auto is also understood. When auto is specified, pegasus-cluster will attempt to auto-
matically determine the number of cores available in the system. Strictly sequential execution, as
if nr was 1, is the default. If the environment variable SEQEXEC_CPUS s set, it will determine
the default number of CPUs.

inputfile The input file specifies a list of application to run, one per line. Comments and empty lines are
permitted. The comment character isthe octothorpe (#), and extends to the end of line. By defaullt,
pegasus-cluster uses stdin to read the list of applications to execute.

Return Value

The pegasus-cluster tool returns 1, if anillegal option was used. It returns 2, if the status file from option -s cannot be
opened. It returns 3, if the input file cannot be opened. It does not return any failure for failed applicationsin old-exit
-e mode. In default and hard failure -f mode, it will return 5 for true failure. The determination of failure is modified
by the -S option.

All other internal errors being absent, pegasus-cluster will always return 0 when run without -f . Unlike shell, it will
not return the last application’s exit code. In default mode, it will return 5, if any application failed. Unlike shell, it
will not return the last application’s exit code. However, it will execute all applications. The determination of failure
ismodified by the -Sflag. In -f mode, * pegasus-cluster returns either 0 if all main sequence applications succeeded,
or 5if onefailed; or morethan onein parallel execution mode. It will run only aslong as applications were successful.
As before, the *-S flag determines what constitutes a failure.

The pegasus-cluster application will also create a small summary on stdout for each job, and one for itself, about the
success and failure. The field failed reports any exit code that was not zero or asigna of death termination. It does
not include non-zero exit codes that were marked as success using the -S option.

Task Summary

Each task executed by pegasus-cluster generates arecord bracketed by square brackets like this (each entry is broken
over two lines for readability):

[cluster-task id=1, start="2011-04-27T14: 31:25.340-07: 00", duration=0.521,
status=0, |ine=1, pid=18543, app="/bin/usleep"]

[cluster-task id=2, start="2011-04-27T14: 31:25.342-07: 00", duration=0.619,
status=0, |ine=2, pid=18544, app="/bin/usleep"]

[cluster-task id=3, start="2011-04-27T14:31:25.862-07: 00", duration=0.619,
status=0, |ine=3, pid=18549, app="/bin/usleep"]

Each record is introduced by the string cluster-task with the following constituents, where strings are quoted:

id Thisis a numerical value for main sequence application, indicating the application’s place in the
sequence file. The setup task uses the string setup , and the cleanup task uses the string cleanup .

start is the ISO 8601 time stamp, with millisecond resolution, when the application was started. This
string is quoted.

duration is the application wall-time duration in seconds, with millisecond resol ution.

status istheraw exit status as returned by the wait family of system calls. Typically, the exit codeis found

inthe high byte, and the signal of deathinthelow byte. Typically, 0indicates asuccessful execution,
and any other value a problem. However, details could differ between systems, and exit codes are
only meaningful on the same os and architecture.

line is the line number where the task was found in the main sequence file. Setup- and cleanup tasks
don’t have this attribute.

pid isthe process id under which the application had run.

app is the path to the application that was started. As with the progress record, any pegasus-kickstart
will be parsed out so that you see the true application.

216

Reference Manual

pegasus-cluster Summary

Thefina summary of countsisarecord bracketed by sgquare brackets like this (broken over two lines for readability):

[cluster-summary stat="ok", |ines=3, tasks=3, succeeded=3, failed=0, extra=0,
duration=1.143, start="2011-04-27T14: 31:25.338-07: 00", pi d=18542, app="./seqgexec"]

The record is introduced by the string cluster-summary with the following constituents:

stat The string fail when pegasus-cluster would return with an exit status of 5. Concretely, thisis any
failure in default mode, and first failure in -f mode. Otherwise, it will always be the string ok , if
the record is produced.

lines isthe stopping line number of the input sequence file, indicating how far processing got. Up to the
number of cores additional lines may have been parsed in case of -f mode.

tasks isthe number of tasks processed.
succeeded isthe number of main sequence jobs that succeeded.
failed is the number of main sequence jobs that failed. The failure condition depends on the -S settings,
too.
extra is0, 1 or 2, depending on the existence of setup- and cleanup jobs.
duration isthe duration in seconds, with millisecond resolution, how long * pegasus-cluster ran.
start isthe start time of pegasus-cluster as SO 8601 time stamp.
See Also

pegasus-kickstart(1)

Caveats

The -S option sets success codes globally. It is not possible to activate success codes only for one specific application,
and doing so would break the shell compatibility. Due to the global nature, use success codes sparingly as last resort
emergency handler. In better plannable environments, you should use an application wrapper instead.

Example

The following shows an example input file to pegasus-cluster making use of pegasus-kickstart to track applications.

#

nkdir

/ pat h/ t o/ pegasus-ki ckstart -R HPC -n nkdir /bin/nkdir -m 2755 -p split-corpus split-ne-corpus

#

drop-di an

/ pat h/ t o/ pegasus-ki ckstart -H -R HPC -n drop-dian -o '~f-new. plain' /path/to/drop-dian /path/to/f-

tok.plain /path/to/f-tok.NE

#

split-corpus

/ pat h/ t o/ pegasus-ki ckstart -H -R HPC -n split-corpus /path/to/split-seq-new. pl 23 f-new. plain split-

cor pus/ cor pus.

#

split-corpus

/ pat h/ t o/ pegasus-ki ckstart -H -R HPC -n split-corpus /path/to/split-seq-new pl 23 /path/to/f-tok.NE
split-ne-corpus/corpus.

Environment Variables

A number of environment variables permits to influence the behavior of pegasus-cluster during run-time.

SEQEXEC_PROGRESS REPORTIf this variable is set, and points to a writable file location, progress report
records are appended to the file. While care is taken to atomically append

217

Reference Manual

recordsto thelog file, in case concurrent instances of pegasus-cluster are run-
ning, broken Linux NFS may still garble some content.

SEQEXEC_CPUS If thisvariable is set to a non-negative integer, that many CPUs are attempted
to be used. The specia value auto permits to auto-detect the number of CPUs
available to pegasus-cluster on the system.

SEQEXEC_SETUP If thisvariableis set, and contains asingle fully-qualified path to an executable
and arguments, this executable will be run before any jobs are started. The exit
code of this setup job will have no effect upon the main job sequence. Success
or failure will not be counted towards the summary.

SEQEXEC_CLEANUP If thisvariableis set, and containsasingle fully-qualified path to an executable
and arguments, this executable will be before pegasus-cluster quits. Failure of
any previousjob will have no effect on the ability to run thisjob. The exit code
of the cleanup job will have no effect on the overall success or failure state.
Success or failure will not be counted towards the summary.

History
Asyou may have noticed, pegasus-cluster had the name seqexec in previous incantations. We are slowly moving to

the new name to avoid clashes in alarger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Jens-S. Vockler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

218

Reference Manual

Name
pegasus-config — The authority for where parts of the Pegasus system exists on the filesystem. pegasus-config can
be used to find libraries such as the DAX generators.
Synopsis
pegasus-config [-h] [--help] [-V] [--version] [--noeoln]
[--per|-dump] [--perI-hash] [--python-dump] [--sh-dump]
[--bin] [--conf] [--java] [--per]] [--python]
[--python-externals] [--schema] [--classpath]
[--local-site] [--full-local]
Description

pegasus-config isused to find locations of Pegasus system components. Thetool isused internally in Pegasus and by
users who need to find paths for DAX generator libraries and schemas.

-h, --help Prints help and exits.

-V, --version Prints Pegasus version information

--perl-dump Dumps all settings in perl format as separate variables.
--perl-hash Dumps al settingsin perl format as single perl hash.

--python-dump

Dumps al settings in python format.

--sh-dump Dumps al settingsin shell format.

--bin Print the directory containing Pegasus binaries.
--conf Print the directory containing configuration files.
--java Print the directory containing the jars.

--perl Print the directory to include into your PERL5LIB.
--python Print the directory to include into your PY THONLIB.

--python-externals

Print the directory to the external Python libraries.

--schema Print the directory containing schemas.

--classpath Builds a classpath containing the Pegasus jars.

--noeoln Do not produce a end-of-line after output. Thisis useful when being called from non-
shell backticks in scripts. However, order is important for this option: If you intend
to useit, specify it first.

--local-site [d] Create a site catalog entry for site "local". Thisis only an XML snippet without root
element nor XML headers. The optional argument "d" points to the mount point to
use. If not specified, defaults to the user’s SHOME directory.

--full-local [d] Create a complete site catalog with only site "local”. The an XML snippet without
root element nor XML headers. The optional argument "d" points to the mount point
to use. If not specified, defaults to the user’s SHOME directory.

Example

To set the PY THONPATH variable in your shell for using the Python DAX API:

219

Reference Manual

Author

export PYTHONPATH=" pegasus-config --python’

To set the same path inside Python:
config = subprocess. Popen("pegasus-config --python-dunmp", stdout=subprocess. Pl PE,

shel | =True) . communi cat e() [0]
exec config

To set the PERL5LIB variable in your shell for using the Perl DAX API:

export PERL5LI B="pegasus-config --perl"

To set the same path inside Perl:

eval ~pegasus-config --perl-dunp’;
di e("Unabl e to eval pegasus-config output: $@) if $@

will set variables a number of lexically local-scoped my variables with prefix "pegasus_" and expand Perl’s search
path for this script.

Alternatively, you can fail early and collect all Pegasus-related variablesinto asingle global %pegasus variable for
convenience:

BEG N {

eval "pegasus-config --perl-hash’;
die("Unabl e to eval pegasus-config output: $@) if $@

Pegasus Team http://pegasus.isi.edu

220

http://pegasus.isi.edu

Reference Manual

Name

pegasus-create-dir — Creates work directories in Pegasus workflows.
Synopsis
pegasus-create-dir [-h][-| level][-u URL]

Description

pegasus-create-dir creates a directory for the given URL. Some of the protocols it can handle are GridFTP, SRM,
Amazon S3, HTTP, and file:// (using mkdir).

Options
-h, --help Prints a usage summary with all the available command-line options.
-l level , --loglevel level The debugging output level. Valid values are debug, info, warning, and error. Default
valueisinfo.
-uURL, --url URL Specifies the directory to create.
Example

$ pegasus-create-dir -u gsiftp://sonehost/sone/ path

Authors

Pegasus Team http://pegasus.isi.edu

221

http://pegasus.isi.edu

Reference Manual

Name

pegasus-dagman — Wrapper around * condor_dagman®*. Not to be run by user.

Description

The pegasus-dagman isapython wrapper that invokes pegasus-monitord and condor _dagman both. Thisis started
automatically by pegasus-submit-dag and ultimately condor_submit_dag. DO NOT USE DIRECTLY

Return Value

If the condor_dagman and pegasus-monitord exit successfully, pegasus-dagman exits with 0, else exits with non-
Zero.

Environment Variables

PATH The path variable is used to locate binary for condor _dagman and pegasus-monitord
See Also

pegasus-run(1) pegasus-monitord(1) pegasus-submit-dag(1)

Authors

Gaurang Mehta<gnehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

222

http://pegasus.isi.edu

Reference Manual

Name
pegasus-dax-validator — determinesif agiven DAX fileisvalid.

Synopsis
pegasus-dax-validator daxfile [verbose]

Description

The pegasus-dax-validator is a simple application that determines, if a given DAX fileis valid XML. For this, it
parses the file with as many XML validity checks that the Apache Xerces XML parser framework supports.

Options
daxfile The location of thefile containing the DAX.

verbose If any kind of second argument was specified, not limited to the string verbose, the verbose output
mode is switched on.

Return Value

If the DAX was parsed successfully, or only warning’s were issued, the exit code is 0. Any 'error or fatal error will
result in an exit code of 1.

Additionally, a summary statistics with counts of warnings, errors, and fatal errors will be displayed.

Example

Thefollowing showsthe parsing of aDAX file that uses the wrong kind of value for certain enumerations. The output
shows the errors with the respective line number and column number of the input DAX file, so that one can find and
fix them more easily. (The lines in the example were broken to fit the manpage format.)

$ pegasus-dax-validator bd.dax

ERROR in line 14, col 110: cvc-enuneration-valid: Value 'i386" is not
facet-valid with respect to enuneration '[x86, x86_64, ppc, ppc_64,
ia64, sparcv7, sparcv9, and64]'. It nust be a value fromthe
enuneration.

ERROR in line 14, col 110: cvc-attribute.3: The value 'i 386" of
attribute 'arch' on elenent 'executable' is not valid with respect to
its type, 'ArchitectureType'.

ERROR in line 14, col 110: cvc-enuneration-valid: Value 'darwin' is
not facet-valid with respect to enunmeration '[aix, sunos, |inux, macosx,
wi ndows]'. It nmust be a value fromthe enuneration.

ERROR in line 14, col 110: cvc-attribute.3: The value 'darw n' of
attribute 'os' on elenment 'executable' is not valid with respect to
its type, 'OSType'.

0 warnings, 4 errors, and O fatal errors detected.
See Also
Apache Xerces-J http://xerces.apache.org/xerces2-j/

Authors

Jens-S. Vockler <voeckl er at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

223

http://xerces.apache.org/xerces2-j/
http://pegasus.isi.edu/

Reference Manual

Name

pegasus-exitcode — Checks the stdout/stderr files of a workflow job for any indication that an error occurred in the
job. This script isintended to be invoked automatically by DAGMan as the POST script of ajob.

Synopsis

pegasus-exitcode [-h][-t n][-r rv][-n] job.out

Description

pegasus-exitcode is a utility that examines the STDOUT of a job to determine if the job failed, and renames the
STDOUT and STDERR files of ajob to preserve them in case thejob isretried.

Pegasus uses pegasus-exitcode as the DAGMan postscript for all jobs submitted via Globus GRAM. Thistool exists
as a workaround to a known problem with Globus where the exitcodes of GRAM jobs are not returned. This is a
problem because Pegasus uses the exitcode of ajob to determineif the job failed or not.

In order to get around the exitcode problem, Pegasus wraps all GRAM jobs with Kickstart, which records the exitcode
of the job in an XML invocation record, which it writesto the job’s STDOUT. The STDOUT istransferred from the
execution host back to the submit host when the job terminates. After the job terminates, DAGMan runs the job's
postscript, which Pegasus sets to be pegasus-exitcode. pegasus-exitcode looks at the invocation record generated
by kickstart to see if the job succeeded or failed. If the invocation record indicates a failure, then pegasus-exitcode
returns a non-zero result, which indicates to DAGMan that the job has failed. If the invocation record indicates that
the job succeeded, then pegasus-exitcode returns 0, which tells DAGMan that the job succeeded.

pegasus-exitcode performs several checks to determine whether ajob failed or not. These checks include:
1. IsSTDOUT empty? If it is empty, then the job failed.

2. Arethereany <st at us> tagswith anon-zero value? If there are, then thejob failed. Notethat, if thisisaclustered
job, there could be multiple <st at us> tags, one for each task. If any of them are non-zero, then the job failed.

3. Isthere at least one <st at us> tag with a zero value? There must be at least one successful invocation or the
job hasfailed.

In addition, pegasus-exitcode alows the caller to specify the exitcode returned by Condor using the --return argu-
ment. This can be passed to pegasus-exitcode in aDAGMan post script by using the SRETURN variable. If thisvalue
is non-zero, then pegasus-exitcode returns a non-zero result before performing any other checks. For GRAM jobs,
the value of $RETURN will always be O regardless of whether the job failed or not.

Also, pegasus-exitcode allows the caller to specify the number of successful tasks it should see using the --tasks
argument. If pegasus-exitcode does not see N successful tasks, where N isset by --tasks, thenit will return anon-zero
result. The default value is 1. This can be used to detect failures in clustered jobs where, for any number of reasons,
invocation records do not get generated for all the tasks in the clustered job.

In addition to checking the success/failure of ajob, pegasus-exitcode also renamesthe STDOUT and STDERR files of
thejob sothat if thejob isretried, the STDOUT and STDERR of the previousrun are not lost. It doesthis by appending
a sequence number to the end of the files. For example, if the STDOUT fileis called "job.out", then the first time the
jobisrun pegasus-exitcode will rename thefile "job.out.000". If the job isrun again, then pegasus-exitcode sees that
"job.out.000" already exists and renames the file "job.out.001". It will continue to rename the file by incrementing
the sequence number every time the job is executed.

Options

-h, --help Prints a usage summary with all the available command-line options.

-tn, --tasksn Number of tasks expected. If lessthan n tasks succeeded, then pegasus-exitcode will fail with a
non-zero return value. Thisis used in cases where we may not get a Kickstart invocation record
for some tasks. Normally Segexec will detect failed Kickstart invocations and fail accordingly.

224

Reference Manual

-rrv, --returnrv Return vaue reported by DAGMan. This can be specified in the DAG using the $RETURN
variable. If this is non-zero, then pegasus-exitcode immediately fails with a non-zero return
value itself. If it is zero, then just rotate the file and don’t check for proper kickstart output.
This option can be used in cases where kickstart cannot be used (such as pegasus-create-dir)
to enable file rotation.

-n, --no-rename Don’'t rename job.out and job.err to .out. XXX and .err.XXX. This option is used primarily for
testing.

Authors

Gideon Juve <j uve@sc. edu>

Pegasus Team http://pegasus.isi.edu

225

http://pegasus.isi.edu

Reference Manual

Name
pegasus-gridftp — Perform file and directory operations on remote GridFTP servers
Synopsis
pegasus-gridftp Is[options] [URL..]
pegasus-gridftp mkdir [options] [URL..]
pegasus-gridftp rm [options] [URL...]
Description
pegasus-gridftp isaclient for Globus GridFTP servers. It enables remote operations on files and directories via the
GridFTP protocol. This tool was created to enable more efficient remote directory creation and file cleanup tasks in
Pegasus.
Options
Global Options
-v Turn on verbose output. Verbosity can be increased by specifying multiple -v arguments.
-i FILE Read alist of URLsto operate on from FILE.
rm Options
-f If the URL does not exist, then ignore the error.
-r Recursively delete files and directories.
Is Options

-a List files beginning witha".".

-l Create along-format listing with file size, creation date, type, permissions, etc.

mkdir Options

-p Create intermediate directories as necessary.
-f Ignore error if directory already exists
Subcommands

pegasus-gridftp has several subcommands to implement different operations.

Is The Is subcommand lists the details of afile, or the contents of a directory on the remote server.
mkdir The mkdir subcommand creates one or more directories on the remote server.
rm The rm subcommand deletes one or more files and directories from the remote server.

URL Format

Configu

All URLs supplied to pegasus-gridftp should begin with "gsiftp://".
ration

pegasus-gridftp usesthe CoG JGlobus API to communicate with remote GridFTP servers. Refer to the CoG JGlobus
documentation for information about configuring the API, such as how to specify the user’s proxy, etc.

226

Reference Manual

Return Value

pegasus-gridftp returns a zero exist status if the operation is successful. A non-zero exit status is returned in case
of failure.

Author

Gideon Juve <gi deon@ si . edu>

Pegasus Team http://pegasus.isi.edu

227

http://pegasus.isi.edu

Reference Manual

Name

pegasus-invoke — invokes a command from afile

Synopsis

Description

pegasus-invoke (app | @fn) [arg | *@fn [.]]

The pegasus-invoke tool invokes a single application with as many arguments as your Unix permits (128k characters
for Linux). Arguments are come from two places, either the command-line as regular arguments, or from a special
file, which contains one argument per line.

The pegasus-invoke tool became necessary to work around the 4k argument length limit in Condor. It also permits
to use argumentsinside argument files without worry about shell, Condor or Globus escape necessities. All argument
file contents are passed asiis, one line per argument entry.

Arguments

This option increases the debug level. Currently, only debugging or no debugging is distinguished. Debug
message are generated on stdout . By default, debugging is disabled.

This option prints the help message and exits the program.

This option stops any option processing. It may only be necessary, if the application is stated on the com-
mand-line, and starts with a hyphen itself.The first argument must either be the application to run as ful-
ly-specified location (either absolute, or relative to current wd), or afile containing one argument per line.
The PATH environment variables is not used to locate an application. Subsequent arguments may either be
specified explicitely on the commandline. Any argument that startswith an at (@) sign istaken to introduce a
filename, which contains one argument per line. The textual file may contain long arguments and filenames.
However, Unices still impose limits on the maximum length of a directory hame, and the maximum length
of afile name. These lengths are not checked, because pegasus-invoke is oblivious of the application (e.g.
what argument is a filename, and what argument is a mere string resembling a filename).

Return Value

The pegasus-invoke tool returns 127, if it was unable to find the application. It returns 126, if there was a problem
parsing the file. All other exit status, including 126 and 127, come from the application.

See Also

pegasus-kickstart(1)

Example

$ echo
$ echo

"/ bin/date" > X
"-lsec" >> X

$ pegasus-invoke @

2005-11

-03T15: 07: 01- 0600

Recursion isalso possible. Please mind not to use circular inclusions. Also note how duplicating theinitial at (@) sign
will escape its meaning as inclusion symbol.

$ cat test.3

This is

test 3

$ cat test.2
/ bin/ echo

@est.3

@est.3

$ pegasus-invoke @est. 2

This is

test 3 @est.3

228

Reference Manual

Restrictions

While the arguments themsel ves may contain files with argumentsto parse, starting with an at (@) sign as before, the
maximum recursion limit is 32 levels of inclusions. It is not possible (yet) to use stdin as source of inclusion.

History
As you may have noticed, pegasus-invoke had the name invoke in previous incantations. We are slowly moving to

the new name to avoid clashes in alarger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Mike Wilde <wilde at mcs dot anl dot gov>
Jens-S. Vockler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

229

Reference Manual

Name

pegasus-keg — kanonical executable for grids

Synopsis

pegasus-keg [-aappname] [-t interva |-T interval] [- logname]
[-Pprefix] [-ofn[..]]1 [-i fn[..]] [-G s2]
[-Cl[-eenv [.]] [-pparm [.]]

Description

The kanonical executable is a stand-in for regular binariesin a DAG - but not for their arguments. It allows to trace
the shape of the execution of aDAG, and thusis an aid to debugging DAG related issues.

Key feature of pegasus-keg isthat it can copy any humber of input files, including the generator case, to any number
of output files, including the datasink case. In addition, it protocols the |Pv4 and hostname of the host it ran upon, the
current timestamp, and the run time from start til the point of logging the information, the current working directory
and some information on the system environment. pegasus-keg will also report all input files, the current output files
and any requested string and environment value.

Arguments

The-g, -i, -0 and -p argumentsallow listswith arbitrary number of arguments. These options may also occur repeatedly
on the command line. The file options may be provided with the special filename - to indicate stdout in append mode
for writing, or stdin for reading. The -a, -l , -P, -T and -t arguments should only occur a single time with a single
argument.

If pegasus-keg is called without any arguments, it will display its usage and exit with success.

-aappname This option allows pegasus-keg to display adifferent name asits applications. Thismode
of operation is useful in make-believe mode. The default is the basename of argv{Q].

-eenv [.] This option names any number of environment variables, whose value should be reported
as part of the data dump. By default, no environment variables are reported.

-i infile[..] The pegasus-keg binary can work on any number of input files. For each outpuit file,
every input file will be opened, and its content copied to the output file. Textual input
files are assumed. Each input line is indented by two spaces. The input file content is
bracketed between an start and end section, see below. By default, pegasus-keg operates
in generator mode.

-l logfile The logfileisthe name of afileto append atomically the self-info, see below. The atomic
write guarantees that the multi-line information will not interleave with other processes
that simultaneously write to the samefile. The default is not to use any log file.

-o outfile[..] The pegasus-keg can work on any number of output files. For each output file, every
input file will be opened, and its content copied to the output file. Textual input files are
assumed. Each input line is indented by two spaces. The input file content is bracketed
between an start and end section, see 2nd example. After al input files are copied, the data
dump from this instance of pegasus-keg is appended to the output file. Without output
files, pegasus-keg operates in data sink mode.

-G size If you want pegasus-keg to generate alot of output, the generator option will do that for
you. Just specify how much, in bytes, you want. This option is off by default.

-C This option causes pegasus-keg to list all environment variables that start with the prefix
_CONDOR The option is useful, if .B pegasus-keg is run as (part of) a Condor job. This
option is off by default.

-p string[..] Any number of parameters can be reported, without being specific on their content. Ef-
fectively, these strings are copied straight from the command line. By default, no extra
arguments are shown.

230

Reference Manual

-P prefix Each line from every input file is indented with a prefix string to visually emphasize the
provenance of an input files through multiple instances of pegasus-keg. By default, two
spaces are used as prefix string.

-t interval Theinterval isan amount of sleep time that the pegasus-keg executableis to sleep. This
can be used to emulate light work without straining the pool resources. If used together
with the -T spin option, the sleep interval comes before the spin interval. The default is
no sleep time.

-T interval Theinterval isan amount of busy spintimethat the pegasus-keg executable isto simulate
intense computation. The simulation is done by random juliaset calculations. This option
can be used to emulate an intense work to strain pool resources. |f used together with the -t
sleep option, the sleep interval comes before the spin interval . The default isno spintime.

Return Value

Execution as planned will return 0. The failure to open an input file will return 1, the failure to open an output file,
including the log file, will return with exit code 2.

Example

The example shows the bracketing of an input file, and the copy produced on the output file. For illustration purposes,
the output file is connected to stdout :

$ date > xx

$ pegasus-keg -i xx -pabc -0 -
- start xx ----
Thu May 5 10:55:45 PDT 2011
- final xx ----

Ti mest anp Today: 20110505T105552.910-07: 00 (1304618152. 910; 0. 000)

Appl i cationnane: pegasus-keg [3661M @ 128.9.xxX.XXX (XXX.i si.edu)

Current Workdir: /opt/pegasus/default/bin/pegasus-keg

Systemenvi ronm : x86_64-Linux 2.6.18-238.9.1.el5

Processor Info.: 4 x Intel (R) Core(TM i5 CPU 750 @2.67GHz @ 2660. 068
Load Averages : 0.298 0.135 0.104

Menory Usage MB: 11970 total, 8089 free, 0 shared, 695 buffered

Swap Usage MB: 12299 total, 12299 free

Fil esystem Info: / ext 3 62GB total, 20@B avai l
FilesystemInfo: /Ifs/balefire ext4 1694CGB total, 1485@B avail
Fi |l esystem I nfo: /boot ext 2 493MB total, 447MB avai |

Qut put Fil ename: -
I nput Fil enanes: xx
Ot her Argunents: a b c

Restrictions
Theinput file must be textua files. The behaviour with binary filesis unspecified.

The host address is determined from the primary interface. If there is no active interface besides loopback, the host
address will default to 0.0.0.0. If the host address is within avirtual private network address range, only (VPN) will
be displayed as hostname, and no reverse address lookup will be attempted.

The processor info lineis only available on Linux systems. The line will be missing on other operating systems. Its
information is assuming symmetrical multi processing, reflecting the CPU name and speed of the last CPU available
in /dev/cpuinfo .

Thereisalimit of 4 * page size to the output buffer of things that .B pegasus-keg can report in its self-info dump.
Thereis no such restriction on the input to output file copy.

Authors

Jens-S. Vockler <voeckler at isi dot edu>
Mike Wilde

Yong Zhao

231

Reference Manual

Pegasus - http://pegasus.isi.edu/

232

http://pegasus.isi.edu/

Reference Manual

Name

Synop

pegasus-kickstart — run an executable in a more universal environment.
Sis
pegasus-kickstart [-n tr] [-N dv] [-H] [-R site] [-W | -w dir]
[-L Ibl -T iso] [-sp| @fn] [-Sp | @fn] [-i fn]

[-ofn] [-efn] [-X] [-| fns7] [-F] (-I fn | app [appfiags])
pegasus-kickstart -V

Description

Options

The pegasus-kickstart executableisalight wrapper program which connects the stdin, stdout and stderr file handles
for grid jobs on the remote site, and reports back the remote application termination condition.

Sitting in between the remote scheduler and the executable, it is possible for pegasus-kickstart to gather additional
information about the executable run-time behavior and resource usage, including the exit status of jobs. Thisinfor-
mation is important for the Pegasus invocation tracking as well as to Condor DAGMan's awareness of Globus job
failures.

pegasus-kickstart allows the optional execution of jobs before and after the main application job that run in chained
execution with the main application job. See section SUBJOBS for details about this feature.

All jobswith relative path specifications to the application are part of search relative to the current working directory
(yes, thisisunsafe), and by prepending each component from the PATH environment variable. Thefirst match isused.
Jobs that use absolute pathnames, starting in a slash, are exempt. Using an absolute path to your executable is the
safe and recommended option.

pegasus-kickstart rewrites the command line of any job (pre, post and main) with variable substitutions from Unix
environment variables. See section VARIABLE REWRITING below for details on this feature.

-n tr In order to associate the minimal performance information of the job with the invocation records,
the jobs needs to carry which transformation was responsible for producing it. The format is the
textual notation for fully-qualified definition names, like namespace::name:version, with only the
name portion being mandatory.

Thereis no default. If no valueis given, "null” will be reported.

-N dv The jobs may carry which instantiation of a transformation was responsible for producing it. The
format is the textual notation for fully-qualified definition names, like namespace::name:version,
with only the name portion being mandatory.

Thereis no default. If no valueisgiven, "null" will be reported.

-H This option avoids pegasus-kickstart writing the XML preamble (entity), if you need to combine
multiple pegasus-kickstart records into one document.

Additionaly, if specified, the environment and the resource usage segments will not be written,
assuming that ain a concatenated record version, the initial run will have captured those settings.

-R site In order to provide the greater picture, pegasus-kickstart can reflect the site handle (resource iden-
tifier) into its output.

Thereis no default. If no valueis given, the attribute will not be generated.
-L Ibl, -Tiso These optional arguments denote the workflow label (from DAX) and the workflow’s last modifi-

cation time (from DAX). The label Ibl can be any sensible string of up to 32 characters, but should
use C identifier characters. The timestamp iso must be an 1SO 8601 compliant time-stamp.

233

Reference Manual

_S|:p

-sfn

-i fn

-ofn

-efn

If stat information on any file is required before any jobs were started, logical to physical file map-
pingsto stat can be passed using the -S option. The LFN and PFN are concatenated by an equals (=)
sign. TheLFN isoptional: If no equalssign isfound, the argument istaken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome command line length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of afileto stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value initial. The optional Ifn
attribute is set to the LFN stat’ ed. The filenameis part of the statinfo record inside.

Thereisno default.

If stat information on any fileisrequired after all jobshavefinished, logical to physical file mappings
to stat can be passed using the -s option. The LFN and PFN are concatenated by an equals (=) sign.
The LFN is optiona: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome commandline length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textua file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of afileto stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value final. The optional Ifn
attribute is set to the LFN stat’ ed. The filenameis part of the statinfo record inside.

Thereisno default.

This option allows pegasus-kickstart to re-connect the stdin of the application that it starts. Use a
single hyphen to share stdin with the one provided to pegasus-kickstart.

The default is to connect stdin to /dev/null.

This option allows pegasus-kickstart to re-connect the stdout of the application that it starts. The
mode is used whenever an application produces meaningful results on its stdout that need to be
tracked by Pegasus. The real stdout of Globus jobs is staged via GASS (GT2) or RFT (GT4). The
real stdout is used to propagate the invocation record back to the submit site. Use the single hyphen
to share the application’s stdout with the one that is provided to pegasus-kickstart. In that case,
the output from pegasus-kickstart will interleave with application output. For this reason, such a
mode is not recommended.

In order to provide an un-captured stdout as part of theresults, it isthe default to connect the stdout of
the application to atemporary file. The content of this temporary file will be transferred as payload
datainthe pegasus-kickstart results. The content sizeis subject to payload limits, seethe -B option.
If the content grows large, only an initial portion will become part of the payload. If the temporary
file grows too large, it may flood the worker node's temporary space. The temporary file will be
deleted after pegasus-kickstart finishes.

If thefilename is prefixed with an exclamation point, thefile will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default isto connect stdout to atemporary file.

This option allows pegasus-kickstart to re-connect the stderr of the application that it starts. This
option is used whenever an application produces meaningful results on stderr that needs tracking
by Pegasus. The real stderr of Globus jobs is staged via GASS (GT2) or RFT (GT4). It isused to
propagate abnormal behavior from both, pegasus-kickstart and the application that it starts, though
its main use isto propagate application dependent data and heartbeats. Use a single hyphen to share
stderr with the stderr that is provided to pegasus-kickstart. This is the backward compatible be-
havior.

234

Reference Manual

-1 logfn

-w dir

-W dir

-X

-Bsz

-l fn

In order to provide an un-captured stderr as part of the results, by default the stderr of the application
will be connected to atemporary file. Its content istransferred as payload data in the pegasus-kick-
start results. If too large, only theaninitial portion will become part of the payload. If the temporary
file grows too large, it may flood the worker node's temporary space. The temporary file will be
deleted after pegasus-kickstart finishes.

If thefilenameis prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stderr to atemporary file.

alows to append the performance data to the specified file. Thus, multiple XML documents may
end up in the samefile, including their XML preamble. stdout is normally used to stream back the
results. Usually, this is a GASS-staged stream. Use a single hyphen to generate the output on the
stdout that was provided to pegasus-kickstart, the default behavior.

Default is to append the invocation record onto the provided stdout.

permits the explicit setting of a new working directory once pegasus-kickstart is started. This is
useful in a remote scheduling environment, when the chosen working directory is not visible on
the job submitting host. If the directory does not exist, pegasus-kickstart will fail. This option is
mutually exclusive with the -W dir option.

Default is to use the working directory that the application was started in. Thisis usually set up by
aremote scheduling environment.

permitsthe explicit creation and setting of anew working directory once pegasus-kickstart is started.
Thisisuseful in aremote scheduling environment, when the chosen working directory isnot visible
on the job submitting host. If the directory does not exist, pegasus-kickstart will attempt to create
it, and then change into it. Both, creation and directory change may still fail. This option is mutually
exclusive with the -w dir option.

Default is to use the working directory that the application was started in. Thisis usually set up by
aremote scheduling environment.

make an application executable, no matter what. It is awork-around code for aweskness of globus-
url-copy which does not copy the permissions of the sourceto the destination. Thus, if an executable
is staged-in using GridFTP, it will have the wrong permissions. Specifying the -X flag will attempt
to change the mode to include the necessary x (and r) bits to make the application executable.

Default isnot to change the mode of the application. Note that thisfeature can be misused by hackers,
asit is attempted to call chmod on whatever path is specified.

varies the size of the debug output data section. If the file descriptors stdout and stderr remain un-
tracked, pegasus-kickstart tracksthat output in temporary files. Thefirst few pagesfrom this output
iscopied into adatasection in the output. In order to resize the length of the output within reasonable
boundaries, this option permits a changes. Data beyond the size will not be copied, i.e. is truncated.

Warning: This is not a cheap way to obtain the stdio file handle data. Please use tracked files for
that. Due to output buffer pre-allocation, using arbitrary large arguments may result in failures of
pegasus-kickstart itself to allocate the necessary memory.

The default maximum size of the data section is 262144 byte.

Thisflag will issue an explicit fsync() call on kickstart’s own stdout file. Typically you won't need
this flag. Albeit, certain shared file system situations may improve when adding a flush after the
written invocation record.

The default isto just use kickstart’s NFS aleviation strategy by locking and unlocking stdout.

Inthismode, the application name and any argumentsto the application are specified inside of filefn.
The file contains one argument per line. Escaping from Globus, Condor and shell meta charactersis

235

Reference Manual

not required. Thismode permitsto use the maximum possible command linelength of the underlying
operating system, e.g. 128k for Linux. Using the -1 mode stops any further command line processing
of pegasus-kickstart command lines.

Default is to use the app flags mode, where the application is specified explicitly on the com-
mand-line.

-f This flag causes kickstart to output full information, including the environment and resource limits
under which the job ran, and any useful auxilliary statcalls. If the job fails, then -f isimplied.

-t This flag causes kickstart to skip tracing the child process and omit the <proc> element. This flag
only exists when kickstart is compiled for Linux.

-q This flag causes kickstart to omit the <data> part of the <statcall> records when the job exits suc-
cessfully. Thisis designed to reduce the size of the output logs for large workflows.

app The path to the application has to be completely specified. The application is a mandatory option.

appflags Application may or may not have additional flags.

Return Value

pegasus-kickstart will return the return value of the main job. In addition, the error code 127 signals that the call
to exec failed, and 126 that reconnecting the stdio failed. A job failing with the same exit codes is indistinguishable
from pegasus-kickstart failures.

See Also
pegasus-plan(1), condor_submit_dag(1), condor_submit(1), getrusage(3c).
http://pegasus.isi.edu/wms/docs/schemas/iv-2.2/iv-2.2.html

http://pegasus.isi.edu/documentation

Subjobs

Subjobs are a new feature and may have afew wrinkles left.

In order to alow specific setups and assertion checks for compute nodes, pegasus-kickstart allows the optional
execution of aprejob. Thisprejob isanything that the remote compute node is capabl e of executing. For modern Unix
systems, thisincludes#! scriptsinterpreter invocations, as long as the x bits on the executed file are set. The main job
isrunif and only if the prejob returned regularly with an exit code of zero.

With similar restrictions, the optional execution of a postjob is chained to the success of the main job. The postjob
will be run, if the main job terminated normally with an exit code of zero.

In addition, auser may specify a setup and acleanup job. The setup job sets up the remote execution environment. The
cleanup job may tear down and clean-up after any job ran. Failure to run the setup job has no impact on subsequent
jobs. The cleanup is ajob that will even be attempted to run for all failed jobs. No job information is passed. If you
need to invoke multiple setup or clean-up jobs, bundle them into a script, and invoke the clean-up script. Failure of the
clean-up job is not meant to affect the progress of the remote workflow (DAGMan). This may change in the future.

The setup-, pre-, and post- and cleanup-job run on the same compute node as the main job to execute. However, since
they run in separate processes as children of pegasus-kickstart, they are unable to influence each others nor the main
jobs environment settings.

All jobs and their arguments are subject to variable substitutions as explained in the next section.

To specify the prejob, insert the the application invocation and any optional commandline argument into the environ-
ment variable GRIDSTART_PREJOB. If you are invoking from a shell, you might want to use single quotes to protect
against the shell. If you are invoking from Globus, you can append the RSL string feature. From Condor, you can use
Condor’ s notion of environment settings. In Pegasus use the profile command to set generic scripts that will work on

236

http://pegasus.isi.edu/wms/docs/schemas/iv-2.2/iv-2.2.html
http://pegasus.isi.edu/documentation

Reference Manual

multiple sites, or the transformation catalog to set environment variables in a pool-specific fashion. Please remember
that the execution of the main job is chained to the success of the prejob.

To set up the postjob, use the environment variable GRIDSTART _POSTJOB to point to an application with potential
arguments to execute. The same restrictions as for the prejob apply. Please note that the execution of the post job is
chained to the main job.

To provide the independent setup job, use the environment variable GRIDSTART_SETUP. The exit code of the setup
job has no influence on the remaining chain of jobs. To provide an independent cleanup job, use the environment
variable GRIDSTART_CLEANUP to point to an application with possible arguments to execute. The samerestrictions
asfor prejob and postjob apply. The cleanup is run regardless of the exit status of any other jobs.

Variable Rewriting
Variable substitution is a new feature and may have afew wrinkles |ft.

The variable substitution employs simple rules from the Bourne shell syntax. Simple quoting rules for backslashed
characters, double quotes and single quotes are obeyed. Thus, in order to passadollar sign to as argument to your job,
it must be escaped with a backslash from the variable rewriting.

For pre- and postjobs, double quotes allow the preservation of whitespace and theinsertion of special characterslike\a
(alarm), \b (backspace), \n (newline), \r (carriage return), \t (horizontal tab), and \v (vertical tab). Octal modes are not
allowed. Variables are still substituted in double quotes. Single quotes inside double quotes have no special meaning.

Inside single quotes, no variables are expanded. The backslash only escapes a single quote or backslash.
Backticks are not supported.
Variables are only substituted once. Y ou cannot have variablesin variables. If you need thisfeature, please request it.

Outside quotes, arguments from the pre- and postjob are split on linear whitespace. The backslash makes the next
character verbatim.

Variablesthat are rewritten must start with adollar sign either outside quotes or inside double quotes. The dollar may
befollowed by avalid identifier. A valid identifier startswith aletter or the underscore. A valid identifier may contain
further letters, digits or underscores. The identifier is case sensitive.

The aternative use is to enclose the identifier inside curly braces. In this case, aimost any character is allowed for
the identifier, including whitespace. This is the only curly brace expansion. No other Bourne magic involving curly
bracesis supported.

One of the advantages of variable substitution is, for example, the ability to specify the application as SHOME/bin/
appl in the transformation catalog, and thus to gridstart. Aslong as your home directory on any compute node has a
bin directory that contains the application, the transformation catalog does not need to care about the true location of
the application path on each pool. Even better, an administrator may decide to move your home directory to adifferent
place. Aslong as the compute node is set up correctly, you don’t have to adjust any Pegasus data.

Mind that variable substitution is an expert feature, as some degree of tricky quoting isrequired to protect substitutable
variables and quotes from Globus, Condor and Pegasus in that order. Note that Condor uses the dollar sign for its
own variables.

The variable substitution assumptions for the main job differ dightly from the prejob and postjob for technical reasons.
The pre- and postjob command lines are passed as one string. However, the main jobs command lineis already split
into pieces by the time it reaches pegasus-kickstart. Thus, any whitespace on the main job’s command line must be
preserved, and further argument splitting avoided.

It is highly recommended to experiment on the Unix command line with the echo and env applications to obtain a
feeling for the different quoting mechanisms needed to achieve variable substitution.

Example

You can run the pegasus-kickstart executable locally to verify that it is functioning well. In the initial phase, the
format of the performance data may be slightly adjusted.

237

Reference Manual

$ env CRI DSTART_PREJOB='/bi n/ usl eep 250000" \\

GRI DSTART_POSTJOB='/ bi n/date -u' \\

pegasus- ki ckstart -1 xx \\$PEGASUS_HOWE/ bi n/ keg -T1 -o-
$ cat xx
<?xm version="1.0" encodi ng="1SO 8859-1"?>

</statcall >
</invocation>

Please take note a few things in the above example:

The output from the postjob is appended to the output of the main job on stdout. The output could potentially be
separated into different data sections through different temporary files. If you truly need the separation, request that
feature.

The log fileis reported with a size of zero, because the log file did indeed barely exist at the time the data structure
was (re-) initialized. With regular GASS output, it will report the status of the socket file descriptor, though.

Thefiledescriptorsreported for thetemporary filesare from the perspective of pegasus-kickstart. Sincethetemporary
files have the close-on-exec flag set, pegasus-kickstarts file descriptors are invisible to the job processes. Still, the
'stdio of the job processes are connected to the temporary files.

Even this output already appears large. The output may aready be too large to guarantee that the append operation
on networked pipes (GASS, NFS) are atomically written.

The current format of the performance datais as follows:

Output Format

Refer to http://pegasus.isi.edu/wms/docs/schemag/iv-2.2/iv-2.2.html for an up-to-date description of elements and
their attributes. Check with http://pegasus.isi.edu/documentation for invocation schemaswith ahigher version number.

Restrictions

Files

Thereis no version for the Condor standard universe. It is simply not possible within the constraints of Condor.
Dueto its very nature, pegasus-kickstart will also prove difficult to port outside the Unix environment.

Any of the pre-, main-, cleanup and postjob are unable to influence one another’ s visible environment.

Do not use a Pegasus transformation with just the name null and no namespace nor version.

First Condor, and then Unix, place a limit on the length of the command line. The additional space required for the
gridstart invocation may silently overflow the maximum space, and cause applicationsto fail. If you suspect to work
with many argument, try an argument-file based approach.

A job failing with exit code 126 or 127 is indistinguishable from pegasus-kickstart failing with the same exit codes.
Sometimes, careful examination of the returned data can help.

If thelogfileiscollected into ashared file, dueto the size of the data, simultaneous appends on ashared filesystem from
different machines may still mangle data. Currently, file locking is not even attempted, although all data is written
atomically from the perspective of pegasus-kickstart.

The upper limit of characters of command line charactersis currently not checked by pegasus-kickstart. Thus, some
variable substitutions could potentially result in acommand line that is larger than permissible.

If the output or error file is opened in append mode, but the application decides to truncate its output file, asin the
above example by opening /dev/fd/1 inside keg, the resulting file will still be truncated. This is correct behavior, but
sometimes not obvious.

/usr/shar e/pegasus/schema/ is the suggested location of the latest XML schema describing the data on the
iv-2.2.xsd submit host.

238

http://pegasus.isi.edu/wms/docs/schemas/iv-2.2/iv-2.2.html
http://pegasus.isi.edu/documentation

Reference Manual

Environment Variables

GRIDSTART_TMP

TMP
TEMP

TMPDIR
GRIDSTART_SETUP
GRIDSTART_PREJOB
GRIDSTART_POSTJOB

GRIDSTART_CLEANUP

History

isthe hightest priority to look for atemporary directory, if specified. Thisrather special
variable was introduced to overcome some peculiarities with the FNAL cluster.

isthe next hightest priority to look for atemporary directory, if specified.
isthe next priority for an environment variable denoting atemporary files directory.

isnext in the checklist. If none of these are found, either the stdio definition P_tmpdir
istaken, or the fixed string /tmp.

contains a string that starts ajob to be executed unconditionally before any other jobs,
see above for adetailed description.

contains a string that starts ajob to be executed before the main job, see above for a
detailed description.

contains a string that starts ajob to be executed conditionally after the main job, see
above for a detailed description.

containsastring that startsajob to be executed unconditionally after any of the previous
jobs, see above for a detailed description.

Asyou may have noticed, pegasus-kickstart had the namekickstart in previousincantations. We are slowly moving
to the new name to avoid clashesin alarger OSinstallation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors

Michael Milligan<nbmi I'1ig at uchi cago dot edu>

MikeWilde<wi | de at nts dot anl dot gov>

Yong Zhao <yongzh at cs dot uchi cago dot edu>

Jens-S. Vockler <voeckl er at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

239

http://pegasus.isi.edu/

Reference Manual

Name

pegasus-monitord — tracks a workflow progress, mining information

Synopsis

pegasus-monitord [--help|-help] [--verbose]-v]

-adjust|-ai] [--foreground|-N]
-no-daemon|-n] [--job]-j jobstate.log fil€]
-logl- logdfile] [--conf propertiesfile]
-no-recursive] [--no-database | --no-events)
-replay|-r] [--no-notifications]
-notifications-max max_notifications]
-notifications-timeout timeout]

-sim|-s millidleep] [--db-stats]

-skip-stdout] [--for cgl-f]

-socket] [--output-dir | -0 dir]

--dest|-d PATH or URL] [--encoding]-e bp | bson]
DAGMan output file

[
[
[
[
[
[
[
[
[
[
[

Description

This program follows a workflow, parsing the output of DAGMAN’s dagman.out file. In addition to generating the
jobstate.log file, pegasus-monitor d can also be used mineinformation from theworkflow dag fileand jobs' submit and
output files, and either populate a database or write a NetLogger eventsfile with that information. pegasus-monitord
can also perform notifications when tracking a workflow’ s progressin real-time.

Options
-h, --help
-v, --verbose
-ai, --adjusti

-N, --foreground

-n, --no-daemon

-j jobstate.log file, --job
jobstate.log file

--log logfile, --log-file logfile

Prints a usage summary with all the available command-line options.

Sets the log level for pegasus-monitord. If omitted, the default level will be
set to WARNING. When this option is given, thelog level is changed to INFO.
If this option is repeated, the log level will be changed to DEBUG.

Thelog level in pegasus-monitord can also be adjusted interactively, by send-
ing the USR1 and USR2 signals to the process, respectively for incrementing
and decrementing the log level.

For adjusting time zone differences by i seconds, default is 0.
Do not daemonize pegasus-monitord, go through the motions asif (Condor).

Do not daemonize pegasus-monitord, keep it in the foreground (for debug-
ging).

Alternative location for the jobstatelog file. The default is to write a
jobstate.log in the workflow directory. An absolute file name should only be
used if the workflow does not have any sub-workflows, as each sub-workflow
will generate its own jobstate.log file. If an aternative, non-absolute, filename
is given with this option, pegasus-monitord will create onefile in each work-
flow (and sub-workflow) directory with the filename provided by the user with
this option. If an absolute filename is provided and sub-workflows are found,
awarning message will be printed and pegasus-monitord will not track any
sub-workflows.

Specifies an alternative logfile to use instead of the monitord.log file in the
main workflow directory. Differently from the jobstate.log file above, pega-
sus-monitord only generates one logfile per execution (and not one per work-
flow and sub-workflow it tracks).

240

Reference Manual

--conf properties file

--no-recursive
--nodatabase, --no-database,

no-events

-r, --replay

--no-notifications

--natifications-max
max_hotifications

--notifications-timeout timeout

-smillisleep , --sim millisleep

--db-stats

--skip-stdout

-f, --force

--socket

is an alternative file containing propertiesin the key=value format, and allows
usersto override values read from the braindump.txt file. This option has prece-
dence over the properties file specified in the braindump.txt file. Please note
that these properties will apply not only to the main workflow, but also to all
sub-workflows found.

This options disables pegasus-monitord to automatically follow any sub-
workflows that are found.

Turns off generating events (when this option is given, pegasus-monitord will
only generate the jobstate.log file). The default isto automatically log informa-
tion to a SQL.ite database (see the --dest option below for more details). This
option overrides any parameter given by the --dest option.

This option is used to replay the output of an aready finished workflow. It
should only be used after the workflow isfinished (not necessarily successful-
ly). If ajobstatelog file is found, it will be rotated. However, when using a
database, al previous references to that workflow (and al its sub-workflows)
will be erased from it. When outputing to a bp file, the file will be deleted.
When running in replay mode, pegasus-monitord will always run with the --
no-daemon option, and any errorswill be output directly to the terminal. Also,
pegasus-monitord will not process any notifications while in replay mode.

This options disables notifications completely, making pegasus-monitord ig-
nore all the .natify files for all workflowsit tracks.

This option sets the maximum number of concurrent notifications that pega-
sus-monitord will start. When the max_notifications limit is reached, pega-
sus-monitord will queue notificationsand wait for apending notification script
to finish before starting anew one. If max_notificationsisset to 0, notifications
will be disabled.

Normally, pegasus-monitord will start a notification script and wait indefi-
nitely for it to finish. This option allows usersto set up a maximum timeout that
pegasus-monitord will wait for a notification script to finish before terminat-
ing it. If notification scripts do not finish in areasonable amount of time, it can
cause other notification scripts to be queued due to the maximum number of
concurrent scripts allowed by pegasus-monitord. Additionaly, until all noti-
fication scripts finish, pegasus-monitord will not terminate.

This option simulates delays between reads, by sleeping millisleep millisec-
onds. This option is mainly used by developers.

This option causes the database module to collect and print database statistics
at the end of the execution. It has no effect if the --no-database optionisgiven.

This option causes pegasus-monitord not to populate jobs' stdout and stderr
into the BP file or the Stampede database. It should be used to avoid increasing
the database size substantially in cases where jobs are very verbose in their
output.

This option causes pegasus-monitord to skip checking for another instance of
itself aready running on the same workflow directory. The default behavior
prevents two or more pegasus-monitord instances from starting and running
simultaneously (which would cause the bp file and database to be left in an un-
stable state). This option should noly be used when the user knows the previous
instance of pegasus-monitord isNOT running anymore.

This option causes pegasus-monitord to start a socket interface that can
be used for advanced debugging. The port number for connecting to pega-
sus-monitord can be found in the monitord.sock file in the workflow directory
(the file is deleted when pegasus-monitord finishes). If not already started,

241

Reference Manual

-odir, --ouput-dir dir

-d URL params, --dest URL
params

-eencoding , --encoding encoding

DAGMan_output_file

Return Value

the socket interface is also created when pegasus-monitord receives a USRL
signal.

When this option is given, pegasus-monitord will create al its output filesin
thedirectory specified by dir. Thisoption isuseful for allowing auser to debug
aworkflow in adirectory the user does not have write permissions. In this case,
all files generated by pegasus-monitord will have the workflow wf_uuid as
a prefix so that files from multiple sub-workflows can be placed in the same
directory. This option is mainly used by pegasus-analyzer. It is important to
note that the location for the output BP file or database is not changed by this
option and should be set via the --dest option.

This option allows users to specify the destination for the log events generated
by pegasus-monitord. If this option is omitted, pegasus-monitord will cre-
ate a SQL ite database in the workflow’s run directory with the same name as
the workflow, but with a .stampede.db prefix. For an empty scheme, params
are afile path with - meaning standard output. For a x-tcp scheme, params are
TCP_host[: port=14380]. For a database scheme, params are a SQLAIchemy
engine URL with a database connection string that can be used to specify dif-
ferent database engines. Please see the examples section below for more infor-
mation on how to use this option. Note that when using a database engine other
than sglite, the necessary Python database drivers will need to be installed.

This option specifies how to encode log events. The two available possibilities
are bp and bson. If this option is not specified, events will be generated in the
bp format.

The DAGMan_output_file is the only requires command-line argument in pe-
gasus-monitord and must have the .dag.dagman.out extension.

If the plan could be constructed, pegasus-monitor d returnswith an exit code of 0. However, in case of error, anon-zero
exit code indicates problems. In that case, the logfile should contain additional information about the error condition.

Environment Variables

pegasus-monitord does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus bin directory.

Examples

Usually, pegasus-monitord is invoked automatically by pegasus-run and tracks the workflow progressin real-time,
producing the jobstate.log file and a corresponding SQL ite database. When a workflow fails, and is re-submitted
with a rescue DAG, pegasus-monitord will automatically pick up from where it left previously and continue the

jobstate.log file and the database.

If users need to create the jobstate.log file after aworkflow is already finished, the --replay | -r option should be used
when running pegasus-monitord manually. For example:

$ pegasus_nonitord -r di anond- 0. dag. dagman. out

will launch pegasus-monitord in replay mode. In this case, if ajobstate.log file already exists, it will be rotated and
anew filewill be created. If adiamond-0.stampede.db SQL ite database already exists, pegasus-monitord will purge
all references to the workflow id specified in the braindump.txt file, including all sub-workflows associated with that

workflow id.

$ pegasus_nonitord -r --no-database di anond- 0. dag. dagman. out

will do the same thing, but without generating any log events.

$ pegasus_nonitord -r --dest “pwd /di anond-0. bp di anond-0. dag. dagman. out

242

Reference Manual

will create the file diamond-0.bp in the current directory, containing NetLogger events with all the workflow data.
Thisisin addition to the jobstate.log file.

For using a database, users should provide a database connection string in the format of:

di al ect://usernane: passwor d@ost : port/ dat abase

Where dialect is the name of the underlying driver (mysql, sqlite, oracle, postgres) and database is the name of the
database running on the server at the host computer.

If users want to use a different SQL.ite database, pegasus-monitord requires them to specify the absolute path of the
alternate file. For example:

$ pegasus_nonitord -r --dest sqlite:////hone/user/di anond_dat abase. db di anond- 0. dag. dagnman. out

Here are docs with details for al of the supported drivers: http://www.sglalchemy.org/docs/O5/reference/di-
aects/index.html

Additional per-database options that work into the connection strings are outlined there.

It is important to note that one will need to have the appropriate db interface library installed. Which is to say,
SQLAIchemy isawrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQL Alchemy and the SQL ite Python driver.

As afinal note, it isimportant to mention that unlike when using SQLite databases, using SQL Alchemy with other
database servers, e.g. MySQL or Postgres, the target database needs to exist. So, if a user wanted to connect to:

nysql : / / pegasus- user: super secr et @ ocal host : | ocal port/di anond
it would need to first connect to the server at localhost and issue the appropriate create database command before

running pegasus-monitord as SQL Alchemy will take care of creating the tables and indexes if they do not already
exist.

See Also

pegasus-run(1)

Authors

Gaurang Mehta<gnehta at isi dot edu>
Fabio Silva<f abi o at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Jens-S. Vockler <voeckl er at isi dot edu>

Pegasus Team http://pegasus.isi.edu

243

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://pegasus.isi.edu

Reference Manual

Name

Synop

Descrip

Options

pegasus-mpi-cluster — atool for running computational workflows expressed as DAGs (Directed Acyclic Graphs)
on computational clusters using MPI.

Sis
pegasus-mpi-cluster [options] workflow.dag
tion

pegasus-mpi-cluster isatool used to run HTC (High Throughput Computing) scientific workflows on systems de-
signed for HPC (High Performance Computing). Many HPC systems have custom architecturesthat are optimized for
tightly-coupled, parallel applications. These systems commonly have exotic, low-latency networks that are designed
for passing short messages very quickly between compute nodes. Many of these networks are so highly optimized
that the compute nodes do not even support a TCP/IP stack. This makes it impossible to run HTC applications using
software that was designed for commodity clusters, such as Condor.

pegasus-mpi-cluster was developed to enable loosely-coupled HTC applications such as scientific workflows to
take advantage of HPC systems. In order to get around the network issues outlined above, pegasus-mpi-cluster uses
MPI (Message Passing Interface), a commonly used API for writing SPMD (Single Process, Multiple Data) parallel
applications. Most HPC systems have an MPI implementation that works on whatever exotic network architecture
the system uses.

An pegasus-mpi-cluster job consists of a single master process (this processis rank 0 in MPI parlance) and several
worker processes. The master process manages the workflow and assigns workflow tasks to workers for execution.
The workers execute the tasks and return the results to the master. Any output written to stdout or stderr by the tasks
is captured (see TASK STDIO).

pegasus-mpi-cluster applications are expressed as DAGs (Directed Acyclic Graphs) (see DAG FILES). Each node
inthe graph represents atask, and the edges represent dependencies between the tasks that constrain the order in which
the tasks are executed. Each task is a program and a set of parameters that need to be run (i.e. a command and some
optional arguments). The dependenciestypically represent dataflow dependenciesin the application, where the output
files produced by one task are needed as inputs for another.

If an error occurs while executing a DAG that causes the workflow to stop, it can be restarted using a rescue file,
which records the progress of the workflow (see RESCUE FILES). This enables pegasus-mpi-cluster to pick up
running the workflow where it stopped.

pegasus-mpi-cluster was designed to work either as a standalone tool or as a complement to the Pegasus Workflow
Managment System (WMS). For more information about using PMC with Pegasus see the section on PMC AND
PEGASUS.

pegasus-mpi-cluster alows applications expressed asa DAG to be executed in parallel on alarge number of compute
nodes. It is designed to be simple, lightweight and robust.

-h, --help Print help message
-V, --version Print version information
-v, --verbose Increase logging verbosity. Adding multiple -v increases the level more. The

default log level isINFO. (see LOGGING)

-q, --quiet Decrease logging verbosity. Adding multiple -q decreases the level more. The
default log level isINFO. (see LOGGING)

-s, --skip-rescue Ignoretherescuefilefor workflow.dagif it exists. Note that pegasus-mpi-clus-
ter will still creste a new rescue file for the current run. The default behavior
isto usethe rescuefile if oneisfound. (see RESCUE FILES)

-0 path, --stdout path Path to file for task stdout. (see TASK STDIO and --per-task-stdio)

244

Reference Manual

-epath, --stderr path

-m M, --max-failuresM

tT, --triesT

-n, --nolock

-r , --rescue path

--host-script path

--host-memory size

--host-cpus cpus

--strict-limits

--max-wall-time minutes

--per-task-stdio

--jobstate-log

Path to file for task stderr. (see TASK STDIO and --per-task-stdio)

Stop submitting new tasks after M tasks have failed. Once M has been reached,
pegasus-mpi-cluster will finish running any tasks that have been started, but
will not start any more tasks. This option is used to prevent pegasus-mpi-clus-
ter from continuing to run aworkflow that is suffering from a systematic error,
such asamissing binary or aninvalid path. The default for M is 0, which means
unlimited failures are allowed.

Attempt to run each task T times before marking the task as failed. Note that
the T tries do not count as failures for the purposes of the -m option. A task is
only considered failed if it istried T times and all T attempts result in a non-
zero exitcode. The value of T must be at least 1. The default is 1.

Do not lock DAGFILE. By default, pegasus-mpi-cluster will attempt to ac-
quire an exclusive lock on DAGFILE to prevent multiple MPI jobs from run-
ning the same DAG at the same time. If this option is specified, then the lock
will not be acquired.

Path to rescue log. If the file exists, and -sis not specified, then the log will be
used to recover the state of the workflow. The file is truncated after it is read
and anew rescue log is created in its place. The default isto append .rescue to
the DAG file name. (see RESCUE FILES)

Path to a script or executable to launch on each unique host that pegasus-mpi-
cluster isrunning on. This path can also be set using the PMC_HOST_SCRIPT
environment variable. (see HOST SCRIPTYS)

Amount of memory available on each host in MB. The default is to deter-
mine the amount of physica RAM automatically. This value can also be set
using the PMC_HOST_MEMORY environment variable. (see RESOURCE-
BASED SCHEDULING)

Number of CPUs available on each host. The default is to determine the
number of CPU cores automatically. This value can also be set using
the PMC_HOST_CPUS environment variable. (see RESOURCE-BASED
SCHEDULING)

Thisenables strict memory usagelimitsfor tasks. When thisoption is specified,
and atask tries to allocate more memory than was requested in the DAG, the
memory allocation operation will fail.

Thisis the maximum number of minutes that pegasus-mpi-cluster will allow
the workflow to run. When this time expires pegasus-mpi-cluster will abort
the workflow and merge al of the stdout/stderr files of the workers. The value
isin minutes, and the default is unlimited wall time. This option was added
so that the output of a workflow will be recorded even if the workflow ex-
ceeds the max wall time of its batch job. This value can also be set using the
PMC MAX _WALL_TIME environment variable.

This causes PMC to generate a .out. XXX and a.err. XXX file for each task in-
stead of writing task stdout/stderr to --stdout and --stderr. The name of thefiles
are "TASKNAME.out. XXX" and "TASKNAME.err. XXX", where "TASK-
NAME" isthename of thetask fromthe DAG and "X X X" isasequence number
that isincremented each time the task istried. This option overrides the values
for --stdout and --stderr. This argument is used by Pegasus when workflows
are planned in PM C-only mode to facilitate debugging and monitoring.

This option causes PMC to generate a jobstate.log file for the workflow. The
fileisnamed "jobstate.log" and is placed in the same directory wherethe DAG
file is located. If the file aready exists, then PMC appends new lines to the
existing file. This option is used by Pegasus when workflows are planned in
PMC-only mode to facilitate monitoring.

245

Reference Manual

--monitord-hack This option causes PMC to generate a .dagman.out file for the workflow. This
file mimicsthe contents of the .dagman.out file generated by Condor DAGMan.
The point of this option isto trick monitord into thinking that it is dealing with
DAGMan so that it will generate the appropriate eventsto populate the STAM-
PEDE database for monitoring purposes. Thefileisnamed "DAG.dagman.out”
where "DAG" isthe path to the PMC DAG file.

--no-resour ce-log Do not generate a workflow.dag.resource file for the workflow.

--no-sleep-on-recv Do not use polling with sleep() to implement message receive. (see Known
I ssues: CPU Usage)

--maxfds Set the maximum number of file descriptors that can be |eft open by the master
for 1/0 forwarding. By default thisvalueis set automatically based on the value
of getrlimit(RLIMIT_NOFILE). The value must be at least 1, and cannot be
more than RLIMIT_NOFILE.

--keep-affinity By default PMC attempts to reset the CPU and memory affinity. Thisisto en-
sure that all available CPUs and memory can be used by PMC tasks on sys-
tems that are not configured properly. This flag tells PMC to keep the affin-
ity settings inherited from its parent. Note that the memory policy can only
be cleared if PMC was compiled with libnuma. CPU affinity is cleared using
sched_setaffinity(), and memory policy is cleared with set_mempolicy().

DAG Files

pegasus-mpi-cluster workflows are expressed using a simple text-based format similar to that used by Condor DAG-
Man. There are only two record types allowed in aDAG file: TASK and EDGE. Any blank linesin the DAG (lines
with all whitespace characters) are ignored, as are any lines beginning with # (note that # can only appear at the be-
ginning of aline, not in the middle).

Theformat of aTASK record is:

"TASK" id [options...] executable [arguments...]

Whereidisthe ID of thetask, optionsisalist of task options, executable is the path to the executable or script to run,
and arguments.... is a space-separated list of arguments to pass to the task. An exampleis:

TASK t01 -m 10 -c¢c 2 /bin/program-a -b

This example specifies a task tO1 that requires 10 MB memory and 2 CPUs to run /bin/program with the arguments
-a and -b. The available task options are:

-m M, --request-memory M The amount of memory required by the task in MB. The default is 0, which
means memory is not considered for this task. This option can be set for a
jobinthe DAX by specifying the pegasus::pmc_request_memory profile. (see
RESOURCE-BASED SCHEDULING)

-cN, --request-cpusN The number of CPUs required by the task. The default is 1, which implies that
the number of dlots on a host should be less than or equal to the number of
physical CPUs in order for all the dots to be used. This option can be set for
ajob in the DAX by specifying the pegasus::pmc_request_cpus profile. (see
RESOURCE-BASED SCHEDULING)

tT, --triesT The number of timesto try to execute the task before failing permanently. This
isthe task-level eguivalent of the --tries command-line option.

-p P, --priority P The priority of the task. P should be an integer. Larger values have higher pri-
ority. The default is 0. Priorities are simply hints and are not strict—if a task
cannot be matched to an available slot (e.g. due to resource availability), but
alower-priority task can, then the task will be deferred and the lower priority
task will be executed. Thisoption can be set for ajob inthe DAX by specifying
the pegasus::pmc_priority profile.

246

Reference Manual

-f VAR=FILE, --pipe-forward Forward 1/0 to file FILE using pipes to communicate with the task. The envi-

VAR=FILE ronment variable VAR will be set to the value of a file descriptor for a pipe
to which the task can write to get datainto FILE. For example, if atask speci-
fies: -f FOO=/tmp/foo then the environment variable FOO for the task will be
set to a number (e.g. 3) that represents the file /tmp/foo. In order to specify
this argument in a Pegasus DA X you need to set the pegasus.:pmc_arguments
profile (note that the value of pmc_arguments must contain the "-f" part
of the argument, so a valid value would be: <profile namespace="pegasus'
key="pmc_arguments"'>-f A=/tmp/a </profile>). (see |/O FORWARDING)

-F SRC=DEST, --fileforward Forward 1/O to the file DEST from the file SRC. When the task finishes, the

SRC=DEST worker will read the data from SRC and send it to the master where it will be
written to the file DEST. After SRC is read it is deleted. In order to specify
this argument in a Pegasus DAX you need to set the pegasus.:pmc_arguments
profile. (see /O FORWARDING)

The format of an EDGE record is:
"EDGE" parent child

Where parent isthe ID of the parent task, and child isthe ID of the child task. An example EDGE record is:

EDGE t01 t02

A simple diamond-shaped workflow would look like this:

di anond. dag

TASK A /bin/echo "I am A"
TASK B /bin/echo "I am B"
TASK C /bin/echo "I amC'
TASK D /bin/echo "I am D"
EDGE A B
EDGE A C
EDGE B D
EDGE C D

Rescue Files

Many different types of errors can occur when running a DAG. One or more of the tasks may fail, the MPI job may
run out of wall time, pegasus-mpi-cluster may segfault (we hope not), the system may crash, etc. In order to ensure
that the DAG does not need to be restarted from the beginning after an error, pegasus-mpi-cluster generates arescue
file for each workflow.

Therescue fileisasimple text file that lists all of the tasks in the workflow that have finished successfully. Thisfile
is updated each time a task finishes, and is flushed periodically so that if the work- flow fails and the user restarts
it, pegasus-mpi-cluster can determine which tasks till need to be executed. As such, the rescue file is a sort-of
transaction log for the workflow.

The rescue file contains zero or more DONE records. The format of these recordsis:

"DONE" *taski d*
Wheretaskid isthe ID of the task that finished successfully.

By default, rescue files are named DAGNAME.rescue where DAGNAME is the path to the input DAG file. Thefile
name can be changed by specifying the -r argument.

PMC and Pegasus

Using PMC for Pegasus Task Clustering

PMC can be used as the wrapper for executing clustered jobs in Pegasus. In this mode Pegasus groups several tasks
together and submits them as a single clustered job to a remote system. PMC then executes the individual tasksin
the cluster and returns the resullts.

247

Reference Manual

Pegasus

PMC can be specified as the task manager for clustered jobs in Pegasusin three ways:
1. Globally in the propertiesfile

The user can set aproperty in the propertiesfilethat resultsin al the clustered jobs of the workflow being executed
by PMC. In the Pegasus properties file specify:

#PEGASUS PROPERTI ES FI LE
pegasus. cl usterer.job. aggregat or =npi exec

In the above example, al the clustered jobs on all remote sites will be launched via PMC as long as the property
value is not overridden in the site catalog.

2. By setting the profile key "job.aggregator" in the site catalog:
<site handl e="siteX" arch="x86" os="LINUX">

<profil e namespace="pegasus" key="j ob. aggr egat or " >npi exec</ profile>
</site>

In the above example, all the clustered jobs on a siteX are going to be executed via PMC as long as the value is
not overridden in the transformation catalog.

3. By setting the profile key "job.aggregator” in the transformation catal og:

tr B {
site siteX {
pfn "/path/to/ nytask"
arch "x86"
os "linux"
type "I NSTALLED"
profile pegasus "clusters.size" "3"
profile pegasus "job.aggregator" "npi exec"

}

In the above example, al the clustered jobs for transformation B on siteX will be executed via PMC.

It is usually necessary to have a pegasus::mpiexec entry in your transformation catalog that specifies a) the path to
PMC on the remote site and b) the relevant globus profiles such as xcount, host_xcount and maxwalltime to control
size of the MPI job. That entry would look like this:

tr pegasus:: npi exec {
site siteX {
pfn "/path/to/ pegasus-npi -cluster”
arch "x86"
os "linux"
type "I NSTALLED"
profile globus "maxwal I time" "240"
profile globus "host_xcount" "1"
profile globus "xcount" "32"

}

If this transformation catalog entry is not specified, Pegasus will attempt create a default path on the basis of the
environment profile PEGASUS_HOME specified in the site catalog for the remote site.

PMC can be used with both horizontal and label-based clustering in Pegasus, but we recommend using label-based
clustering so that entire sub-graphs of a Pegasus DAX can be clustered into asingle PMC job, instead of only asingle
level of the workflow.

Profiles for PMC
There are severa Pegasus profiles that map to PMC task options:

pmc_request_memory This profile is used to set the --request-memory task option and is usually specified
inthe DAX or transformation catalog.

pmc_request_cpus This key is used to set the --request-cpus task option and is usually specified in the
DAX or transformation catal og.

248

Reference Manual

pmc_priority Thiskey is used to set the --priority task option and is usually specified in the DAX.

These profiles are used by Pegasus when generating PMC’s input DAG when PMC is used as the task manager for
clustered jobsin Pegasus.

The profiles can be specified in the DAX like this:

<j ob id="1D0000001" name="nytask">
<arguments>-a 1 -b 2 -c 3</argunents>

<profil e namespace="pegasus" key="pnct_request_menory">1024</profil e>
<profil e namespace="pegasus" key="pnt_request_cpus">4</profile>

<profil e namespace="pegasus" key="pnct_priority">10</profile>
</ j ob>

This example specifies a PMC task that requires 1GB of memory and 4 cores, and has a priority of 10. It produces
atask in the PMC DAG that looks like this:

TASK nyt ask_I DO0O000001 -m 1024 -c 4 -p 10 /path/to/nytask -a 1 -b 2 -c 3
Using PMC for the Entire Pegasus DAX

Pegasus can a so be configured to run the entire workflow as a single PMC job. In this mode Pegasus will generate a
single PMC DAG for the entire workflow as well asa PBS script that can be used to submit the workflow.

In contrast to using PMC as a task clustering tool, in this mode there are no jobs in the workflow executed without
PMC. The entire workflow, including auxilliary jobs such asdirectory creation and file transfers, is managed by PMC.
If Pegasus is configured in this mode, then DAGMan and Condor are not required.

To run in PMC-only mode, set the property "pegasus.code.generator” to "PMC" in the Pegasus properties file:
pegasus. code. gener at or =PMC

In order to submit the resulting PBS job you may need to make changesto the .pbsfile generated by Pegasusto get it
to work with your cluster. This mode is experimental and has not been used extensively.

Logging

By default, all logging messages are printed to stderr. If you turn up the logging using -v then you may end up with
alot of stderr being forwarded from the workers to the master.

Thelog levelsin order of severity are: FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

The default logging level is INFO. The logging levels can be increased with -v and decreased with -q.

Task STDIO

By default the stdout and stderr of taskswill be redirected to the master’ s stdout and stderr. Y ou can change the path of
these files with the -0 and -e arguments. Y ou can also enable per-task stdio files using the --per -task-stdio argument.
Note that if per-task stdio files are not used then the stdio of all workers will be merged into one out and one err file
by the master at the end, so 1/0 from different workers will not be interleaved, but 1/0 from each worker will appear
in the order that it was generated. Also note that, if the job fails for any reason, the outputs will not be merged, but
instead there will be one file for each worker named DAGFILE.out.X and DAGFILE.err.X, where DAGFILE isthe
path to the input DAG, and X is the worker’s rank.

Host Scripts

A host script is a shell script or executable that pegasus-mpi-cluster launches on each unique host on which it is
running. They can be used to start auxilliary services, such as memcached, that the tasks in aworkflow require.

Host scriptsare specified using either the--host-script argument or the PMC_HOST _SCRIPT environment variable.

The host script is started when pegasus-mpi-cluster starts and must exit with an exitcode of 0 before any tasks can
be executed. If it the host script returns a non-zero exitcode, then the workflow is aborted. The host script is given 60

249

Reference Manual

seconds to do any setup that is required. If it doesn’t exit in 60 seconds then a SIGALRM signal is delivered to the
process, which, if not handled, will cause the process to terminate.

When the workflow finishes, pegasus-mpi-cluster will deliver a SIGTERM signal to the host script’s process group.
Any child processes|eft running by the host script will receive thissignal unlessthey created their own process group.
If there were any processes |eft to receive this signal, then they will be given afew seconds to exit, then they will be
sent SIGKILL. Thisisthe mechanism by which processes started by the host script can beinformed of the termination
of the workflow.

Resource-Based Scheduling

Memory

CPUs

High-performance computing resources often have alow ratio of memory to CPUs. At the same time, workflow tasks
often have high memory requirements. Often, the memory requirements of a workflow task exceed the amount of
memory available to each CPU on a given host. As aresult, it may be necessary to disable some CPUs in order to
free up enough memory to run the tasks. Similarly, many codes have support for multicore hosts. In that case it is
necessary for efficiency to ensure that the number of cores required by the tasks running on a host do not exceed the
number of cores available on that host.

In order to make this process more efficient, pegasus-mpi-cluster supports resource-based scheduling. In re-
source-based scheduling the tasksin the workflow can specify how much memory and how many CPUs they require,
and pegasus-mpi-cluster will schedule them so that the tasks running on a given host do not exceed the amount of
physical memory and CPUs available. This enables pegasus-mpi-cluster to take advantage of al the CPUs available
when the tasks' memory requirement islow, but also disable some CPUs when the tasks' memory requirement ishigh-
er. It also enables workflows with amixture of single core and multi-core tasks to be executed on a heterogenous pool.

If there are no hosts available that have enough memory and CPUs to execute one of the tasks in a workflow, then
the workflow is aborted.

Users can specify both the amount of memory required per task, and the amount of memory available per host. If the
amount of memory required by any task exceeds the available memory of all the hosts, then the workflow will be
aborted. By default, the host memory is determined automatically, however the user can specify --host-memory to
"lie" to pegasus-mpi-cluster. The amount of memory required for each task is specified in the DAG using the -m/--
request-memory argument (see DAG Files).

Users can specify the number of CPUs required per task, and the total number of CPUs available on each host. If
the number of CPUs required by atask exceeds the available CPUs on all hosts, then the workflow will be aborted.
By default, the number of CPUs on a host is determined automatically, but the user can specify --host-cpus to over-
or under-subscribe the host. The number of CPUs required for each task is specified in the DAG using the -c/--
request-cpus argument (see DAG Files).

I/O Forwarding

Inworkflowsthat have lots of small tasksit iscommon for the |/O written by thosetasksto be very small. For example,
aworkflow may have 10,000 tasksthat each write afew KB of data. Typically each task writesto itsown file, resulting
in 10,000 files. This I/O pattern is very inefficient on many parallel file systems because it requires the file system to
handle alarge number of metadata operations, which are a bottleneck in many parallel file systems.

One way to handle this problem is to have all 10,000 tasks write to a single file. The problem with this approach is
that it requires those tasks to synchronize their access to the file using POSIX locks or some other mutual exclusion
mechanism. Otherwise, thewritesfrom different tasks may beinterleaved in arbitrary order, resulting in unusable data.

In order to address this use case PMC implements a feature that we call "I/O Forwarding". 1/0 forwarding enables
each task in aPMC job to write data to an arbitrary number of shared filesin a safe way. It does this by having PMC
worker processes collect data written by the task and send it over over the high-speed network using M Pl messaging
to the PMC master process, where it is written to the output file. By having one process (the PMC master process)
writeto the file al of the I/O from many parallel tasks can be synchronized and written out to the files safely.

250

Reference Manual

There are two different ways to use 1/0 forwarding in PMC: pipes and files. Pipes are more efficient, but files are
easier to use.

I/0 forwarding using pipes

1/0 forwarding with pipes works by having PMC worker processes collect data from each task using UNIX pipes.
This approach is more efficient than the file-based approach, but it requires the code of the task to be changed so that
the task writes to the pipe instead of aregular file.

In order to use I/O forwarding a PMC task just needs to specify the -f/--pipe-forwar d argument to specify the name
of the file to forward data to, and the name of an environment variable through which the PMC worker process can
inform it of the file descriptor for the pipe.

For example, if there is atask "mytask” that needs to forward data to two files: "myfile.a’ and "myfile.b", it would
look like this:

TASK nmytask -f A=/tmp/nyfile.a -f B=/tnp/nyfile.b /bin/nytask

When the /bin/mytask process starts it will have two variables in its environment: "A=3" and "B=4", for example.
The value of these variables is the file descriptor number of the corresponding files. In this case, if the task wants to
write to "/tmp/myfiled’, it gets the value of environment variable "A", and calls write() on that descriptor number.
In C the code for that looks like this:

char *A = getenv("A");

int fd = atoi (A);

char *message = "Hello, World\n";
wite(fd, nessage, strlen(nessage));

In some programming languages it is not possible to write to afile descriptor directly. Fortran, for example, refersto
files by unit number instead of using file descriptors. In these languages you can either link C 1/O functions into your
binary and call them from routines written in the other language, or you can open a specia filein the Linux /proc file
system to get another handle to the pipe you want to access. For the latter, the file you should open is "/proc/self/fd/
NUMBER" where NUMBER is the file descriptor number you got from the environment variable. For the example
above, the pipe for myfile.a (environment variable A) is "/proc/self/fd/3".

If you are using pegasus-kickstart, which is probably the case if you are using PMC for a Pegasus workflow, then
there’s atrick you can do to avoid modifying your code. Y ou use the /proc file system, as described above, but you
let pegasus-kickstart handle the path construction. For example, if your application has an argument, -o, that allows
you to specify the output file then you can write your task like this:

TASK mytask -f A=/tnp/ nyfile.a /bin/pegasus-kickstart /bin/mytask -o /proc/self/fd/ $A

In this case, pegasus-kickstart will replace the $A in your application arguments with the file descriptor number you
want. Y our code can open that path normally, write to it, and then close it asif it were aregular file.

I/O forwarding using files

1/0 forwarding with files works by having tasks write out data in files on the local disk. The PMC worker process
reads these files and forwards the data to the master where it can be written to the desired output file. This approach
may be much less efficient than using pipes because it involves the file system, which has more overhead than a pipe.

File forwarding can be enabled by giving the -F/--file-forwar d argument to a task.

Here's an example:

TASK nmytask -F /tnp/foo.0=/scratch/foo /bin/nytask -o /tnp/foo.0

In this case, the worker process will expect to find the file /tmp/f00.0 when mytask exits successfully. It reads the
data from that file and sends it to the master to be written to the end of /scratch/foo. After /tmp/foo.0 is read it will
be deleted by the worker process.

This approach works best on systems where the local disk isa RAM file system such as Cray XT machines. Alterna-
tively, the task can use /dev/shm on aregular Linux cluster. It might also work relatively efficiently on alocal disk
if the file system cache is able to absorb all of the reads and writes.

251

Reference Manual

I/O forwarding caveats

Misc

When using I/O forwarding it isimportant to consider afew caveats.

First, if the PMC job fails for any reason (including when the workflow is aborted for violating --max-wall-time),
then the files containing forwarded I/O may be corrupted. They can include partial records, meaning that only part
of the I/O from one or more tasks was written, and they can include duplicate records, meaning that the 1/0 was
written, but the PMC job failed before the task could be marked as successful, and the workflow was restarted later.
We make no guarantees about the contents of the data files in this case. It is up to the code that reads the files to a)
detect and b) recover from such problems. To eliminate duplicates the records should include a unique identifier, and
to eliminate partials the records should include a checksum.

Second, you should not use 1/0O forwarding if your task is going to write a lot of data to the file. Because the PMC
worker is reading data off the pipe/file into memory and sending it in an MPl message, if you write too much, then
the worker process will run the system out of memory. Also, all the data needsto fit in asingle MPI message. In pipe
forwarding there is no hard limit on the size, but in file forwarding the limit is IMB. We haven’'t benchmarked the
performance on large 1/0O, but anything larger than about 1 MB is probably too much. At any rate, if your dataislarger
than 1IMB, then /O forwarding probably won't have much of a performance benefit anyway.

Third, the I/O is not written to the file if the task returns a non-zero exitcode. We assume that if the task failed that
you don’t want the data it produced.

Fourth, the data from different tasksis not interleaved. All of the data written by a given task will appear sequentialy
in the output file. Note that you can till get partial records, however, if any data from atask appearsit will never be
split among non-adjacent ranges in the output file. If you have 3 tasks that write: "I am atask" you can get:

I ama taskl ama taskl ama task
and:

| ama taskl aml ama task

but not:

| ama taskl aml ama task a task

Fifth, data from different tasks appears in arbitrary order in the output file. It depends on what order the tasks were
executed by PMC, which may be arbitrary if there are no dependencies between the tasks. The data that is written
should contain enough information that you are able to determine which task produced it if you require that. PMC
does not add any headers or trailersto the data.

Sixth, atask will only be marked as successful if al of its 1/0 was successfully written. If the workflow completed
successfully, then the I/O is guaranteed to have been written.

Seventh, if the master is not able to write to the output file for any reason (e.g. the master triesto write the 1/0 to the
destination file, but the write() call returns an error) then the task is marked as failed even if the task produced a non-
zero exitcode. In other words, you may get a non-zero kickstart record even when PMC marks the task failed.

Eighth, the pipes are write-only. If you need to read and write data from the file you should use file forwarding and
not pipe forwarding.

Ninth, al files are opened by the master in append mode. Thisis so that, if the workflow fails and has to be restarted,
or if atask failsand isretried, the data that was written previously is not lost. PMC never truncates the files. Thisis
one of the reasons why you can have partial records and duplicate records in the output file.

Finaly, in file forwarding the output file is removed when the task exits. Y ou cannot rely on the file to be there when
the next task runs even if you write it to a shared file system.

Resource Utilization

At the end of the workflow run, the master will report the resource utilization of the job. Thisis done by adding up
the total runtimes of all the tasks executed (including failed tasks) and dividing by the total wall time of the job times

252

Reference Manual

Known

N, where N is both the total number of processes including the master, and the total number of workers. These two
resource utilization values are provided so that users can get an idea about how efficiently they are making use of
the resources they allocated. Low resource utilization values suggest that the user should use fewer cores, and longer
wall time, on future runs, while high resource utilization values suggest that the user could use more cores for future
runs and get a shorter wall time.

Issues

fork() and exec()

In order for the worker processes to start tasks on the compute node the compute nodes must support the fork() and
exec() system calls. If your target machine runs a stripped-down OS on the compute nodes that does not support these
system calls, then pegasus-mpi-cluster will not work.

CPU Usage

Many MPI implementations are optimized so that message sends and receives do busy waiting (i.e. they spin/poll on
amessage send or receive instead of sleeping). The reasoning is that sleeping adds overhead and, since many HPC
systems use space sharing on dedicated hardware, there are no other processes competing, so spinning instead of
sleeping can produce better performance. On those implementations MPI processes will run at 100% CPU usage even
when they are just waiting for a message. Thisis a big problem for multicore tasks in pegasus-mpi-cluster because
idle slots consume CPU resources. In order to solve this problem pegasus-mpi-cluster processes sleep for a short
period between checks for waiting messages. This reduces the load significantly, but causes a short delay in receiving
messages. If you are using an MPI implementation that sleeps on message send and receive instead of doing busy
waiting, then you can disable the sleep by specifying the --no-sleep-on-recv option. Note that the master will aways
deep if --max-wall-time is specified because there is no way to interrupt or otherwise timeout ablocking call in MPI
(e.g. SIGALRM does not cause MPI_Recv to return EINTR).

Environment Variables

Author

The environment variables below are aliases for command-line options. If the environment variable is present, then it
is used as the default for the associated option. If both are present, then the command-line option is used.

PMC_HOST_SCRIPT Aliasfor the --host-script option.
PMC_HOST_MEMORY Aliasfor the --host-memory option.
PMC_HOST_CPUS Aliasfor the --host-cpus option.

PMC_MAX_WALL_TIME Aliasfor the --max-wall-time option.

Gideon Juve <gi deon@ si . edu>

Mats Rynge<r ynge@ si . edu>

253

Reference Manual

Name

pegasus-plan — runs Pegasus to generate the executable workflow
Synopsis

pegasus-plan [-v] [-q] [-V] [-h]
[-Dprop=value...]] [-b prefix]
[--conf propsfile]
[-c cachefilg],cachefile...]]
[-C style] style...]]
[--dir dir]
[--force] [--force-replan]
[--inherited-rc-files] [-] prefix]
[-n][-I input-dir][-O output-dir] [-0 Sit€]
[-ssitel],site2...]]
[--staging-site s1=ss1[,s2=552]..]]
[--randomdir[=dirname]]
[--relative-dir dir]
[--relative-submit-dir dir]
-d daxfile

Description

The pegasus-plan command takes in as input the DAX and generates an executable workflow usually in form of
condor submit files, which can be submitted to an execution site for execution.

As part of generating an executable workflow, the planner needs to discover:

data The Pegasus Workflow Planner ensures that al the data required for the execution of the ex-
ecutable workflow is transferred to the execution site by adding transfer nodes at appropriate
points in the DAG. This is done by looking up an appropriate Replica Catalog to determine
the locations of the input files for the various jobs. At present the default replica mechanism
used isRLS.

The Pegasus Workflow Planner aso tries to reduce the workflow, unless specified otherwise.
This is done by deleting the jobs whose output files have been found in some location in the
Replica Catalog. At present no cost metrics are used. However preferenceisgiven to alocation
corresponding to the execution site

The planner can also add nodesto transfer all the materialized filesto an output site. Thelocation
on the output site is determined by looking up the site catalog file, the path to which is picked
up from the pegasus.catalog.site.file property value.

executables The planner looks up a Transformation Catal og to discover locations of the executablesreferred
to in the executable workflow. Users can specify INSTALLED or STAGEABLE executables
in the catal 0og. Stageable executables can be used by Pegasus to stage executables to resources
where they are not pre-installed.

resour ces The layout of the sites, where Pegasus can schedule jobs of a workflow are described in the
Site Catalog. The planner looks up the site catalog to determine for a site what directories ajob
can be executed in, what servers to use for staging in and out data and what jobmanagers (if
applicable) can be used for submitting jobs.

The data and executable | ocations can now be specified in DAX’ es conforming to DAX schemaversion 3.2 or higher.
Options
Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s

254

Reference Manual

-d file, --dax file

-b prefix, --basename prefix

-cfilé]file,...] , --cachefild] file,
m

-C style[,style,...] , --cluster
style[,style,...]

propertiesfile and the PEGA SUS homelocation. Onemay set several CLI prop-
erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
tiesfile property of the same key.

The DAX isthe XML input file that describes an abstract workflow. Thisisa
mandatory option, which has to be used.

The basename prefix to be used while constructing per workflow files like the
dagman file (.dag file) and other workflow specific files that are created by
Condor. Usualy this prefix, is taken from the name attribute specified in the
root element of the dax files.

A comma separated list of paths to replica cache files that override the results
from the replica catalog for a particular LFN.

Each entry in the cache file describes a LFN , the corresponding PFN and the
associated attributes. The pool attribute should be specified for each entry.

LFN_1 PFN_1 pool =[site handl e 1]
LFN_2 PFN_2 pool =[site handl e 2]

LFN_.N PFN_N [site handle N]

To treat the cache files as supplementa replica catalogs set the property
pegasus.catalog.replica.cache.asr ¢ to true. This results in the mapping in the
cache files to be merged with the mappings in the replica catalog. Thus, for a
particular LFN both the entries in the cache file and replica catalog are avail-
ablefor replica selection.

Comma-separated list of clustering stylesto apply to the workflow. This mode
of operation resultsin clustering of n compute jobs into alarger jobs to reduce
remote scheduling overhead. Y ou can specify alist of clustering techniquesto
recursively apply them to the workflow. For example, thisallowsyou to cluster
some jobsin the workflow using horizontal clustering and then use label based
clustering on the intermediate workflow to do vertical clustering.

The clustered jobs can be run at the remote site, either sequentially or by using
MPI. This can be specified by setting the property pegasus.job.aggregator.
The property can be overridden by associating the PEGASUS profile key col-
lapser either with the transformation in the transformation catalog or the exe-
cution sitein the site catalog. The value specified (to the property or the profile),
isthe logical name of the transformation that is to be used for clustering jobs.
Note that clustering will only happen if the corresponding transformations are
catalogued in the transformation catal og.

PEGA SUS shipswith a clustering executabl e pegasus-cluster that can befound
in the $SPEGASUS HOME/bin directory. It runs the jobs in the clustered job
sequentially on the same node at the remote site.

In addition, an MPI based clustering tool called pegasus-mpi-cluster', is also
distributed and can be found in the bin directory. pegasus-mpi-cluster can also
be used in the sharedfs setup and needs to be compiled against the remote site
MPI install. directory. Thewrapper isrun on every MPI node, with thefirst one
being the master and the rest of the ones as workers.

By default, pegasus-cluster is used for clustering jobs unless overridden in the
properties or by the pegasus profile key collapser.

The following type of clustering styles are currently supported:

» horizontal isthe style of clustering in which jobs on the same level are ag-
gregated into larger jobs. A level of the workflow is defined as the greatest

255

Reference Manual

--conf propfile

--dir dir

-f, --force

--force-replan

-g, --group
-h, --help
--inherited-rc-filesfilg file,...]

distance of anode, from the root of the workflow. Clustering occurs only on
jobs of the same typei.e they refer to the same logical transformation in the
transformation catal og.

Horizontal Clustering can operate in one of two modes. a. Job count based.

The granularity of clustering can be specified by associating either the PE-
GASUS profile key clusters.size or the PEGASUS profile key clusters.num
with the transformation.

The clusters.size key indicates how many jobs need to be clustered into the
larger clustered job. The clusters.num key indicates how many clustered jobs
are to be created for a particular level at a particular execution site. If both
keys are specified for a particular transformation, then the clusters.num key
value is used to determine the clustering granularity.

a. Runtime based.

To cluster jobs according to runtimes user needs to set one property and
two profile keys. The property pegasus.clusterer.preference must be set to
the value runtime. In addition user needs to specify two Pegasus profiles.
a. clusters.maxruntime which specifies the maximum duration for which
the clustered job should run for. b. job.runtime which specifies the dura-
tion for which the job with which the profile key is associated, runs for.
Ideally, clusters.maxruntime should be set in transformation catalog and
job.runtime should be set for each job individually.

« label isthe style of clustering in which you can label the jobs in your work-
flow. The jobs with the same level are put in the same clustered job. This
allows you to aggregate jobs across levels, or in amanner that is best suited
to your application.

To label the workflow, you need to associate PEGASUS profiles with the
jobs in the DAX. The profile key to use for labeling the workflow can be
set by the property pegasus.clusterer.label.key. It defaults to label, meaning
if you have a PEGASUS profile key label with jobs, the jobs with the same
value for the pegasus profile key label will go into the same clustered job.

The path to properties file that contains the properties planner needs to use
while planning the workflow.

The base directory where you want the output of the Pegasus Workflow Plan-
ner usually condor submit files, to be generated. Pegasus creates a directory
structure in this base directory on the basis of username, VO Group and the
label of the workflow in the DAX.

By default the base directory is the directory from which one runs the pega-
sus-plan command.

This bypasses the reduction phase in which the abstract DAG isreduced, on the
basis of the locations of the output files returned by the replica catalog. Thisis
analogous to a make style generation of the executable workflow.

By default, for hierarichal workflowsif aDAX job fails, then on job retry the
rescue DAG of the associated workflow is submitted. This option causes Pega-
susto replan the DAX job in case of failure instead.

The VO Group to which the user belongs to.
Displays all the options to the pegasus-plan command.

A comma separated list of paths to replicafiles. Locations mentioned in these
have a lower priority than the locations in the DAX file. This option is usu-

256

Reference Manual

-I', --input-dir

-j prefix, --job-prefix prefix

-n, --nocleanup

-0 site, --output-site site

-O output directory , --output-dir
output directory

-, —-quiet

-r[dirnamg] , --
randomdir[=dirname]

--relative-dir dir

ally used internally for hierarchical workflows, where the file locations men-
tioned in the parent (encompassing) workflow DAX, passed to the sub work-
flows (corresponding) to the DAX jobs.

A path to the input directory where the input files reside. Thisinternally loads
a Directory based Replica Catalog backend, that constructs does a directory
listing to create the LFN#PFN mappingsfor thefilesin theinput directory. You
can specify additional properties either on the command line or the properties
file to control the site attribute and url prefix associated with the mappings.

pegasus.catal og.replica.directory.site specifies the pool attribute to associate
with the mappings. Defaults to local

pegasus.catalog.replica.directory.url.prefix specifies the URL prefix to use
while constructing the PFN. Defaults to file://

The job prefix to be applied for constructing the filenames for the job submit
files.

This results in the generation of the separate cleanup workflow that removes
the directories created during the execution of the executable workflow. The
cleanup workflow isto be submitted after the executable workflow hasfinished.

If thisoption isnot specified, then Pegasus adds cleanup nodesto the executable
workflow itself that cleanup files on the remote sites when they are no longer
required.

The output site to which the output files of the DAX are transferred to.

By default the materialized data remains in the working directory on the ex-
ecution site where it was created. Only those output files are transferred to an
output site for which transfer attribute is set to true in the DAX.

The output directory to which the output files of the DAX are transferred to.

If -0 is specified the storage directory of the site specified as the output site is
updated to be the directory passed. If no output siteis specified, then thisoption
internally sets the output site to local with the storage directory updated to the
directory passed.

Decreases the logging level.

Pegasus Worfklow Planner adds create directory jobs to the executable work-
flow that create a directory in which all jobs for that workflow execute on a
particular site. The directory created is in the working directory (specified in
the site catalog with each site).

By default, Pegasus duplicates the relative directory structure on the submit
host on the remote site. The user can specify this option without arguments
to create a random timestamp based name for the execution directory that are
created by the create dir jobs. The user can can specify the optional argument
to this option to specify the basename of the directory that is to be created.

The create dir jobs refer to the dirmanager executable that is shipped as part
of the PEGASUS worker package. The transformation catalog is searched for
the transformation named pegasus::dir manager for all the remote sites where
the workflow has been scheduled. Pegasus can create a default path for the
dirmanager executable, if PEGASUS _HOM E environment variable is associ-
ated with the sites in the site catalog as an environment profile.

Thedirectory relative to the base directory where the executable workflow it to
be generated and executed. This overrides the default directory structure that
Pegasus creates based on username, VO Group and the DAX label.

257

Reference Manual

--relative-submit-dir dir

-sdite],gite,...] , --sitessite],site,

]

--staging-site s1=ssl[,s2=s2[..]]

-s, --submit
-v, --verbose
-V, --version

Return Value

Thedirectory relative to the base directory where the executable workflow it to
be generated. This overridesthe default directory structure that Pegasus creates
based on username, VO Group and the DAX Iabel. By specifying --r elative-dir
and --relative-submit-dir you can have different relative execution directory
on the remote site and different relative submit directory on the submit host.

A comma separated list of execution sites on which the workflow isto be exe-
cuted. Each of the sites should have an entry in the site catalog, that is being
used. To run on the submit host, specify the execution site as local.

In case this option is not specified, all the sitesin the site catalog are picked up
as candidates for running the workflow.

A comma separated list of key=value pairs, where the key isthe execution site
and value is the staging site for that execution site.

In case of running on a shared filesystem, the staging site is automatically as-
sociated by the planner to be the execution site. If only avaueis specified, then
that is taken to be the staging site for all the execution sites. e.g --staging-site
local meansthat the planner will usethelocal site asthe staging site for all jobs
in the workflow.

Submits the generated executable workflow using pegasus-run script in
$PEGASUS HOME/bin directory. By default, the Pegasus Workflow Planner
only generates the Condor submit files and does not submit them.

Increases the verbosity of messages about what is going on. By default, al
FATAL, ERROR, CONSOLE and WARN messages are logged. The logging
hierarchy is asfollows:

1. FATAL

2. ERROR

3. CONSOLE

4. WARN

5. INFO

6. CONFIG

7. DEBUG

8. TRACE

For example, to see the INFO, CONFIG and DEBUG messages additionally,
set -vwv.

Displays the current version number of the Pegasus Workflow Management
System.

If the Pegasus Workflow Planner is able to generate an executable workflow successfully, the exitcode will be 0. All
runtime errors result in an exitcode of 1. Thisis usualy in the case when you have misconfigured your catalogs etc.
In the case of an error occurring while loading a specific module implementation at run time, the exitcode will be 2.
Thisisusually due to factory methods failing while loading a module. In case of any other error occurring during the
running of the command, the exitcode will be 1. In most cases, the error message logged should give aclear indication

as to where things went wrong.

258

Reference Manual

Controlling pegasus-plan Memory Consumption

pegasus-plan will try to determine memory limits automatically using factors such as total system memory and
potential memory limits (ulimits). The automatic limits can be overridden by setting the JAVA_HEAPMIN and
JAVA_HEAPMAX environment variables before invoking pegasus-plan. The values are in megabytes. As arule of
thumb, JAVA_HEAPMIN can be set to half of the value of JAVA_HEAPMAX.

Pegasus Properties

This is not an exhaustive list of properties used. For the complete description and list of properties refer to
$PEGASUS_HOM E/doc/advanced-pr operties.pdf

pegasus.selector .site

pegasus.catalog.replica

pegasus.catalog.replica.url

pegasus.dir.exec

pegasus.catalog.transfor mation

pegasus.catalog.transfor mation.file

pegasus.catalog.site

pegasus.catalog.sitefile

pegasus.data.configuration

pegasus.code.gener ator

Identifies what type of site selector you want to use. If not specified the default
value of Random is used. Other supported modes are RoundRobin and Non-
JavaCallout that calls out to a externa site selector.

Specifies the type of replica catalog to be used.
If not specified, then the value defaultsto RL S.
Contact string to access the replica catalog. In case of RLSitisthe RLI url.

A suffix to the workdir in the site catalog to determine the current working
directory. If relative, the value will be appended to the working directory from
the site.config file. If absolute it constitutes the working directory.

Specifiesthetype of transformation catal og to be used. One can use either afile
based or adatabase based transformation catalog. At present the defaultis T ext.

The location of file to use as transformation catal og.

If not specified, then the default location of $PEGASUS HOME/var/tc.datais
used.

Specifies the type of site catalog to be used. One can use either atext based or
an xml based site catalog. At present the defaultis XML 3.

Thelocation of fileto useasasite catalog. If not specified, then default value of
$PEGASUS HOME/etc/sites.xml is used in case of the xml based site catalog
and $PEGASUS_HOME/etc/sites.txt in case of the text based site catal og.

This property sets up Pegasus to run in different environments. This can be set
to

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared
filesystem on the execution site. This assumes, that the head node of a cluster
and the worker nodes share a filesystem. The staging site in this case is the
same as the execution site.

nonsharedfs If thisis set, Pegasus will be setup to execute jobs on an execu-
tion site without relying on a shared filesystem between the head node and the
worker nodes.

condorio If thisis set, Pegasus will be setup to run jobsin a pure condor pool,
with the nodes not sharing a filesystem. Data is staged to the compute nodes
from the submit host using Condor File 10O.

The code generator to use. By default, Condor submit files are generated for
the executable workflow. Setting to Shell results in Pegasus generating a shell
script that can be executed on the submit host.

259

Reference Manual

Files

$PEGASUS HOME/etc/
dax-3.3.xsd

$PEGASUS HOME/etc/
sc-3.0.xsd

$PEGASUS HOME/etc/
tc.data.text

$PEGASUS HOME/etc/
sitesxml3 | SPEGASUS HOME/
etc/sites.xml

$PEGASUS HOME/lib/
pegasus,jar

See Also

is the suggested location of the latest DAX schemato produce DAX output.
isthe suggested location of the latest Site Catalog schemathat is used to create
the XML3 version of the site catalog

is the suggested location for the file corresponding to the Transformation Cat-
aog.

isthe suggested location for the file containing the site information.

contains al compiled Java bytecode to run the Pegasus Workflow Planner.

pegasus-sc-client(1), pegasus-tc-client(1), pegasus-rc-client(1)

Authors

KaranVahi <vahi at isi dot edu>

Gaurang Mehta<gneht a at i si

Pegasus Team http://pegasus.isi.edu

dot edu>

260

http://pegasus.isi.edu

Reference Manual

Name

pegasus-plots — A tool to generate graphs and charts to visualize workflow run.

Synopsis

pegasus-plots[-h|--help]

[-o]--output outdir]
[-c|--conf propfile]

[-m|--max-gr aph-nodes max]
[-p|--plotting-level level]
[-i|--ignor e-db-inconsistency]

[-v]--verbose]
[-al--quiet]
[submitdir]

Description

pegasus-plots generates graphs and chartsto visualize workflow run. It generates workflow execution Gantt chart, job
over time chart, time chart, dax and dag graph. It uses executable 'dot\' to generate graphs. pegasus-plots looks for the
executable in your path and generates graphs based on it’s availahility .

Options
-h, --help
-ooutdir , --output outdir
-c propfile, --conf propfile

-m max, --max-graph-nodes max

-p level , --plotting-level level

-i, --ignore-db-inconsistency

-v, --verbose

Prints a usage summary with all the available command-line options.
Writes the output to the given directory
The propertiesfile to use. This option overrides al other property files.

Maximum limit on the number of taskg/jobs in the dax/dag up to which the
graph should be generated. The default valueis 100.

Specifies the charts and graphs to generate. Vadid levels are: all, all_charts,
all_graphs, dax_graph, dag_graph, gantt_chart, host_chart, time_chart,
breakdown_chart. Default is all_charts. The output generated by pega-
sus-plotsis based on the level set:

« all: generates al charts and graphs.

« all_charts: generates all charts.

 all_graphs: generates all graphs.

» dax_graph: generates dax graph.

» dag_graph: generates dag graph.

« gantt_chart: generates the workflow execution Gantt chart.
 host_chart: generates the host over time chart.

 time_chart: generates the time chart which shows the job instance/invoca
tion count and runtime over time.

» breakdown_chart: generates the breakdown chart which showstheinvoca
tion count and runtime grouped by transformation name.

Turn off the the check for database consistency.

Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

261

Reference Manual

-q, --quiet Decreasesthelog level. If omitted, the default level will be set to WARNING.
When this option is given, thelog level is changed to ERROR.

Example

Runs pegasus-plots and writes the output to the given directory:

pegasus-plots -0 /scratch/plot /scratch/grid-setup/run0001

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

262

http://pegasus.isi.edu

Reference Manual

Name

pegasus-rc-client — shell client for replicaimplementations

Synopsis

pegasus-rc-client [-Dproperty=valug]...]] [-V]

Description

[-cfn] [-p k=V]
([-f fn]{[-i-d fn]|[cmd [args]]

The shell interfaceto replicacatal og implementationsisaprototype. It determinesfrom various property setting which
class implements the replica manager interface, and loads that driver at run-time. Some commands depend on the

implementation.

Options

Any option will be displayed with its long options synonym(s).

-Dproperty=value

-cfn, --conf fn

-ffn, -filefn

-i fn, --insert fn

-d fn, --deletefn

-pk=v, --pref k=v

cmd [args]

-V, --version

The-D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’ s propertiesfile and
the PEGA SUS home location. One may set several CLI properties by giving this option
multiple times. The -D option(s) must be the first option on the command line. A CLI
property take precedence over the properties file property of the same key.

Path to the property file

The optional input file argument permits to enter non-interactive bulk mode. If this op-
tion is not present, replica manager specific commands should be issued on the com-
mand-line. The special filename hyphen (-) can be used to read from pipes.

Default isto use an interactive interface reading from stdin.

The optional input file argument permits insertion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation. Thisis highly,
useful when interfacing with the Globus RL S as the backend, and one wants to inserts
millions of entriesin it.

Each linein the file denotes one mapping of the format <Ifn> <pfn> [k=v [..]]

The optional input file argument permits deletion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation. Thisis highly,
useful when interfacing with the Globus RL S as the backend, and one wants to delete
millions of entries from it.

Each linein the file denotes one mapping of the format: <Ifn> <pfn> [k=v [..]]

This option may be specified multiple times. Each specification popul atesinstance pref-
erences. Preferences control the extend of log information, or the output format string
tousein listings.

The keys format and level are recognized as of thiswriting.

There are no defaults.

If not in file-driven mode, a single command can be specified with its arguments.

Default is to use interactive mode.

displays the version of Pegasus you are using.

263

Reference Manual

Return Value

Regular and planned program terminations will result in an exit code of 0. Abnormal termination will result in anon-

zero exit code.

Files

$PEGASUS HOME/etc/proper -
ties

$HOME/.pegasusrc

pegasus;jar

Environment Variables

contains the basic properties with all configurable options.

contains the basic properties with all configurable options.

contains al compiled Java bytecode to run the replica manager.

PEGASUS HOME isthe suggested base directory of your the execution environment.

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as
$IAVA_HOME/bin/java.

CLASSPATH should be set to contain all necessary files for the execution environment. Please make sure
that your CLASSPATH includes pointer to the replicaimplementation required jar files.

Properties

The complete branch of properties pegasus.catalog.replicaincluding itself are interpreted by the prototype. While the
pegasus.catal og.replica property itself steers the backend to connect to, any meaning of branched keys is dependent
on the backend. The same key may have different meanings for different backends.

pegasus.catalog.replica

pegasus.catalog.replica.url

pegasus.catalog.replica.file

pegasus.catalog.replica.db.driver

pegasus.catalog.replica.db.url

pegasus.catalog.replica.db.user

determines the name of the implementing classto load at run-time. If the class
resides in org.griphyn.common.catalog.replica no prefix is required. Other-
wise, the fully qualified class name must be specified.

is used by the RLS|LRC implementations. It determines the RLI / LRC url to
use.

is used by the SimpleFile implementation. It specifiesthe path to thefileto use
as the backend for the catal og.

is used by a simple rDBMs implementation. The string is the fully-qualified
class name of the JDBC driver used by the RDBM S implementer.

isthe IDBC URL to use to connect to the database.

is used by a simple rDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.db.passwor dis used by a simple RDBMS implementation. It constitutes the database user

account that containsthe RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.chunk.size isused by the pegasus-rc-client for the bulk insert and delete operations. The

Commands

value determines the number of lines that are read in at a time, and worked
upon at together.

The command line tool provides a simplified shell-wrappable interface to manage a replica catalog backend. The
commands can either be specified in afile in bulk mode, in a pipe, or as additional arguments to the invocation.

Note that you must escape specia characters from the shell.

264

Reference Manual

help
exit , quit
clear

insert <Ifn><pfn> [k=v [...]]

delete <Ifn> <pfn>[k=v[...]]

lookup <Ifn>[<Ifn>[...]]
remove <Ifn> [<Ifn>[...]]

list [Ifn <pat>] [pfn <pat>]
[<name> <pat>]

set [var [valug]]

Database Schema

displays a small resume of the commands.
should only be used in interactive mode to exit the interactive mode.
drops al contents from the backend. Use with special care!

inserts a given Ifn and pfn, and an optional site string into the backend. If the
siteis not specified, anull valueisinserted for the site.

removes a triple of Ifn, pfn and, optionally, site from the replica backend. If
the site was not specified, all matches of the Ifn pfn pairs will be removed,
regardiess of the site.

retrieves one or more mappings for a given Ifn from the replica backend.
removes all mappings for each Ifn from the replica backend.

obtains all matches from the replica backend. If no arguments were specified,
all contents of the replicabackend are matched. Y ou must usetheword Ifn, pfn
or <name> before specifying a pattern. The pattern is meaningful only to the
implementation. Thus, a SQL implementation may chose to permit SQL wild-
card characters. A memory-resident service may chose to interpret the pattern
asregular expression.

sets an interna variable that controls the behavior of the front-end. With no
arguments, all possible behaviors are displayed. With one argument, just the
matching behavior is listed. With two arguments, the matching behavior is set
tothevalue.

The tables are set up as part of the PEGASUS database setup. The files concerned with the database have a suffix

-rc.gql.

Authors

Karan Vahi <vahi at isi dot edu>

Gaurang Mehta<gnet ha at i si

dot edu>

Jens-S. Vockler <voeckl er at isi dot dot edu>

Pegasus Team http://pegasus.isi.edu/

265

http://pegasus.isi.edu/

Reference Manual

Name

pegasus-remove — removes a workflow that has been planned and submitted using pegasus-plan and pegasus-run
Synopsis
pegasus-remove [-d dagid] [-V] [rundir]
Description

The pegasus-remove command remove a submitted/running workflow that has been planned and submitted using
pegasus-plan and pegasus-run. The command can be invoked either in the planned directory with no options and
arguments or just the full path to the run directory.

Options
By default pegasus-remove does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then afull path to the workflow directory needsto
be specified or the dagid of the workflow to be removed.

pegasus-remove takes the following options:

-d dagid, --dagid The workflow dagid to remove

dagid

-v, --verbose Raises debug level. Each invocation increase the level by 1.

rundir Is the full qualified path to the base directory containing the planned workflow DAG and
submit files. Thisis optional if pegasus-remove command is invoked from within the run
directory.

Return Value

If the workflow is removed successfully pegasus-remove returns with an exit code of 0. However, in case of error, a
non-zero exit code indicates problems. An error message clearly marks the cause.

Files
The following files are opened:
braindump Thisfileislocated intherundir. pegasus-remove usesthisfileto find out pathsto severa other files.
Environment Variables
PATH The path variable is used to locate binary for condor _rm.
See Also
pegasus-plan(1), pegasus-run(1)
Authors
Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vockler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

266

http://pegasus.isi.edu

Reference Manual

Name

pegasus-run — executes a workflow that has been planned using * pegasus-plan*.

Synopsis

pegasus-run [-Dproperty=value...][-c propsfile][-d level]
[-V][--grid*][rundir]

Description

The pegasus-run command executes a workflow that has been planned using pegasus-plan. By default pegasus-run
can beinvoked either in the planned directory with no options and arguments or just the full path to the run directory.
pegasus-run aso can be used to resubmit a failed workflow by running the same command again.

Options

By default pegasus-run does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs

to be specified.

pegasus-run takes the following options

-Dproperty=value

-c propsfile, --conf
propsfile

-d level , --debug level
-v, --verbose

--grid

rundir

Return Value

The -D option alows an advanced user to override certain properties which influence
pegasus-run. One may set several CLI properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

See the PROPERT I ES section below.

Provide a property file to override the default Pegasus properties file from the planning
directory. Ordinary users do not need to use this option unless the specifically want to
override several properties

Set the debug level for the client. Default is 0.
Raises debug level. Each invocation increase the level by 1.
Enable grid checks to seeif your submit machineis GRID enabled.

Is the full qualified path to the base directory containing the planned workflow DAG
and submit files. Thisis optiona if the pegasus-run command is invoked from within
the run directory.

If the workflow is submitted for execution pegasus-run returns with an exit code of 0. However, in case of error, a
non-zero return value indicates problems. An error message clearly marks the cause.

Files

The following files are created, opened or written to:

braindump Thisfileislocated in the rundir. pegasus-run uses thisfile to find out paths to
severa other files, properties configurations etc.
pegasus.?????????.properties Thisfileislocated in the rundir. pegasus-run uses this propertiesfile by default

wor kflowname.dag

to configure itsinternal settings.

pegasus-run uses the workflowname.dag or workflowname.sh file and submits
it either to condor for execution or runsit locally in ashell environment

267

Reference Manual

Properties

pegasus-run reads its properties from several locations.

RUNDIR/

--conf propfile

$HOME/.pegasusrc

Environment Variables

The default location for pegasus-run to read the properties from

properties file provided in the conf option replaces the default properties file
used.

will be used if neither default rundir properties or --conf propertiesfile are
found.

Additionally properties can be provided individualy using the -
Dpropkey=propvalue option on the command line before all other options.
These properties will override properties provided using either --conf or
RUNDIR/pegasus.???????.properties or the SHOME/.pegasusrc

The merge logic is CONF PROPERTIES || DEFAULT RUNDIR PROP-
ERTIES || PEGASUSRC overriden by Command line properties

PATH The path variable is used to locate binaries for condor-submit-dag, condor-dagman, con-
dor-submit,pegasus-submit-dag, pegasus-dagman and pegasus-monitord

See Also
pegasus-plan(1)
Authors

Gaurang Mehta<gneht a at i si

dot edu>

Jens-S. Vockler <voeckl er at isi dot edu>

Pegasus Team http://pegasus.isi.edu

268

http://pegasus.isi.edu

Reference Manual

Name
pegasus-s3 — Upload, download, delete objectsin Amazon S3

Synopsis

pegasus-s3 help

pegasus-s3 Is[options] URL

pegasus-s3 mkdir [options] URL...
pegasus-s3 rmdir [options] URL...
pegasus-s3 rm [options] [URL..]
pegasus-s3 put [options] FILE URL
pegasus-s3 get [options] URL [FILE]
pegasus-s3 Isup [options] URL

pegasus-s3 rmup [options] URL [UPLOAD]
pegasus-s3 cp [options] SRC... DEST

Description

pegasus-s3 is a client for the Amazon S3 object storage service and any other storage services that conform to the
Amazon S3 API, such as Eucalyptus Walrus.

Options

Global Options
-h, --help Show help message for subcommand and exit
-d, --debug Turn on debugging
-v, --verbose Show progress messages
-CFILE, -- Path to configuration file
conf=FILE

rm Options
-f, --force If the URL does not exist, then ignore the error.
-F FILE, -- File containing alist of URLsto delete
file=FILE

put Options

-c X, --chunksize=X Set the chunk size for multipart uploadsto X MB. A value of 0 disables multipart uploads.
Thedefaultis10MB, theminis5MB and the max is 1024MB. This parameter only applies
for sites that support multipart uploads (see multipart_uploads configuration parameter
in the CONFIGURATION section). The maximum number of chunks is 10,000, so if
you are uploading alargefile, then the chunk size is automatically increased to enable the
upload. Choose smaller values to reduce the impact of transient failures.

-p N, --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel
uploads with 4 threads. This parameter is only valid if the site supports mulipart uploads
and the --chunksize parameter is not 0. Otherwise parallel uploads are disabled.

-b, --create-bucket Create the destination bucket if it does not already exist
get Options

-c X, --chunksize=X Set the chunk size for paralel downloads to X megabytes. A value of 0 will avoid
chunked reads. This option only applies for sites that support ranged downloads (see
ranged_downloads configuration parameter). The default chunk size is 10MB, the min is

269

Reference Manual

1MB and the max is 1024MB. Choose smaller values to reduce the impact of transient fail-
ures.

-p N, --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel

rmup Options

downloads with 4 threads. This parameter isonly valid if the site supports ranged downloads
and the --chunksize parameter is not 0. Otherwise parallel downloads are disabled.

-a, —-al Cancel al uploads for the specified bucket
cp Options
-C, --create-dest Create the destination bucket if it does not exist.
-r, --recursive If SRC is a bucket, copy all of the keys in that bucket to DEST. In that case DEST must
be a bucket.
-f, --force If DEST exists, then overwriteiit.
Subcommands

pegasus-s3 has several subcommands for different storage service operations.

help

Is

mkdir

rmdir

rm

put

The help subcommand lists al available subcommands.

Thelssubcommand liststhe contentsof aURL. If the URL does not contain abucket, then all the buckets
owned by the user are listed. If the URL contains a bucket, but no key, then all the keysin the bucket are
listed. If the URL contains a bucket and a key, then all keys in the bucket that begin with the specified
key are listed.

The mkdir subcommand creates one or more buckets.

Thermdir subcommand del etes one or more buckets from the storage service. In order to delete abucket,
the bucket must be empty.

The rm subcommand del etes one or more keys from the storage service.

The put subcommand stores the file specified by FILE in the storage service under the bucket and key
specified by URL. If the URL contains a bucket, but not a key, then the file name is used as the key.

If atransient failure occurs, then the upload will be retried severa times before pegasus-s3 gives up
and fails.

The put subcommand can do both chunked and parallel uploadsif the service supports multipart uploads
(seemultipart_uploadsinthe CONFIGURATION section). Currently only Amazon S3 supports mul-
tipart uploads.

This subcommand will check the size of the fileto make sureit can be stored before attempting to storeit.

Chunked uploads are useful to reduce the probability of an upload failing. If an upload is chunked, then
pegasus-s3 issues separate PUT requests for each chunk of the file. Specifying smaller chunks (using --
chunksize) will reduce the chances of an upload failing due to a transient error. Chunksizes can range
from 5 MB to 1GB (chunk sizes smaller than 5 MB produced incomplete uploads on Amazon S3). The
maximum number of chunksfor any singlefileis 10,000, so if alargefile is being uploaded with asmall
chunksize, then the chunksize will be increased to fit within the 10,000 chunk limit. By default, the file
will besplitinto 10 MB chunksif the storage service supports multipart uploads. Chunked uploads can be
disabled by specifying achunksize of 0. If the upload is chunked, then each chunk isretried independently
under transient failures. If any chunk fails permanently, then the upload is aborted.

Parallel uploads can increase performancefor servicesthat support multipart uploads. Inaparallel upload
thefileissplitinto N chunks and each chunk is uploaded concurrently by one of M threadsin first-come,
first-served fashion. If the chunksize is set to O, then parallel uploads are disabled. If M > N, then the

270

Reference Manual

get

Isup

rmup

cp

URL Format

actual number of threads used will be reduced to N. The number of threads can be specified using the --
paralel argument. If --parallel is 1, then only asingle thread is used. The default valueis 4. Thereis no
maximum number of threads, but it islikely that the link will be saturated by 4 to 8 threads.

Under certain circumstances, when amultipart upload failsit could | eave behind data on the server. When
afailure occurs the put subcommand will attempt to abort the upload. If the upload cannot be aborted,
then a partial upload may remain on the server. To check for partial uploads run the Isup subcommand.
If you see an upload that failed in the output of Isup, then run the rmup subcommand to removeit.

The get subcommand retrieves an object from the storage service identified by URL and storesit in the
file specified by FILE. If FILE is not specified, then the key is used asthe file name (Note: if the key has
slashes, then the file name will be arelative subdirectory, but pegasus-s3 will not create the subdirectory
if it does not exist).

If atransient failure occurs, then the download will be retried several times before pegasus-s3 gives up
and fails.

The get subcommand can do both chunked and parallel downloads if the service supports ranged down-
loads (seeranged_downloadsinthe CONFIGURATION section). Currently only Amazon S3 hasgood
support for ranged downloads. Eucalyptus Walrus supports ranged downloads, but the current release,
1.6, is inconsistent with the Amazon interface and has a bug that causes ranged downloads to hang in
some cases. It is recommended that ranged downloads not be used with Eucalyptus until these issues
are resolved.

Chunked downloads can be used to reduce the probability of a download failing. When a download is
chunked, pegasus-s3 issues separate GET requests for each chunk of thefile. Specifying smaller chunks
(using --chunksize) will reduce the chances that a download will fail to do a transient error. Chunk
sizes can range from 1 MB to 1 GB. By default, a download will be split into 10 MB chunks if the site
supports ranged downloads. Chunked downloads can be disabled by specifying a --chunksize of 0. If
a download is chunked, then each chunk is retried independently under transient failures. If any chunk
fails permanently, then the download is aborted.

Parallel downloads can increase performance for services that support ranged downloads. In a parallel
download, the file to be retrieved is split into N chunks and each chunk is downloaded concurrently by
one of M threadsin afirst-come, first-served fashion. If the chunksize is O, then parallel downloads are
disabled. If M > N, then the actual number of threads used will be reduced to N. The number of threads
can be specified using the --parallel argument. If --parallel is 1, then only a single thread is used. The
default value is 4. There is no maximum number of threads, but it islikely that the link will be saturated
by 4 to 8 threads.

The Isup subcommand lists active multipart uploads. The URL specified should point to a bucket. This
command is only valid if the site supports multipart uploads. The output of this command is a list of
keys and upload IDs.

This subcommand is used with rmup to help recover from failures of multipart uploads.

The rmup subcommand cancels and active upload. The URL specified should point to a bucket, and
UPLOAD isthelong, complicated upload ID shown by the Isup subcommand.

This subcommand is used with Isup to recover from failures of multipart uploads.

The cp subcommand copies keys on the server. Keys cannot be copied between accounts.

All URLsfor objects stored in S3 should be specified in the following format:

s3[s]:// USER@S! TE[/ BUCKET[/ KEY]]

The protocol part can be s3:// or s3s://. If s3s:// is used, then pegasus-s3 will force the connection to use SSL and
overridethe setting in the configuration file. If 3:// is used, then whether the connection uses SSL or not is determined
by the value of the endpoint variable in the configuration for the site.

271

Reference Manual

The USER@S TE part isrequired, but the BUCKET and KEY parts may be optional depending on the context.

The USER@SITE portion is referred to as the “identity”, and the STE portion is referred to as the “site”. Both the
identity and the site are looked up in the configuration file (see CONFIGURATION) to determine the parameters
to use when establishing a connection to the service. The site portion is used to find the host and port, whether to
use SSL, and other things. The identity portion is used to determine which authentication tokens to use. This format
is designed to enable users to easily use multiple services with multiple authentication tokens. Note that neither the
USER nor the SITE portion of the URL have any meaning outside of pegasus-s3. They do not refer to real usernames
or hostnames, but are rather handles used to look up configuration values in the configuration file.

The BUCKET portion of the URL isthe part between the 3rd and 4th slashes. Buckets are part of aglobal namespace
that is shared with other users of the storage service. As such, they should be unique.

The KEY portion of the URL is anything after the 4th slash. Keys can include slashes, but S3-like storage services
do not have the concept of a directory like regular file systems. Instead, keys are treated like opague identifiers for
individual objects. So, for example, the keys a/b and a/c have a common prefix, but cannot be said to be in the same
directory.

Some example URLs are:

s3:// ewa@nazon

s3://juve@kynet/ gi deon.isi.edu

s3://juve@ragel | an/ pegasus-i mages/ cent 0s-5. 5- x86_64-20101101. part. 1
s3s:// ewa@mazon/ pegasus-i mages/ data. tar. gz

Configuration

Each user should specify a configuration file that pegasus-s3 will use to look up connection parameters and authen-
tication tokens.

Search Path
This client will look in the following locations, in order, to locate the user’ s configuration file:
1. The-C/--conf argument
2. The S3CFG environment variable
3. $HOME/.pegasus/s3cfg
4. $HOME/.s3cfg

If it does not find the configuration file in one of these locationsit will fail with an error. The $SHOME/.s3cfg location
is only supported for backward-compatibility. $HOME/.pegasus/s3cfg should be used instead.

Configuration File Format
The configuration fileisin INI format and contains two types of entries.

The first type of entry is a site entry, which specifies the configuration for a storage service. This entry specifies the
service endpoint that pegasus-s3 should connect to for the site, and some optional features that the site may support.
Here is an example of asite entry for Amazon S3:

[amazon]
endpoint = http://s3.amzonaws. conl

The other type of entry is an identity entry, which specifies the authentication information for a user at a particular
site. Here is an example of an identity entry:

[pegasus@nazon]
access_key 90c4143642chb097c88f e2ec66cedadde
secret _key a0e3840e5baee6abb08be68e81674dca

Itisimportant to note that user namesand site names used are only |ogical—they do not correspond to actual hostnames
or usernames, but are simply used as a convenient way to refer to the services and identities used by the client.

272

Reference Manual

The configuration file should be saved with limited permissions. Only the owner of the file should be able to read
from it and writeto it (i.e. it should have permissions of 0600 or 0400). If the file has more liberal permissions, then
pegasus-s3 will fail with an error message. The purpose of thisis to prevent the authentication tokens stored in the
configuration file from being accessed by other users.

Configuration Variables

endpoint (site) The URL of the web service endpoint. If the URL begins with https, then SSL
will be used.

max_object_size (site) The maximum size of an object in GB (default: 5GB)

multipart_uploads (site) Does the service support multipart uploads (True/False, default: False)

ranged_downloads (site) Does the service support ranged downloads? (True/False, default: False)

access_key (identity) The access key for the identity

secret_key (identity) The secret key for the identity

Example Configuration

This is an example configuration that specifies a two sites (amazon and magellan) and three identities
(pegasus@nazon,j uve@ragel | an, and voeckl er @magel | an). For the amazon site the maximum object
sizeis 5TB, and the site supports both multipart uploads and ranged downloads, so both uploads and downloads can
be donein parald.

[amazon]

endpoint = https://s3.amazonaws. com
max_obj ect _si ze = 5120

mul tipart_upl oads = True
ranged_downl oads = True

[pegasus@mazon]
access_key = 90c4143642cb097c88f e2ec66cedadde
secret _key = a0e3840e5baee6abb08be68e81674dca

[magel | an]

NERSC Magellan is a Eucal yptus site. It doesn't support nultipart uploads,
or ranged downl oads (the defaults), and the naxi num object size is 5CGB

(al so the default)

endpoint = https://128.55.69. 235: 8773/ servi ces/ Wl rus

[j uve@magel | an]
access_key = quwef ahsdpfw kewgj sdoi j | dsdf
secret _key asdf a9wej al sdj f1j asl dj fasdfa

[voeckl er @magel | an]

Each site can have nultiple associated identities
access_key asdkf aweasdf baei whkj f bagwhei

secret _key asdhf ui nakw el f uhal sdf | ahsdl

Example

List al buckets owned by identity user @amazon:

$ pegasus-s3 |'s s3://user @nmazon

List the contents of bucket bar for identity user @amazon:
$ pegasus-s3 |'s s3://user @mazon/ bar

List all objectsin bucket bar that start with hello:

$ pegasus-s3 | s s3://user @nazon/ bar/hello

Create a bucket called mybucket for identity user @amazon:

$ pegasus-s3 nkdir s3://user @nazon/ nybucket

273

Reference Manual

Delete a bucket called mybucket:

$ pegasus-s3 rndir s3://user @nazon/ nybucket

Upload afile foo to bucket bar:

$ pegasus-s3 putfoo s3://user @nmazon/ bar/f oo

Download an object foo in bucket bar:

$ pegasus-s3 get s3://user @nazon/ bar/foo foo

Upload afilein parallel with 4 threads and 100MB chunks:

$ pegasus-s3 put --parallel 4 --chunksize 100 foo s3://user @nazon/ bar/foo

Download an object in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 get --parallel 4 --chunksize 100 s3://user @nmazon/ bar/foo foo

List al partial uploads for bucket bar:

$ pegasus-s3 | sup s3://user @nazon/ bar

Remove dl partial uploads for bucket bar:

$ pegasus-s3 rnup --all s3://user @mazon/ bar
Return Value
pegasus-s3returns azero exist statusif the operation is successful. A non-zero exit statusisreturned in case of failure.

Author

Gideon Juve <gi deon@ si . edu>

Pegasus Team http://pegasus.isi.edu

274

http://pegasus.isi.edu

Reference Manual

Name

pegasus-sc-client — generates a site catalog by querying sources.

Synopsis

pegasus-sc-client [-Dproperty=value...]

[--source src]
[-gl--grid grid]

[-o]--vo vo]
[-5]--sc scfile]

[-p|--properties propfile]

[-V[|--version]
[-v|--verbose]

[-hl--help]

Description

pegasus-sc-client generates site catalog by querying sources like OSGMM, MY SOG, etc.

Options

-Dproperty=value

--source src
-ggrid, --grid grid

-Ovo, --vO VO

-sscfile, --sc scfile

-p propfile, --properties propfile

-v, --verbose
-V, --version

-h, —-help

Example

The -D option alows an experienced user to override certain properties which
influence the program execution, among them the default location of the user's
properties file and the PEGASUS HOME location. One may set several CLI
properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties
take precedence over the file-based properties of the same key.

the source to query for site information. Valid sources are: OSGMM

the grid for which to generate the site catal og information.

The Virtual Organization (VO) to which the user belongs. The default VO isLI-
GO. Thecollector host should be set by default unless overridden by the property
pegasus.catalog.site.osgmm.collector .host according to the following rules:

¢ if VOisligo then collector host queried is ligo-osgmm.renci.org

« if VO isengage then collector host queried is engage-central.renci.org

« for any other VO, engage-central .renci.org will be queried and in al the paths
the name of the engage VO will be replaced with the name of the VO passed.
e.gif user specifies the VO to be cigi, engage will be replaced by cigi in the
directory paths.

The path to the created site catalog file

Generate aPegasus propertiesfile containing the SRM properties. The properties
fileiscreated only if --sourceis set to OSGMM.

Increases the verbosity of messages about what is going on.
Displays the current version of Pegasus.

Displays all the options to the pegasus-sc-client command.

Runs pegasus-sc-client and generates the site catalog:

275

Reference Manual

$ pegasus-sc-client --source OSGW --sc osg-sites.xm --vo LIGO --grid OSG

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

276

http://pegasus.isi.edu

Reference Manual

Name

pegasus-sc-converter — A client to convert site catalog from one format to another format.
Synopsis

pegasus-sc-converter [-v] [-V] [-h] [-Dproperty=value...]
[-I fmt] [-O fmt]
-i infilef,infile,...] -o outfile

Description

The pegasus-sc-converter program is used to convert the site catalog from one format to another.
Currently, the following formats of site catalog exist.

XML4 Thisformat is a superset of previous formats. All information about a site that can be described about a
site can be described in thisformat. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node. The user can also
specify which different file-servers for read/write operations

A sample entry in this format looks as follows

<site handl e="0sg" arch="x86" os="LINUX" osrel ease="" osversion="" glibc="">

<grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" schedul er ="PBS"
j obt ype="conpute"/>

<grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" schedul er="Fork"
jobtype="auxillary"/>

<directory path="/tnmp" type="local -scratch">
<file-server operation="put" url="file:///tmp"/>
</directory>

<profil e namespace="pegasus" key="styl e">condor</profil e>
<profile namespace="condor" key="universe">vanilla</profile>
</site>

Thisformat conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-4.0.xsd.

XML3 Thisformat is a superset of previous formats. All information about a site that can be described about a
site can be described in thisformat. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node.

A sample entry in this format |ooks as follows

<site handl e="local" arch="x86" os="LI NUX">
<grid type="gt2" contact="viz-login.isi.edul/jobmanager-pbs" schedul er="PBS"
j obtype="conpute"/>
<grid type="gt2" contact="viz-login.isi.edul/jobmanager-fork" schedul er="Fork"
j obtype="auxillary"/>
<head- f s>
<scrat ch>
<shar ed>
<file-server protocol ="gsiftp" url="gsiftp://viz-1ogin.isi.edu" nmount-point="/
scratch">
</file-server>
<i nternal - mount - poi nt nount - poi nt="/scratch" free-size="null" total-size="null"/>
</ shar ed>
</ scratch>
<storage>
<shar ed>
<file-server protocol="gsiftp" url="gsiftp://viz-1ogin.isi.edu" nmount-point="/
scratch">
</file-server>
<i nternal - mount - poi nt nount - poi nt="/scratch" free-size="null" total-size="null"/>
</ shar ed>
</ st or age>
</ head- f s>
<replica-catalog type="LRC' url="rlsn://smarty.isi.edu">
</replica-catal og>

277

http://pegasus.isi.edu/schema/sc-4.0.xsd

Reference Manual

<profile namespace="env" key="GLOBUS_LOCATI ON' >/ nfs/software/gl obus/defaul t</profile>

<profil e namespace="env" key="LD LI BRARY_PATH' >/ nfs/software/ gl obus/defaul t/lib</
profil e>

<profil e nanmespace="env" key="PEGASUS HOVE"' >/nfs/software/pegasus/defaul t</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-3.0.xsd.

Options
-i infilg],infile,...] , --input The comma separated list of input filesthat need to be converted to afilein the
infilel,infile,...] format specified by --oformat option.
-o outfile, --output outfile The output file to which the output needs to be written out to.

Other Options

-O fmt, --oformat The output format of the output file.

i Valid values for the output format isXML3, XML 4.
-v, --verbose Increases the verbosity of messages about what is going on.
By default, all FATAL ERROR, ERROR , WARNINGS and INFO messages are logged.
-V, --version Displays the current version number of the Pegasus Workflow Planner Software.
-h, --help Displays all the options to the pegasus-plan command.
Example
pegasus-sc-converter -i sites.xm -o sites.xm.new -0 XM.3 -vvvvy
Authors

Karan Vahi <vahi at isi dot edu>
Gaurang Mehta<gnehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

278

http://pegasus.isi.edu/schema/sc-3.0.xsd
http://pegasus.isi.edu

Reference Manual

Name
pegasus-statistics — A tool to generate statistics about the workflow run.

Synopsis

pegasus-statistics [-h|--help]
[-o]--output dir]
[-c]--conf propfile]
[-p|--statistics-level level]
[-t|--time-filter filter]
[-i]--ignor e-db-inconsistency]
[-v]--verbose]
[-al--quiet]
[-m]--multiple-wf]
[-pl--ispmc]
[-u]--isuuid]
[[submitdir ..] | [workflow_uuid ..]]

Description

pegasus-statistics generates statistics about the workflow run like total jobs/tasks/sub workflows ran, how many suc-
ceeded/failed etc. It generates job instance statistics like run time, condor queue delay etc. It generates invocation
statistics information grouped by transformation name. It also generates job instance and invocation statistics infor-
mation grouped by time and host.

Options
-h, --help Prints a usage summary with all the available command-line options.
-odir, --output dir Writes the output to the given directory.
-c propfile, --conf propfile The properties file to use. This option overrides all other property files.
-slevel , --statistics-level level Specifies the statistics information to generate. Vaid levels are: all, summa-

ry, wf_stats, jb_stats, tf_stats, and ti_stats. Default is summary. The output
generated by pegasus-statistics is based on the the level set:

« all: generates dl the statistics information.

* summary: generates the workflow statistics summary. In the case of a hier-
archical workflow the summary is across al sub workflows.

« wf_stats: generates the workflow statistics information of each individual
workflow. In case of ahierarchical workflow the workflow statistics are cre-
ated for each sub workflow.

» jb_stats: generates the job statistics information of each individual work-
flow. In case of hierarchical workflow the job statistics is created for each
sub workflows. Note: Not supported when generating statistics over multiple
workflows.

 tf_stats: generates the invocation statistics information of each individual
workflow grouped by transformation name .In case of hierarchical workflow
the transformation statistics is created for each sub workflows.

 ti_stats: generates the job instance and invocation statistics like total count
and runtime grouped by time and host.

-t filter , --time-filter filter Specifies the time filter to group the time statistics. Valid filter values are:
month, week, day, hour. Default is day.

279

Reference Manual

-i, --ignore-db-inconsistency

-v, --verbose

-q, --quiet

-m, --multiple-wf

-p, --ispmc
-u, --isuuid
Example

Turn off the the check for database consistency.

Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

Decreasesthelog level. If omitted, the default level will be set to WARNING.
When this option is given, thelog level is changed to ERROR.

Set this option when generating statistics over more than one workflow. The
tool automatically setsthisflag if multiple submit directories or multiple work-
flow UUIDs are provided. This option would need to be set explicitly only to
generate statisticsover all workflowsin asingle STAMPEDE database. NOTE:
When workflows are specified as UUIDs the --conf options needs to be set for
the tool to determine the STAMPEDE database URL.

Set this flag to generate statistics for workflows which are run with PMC clus-
tering enabled. It is recommended that this option be used when calculating
statistics over multiple workflow runs.

Set this option if the positional argument are workflow UUIDs. NOTE: When
workflows are specified as UUI Dsthe --conf options needsto be set for the tool
to determine the STAMPEDE database URL.

Runs pegasus-statistics and writes the output to the given directory:

$ pegasus-statistics -o /scratch/statistics /scratch/grid-setup/run0001

Runs pegasus-statistics over aworkflow run identified by a single workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0cb602cel

Runs pegasus-statistics over aworkflow run identified by a multiple workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0ch602cel \
7ef 77af 8- 4eb2- 45ca- b37d- c5a02186133a

Runs pegasus-statistics over al workflows in the STAMPEDE database:

$ pegasus-statistics --conf pegasusrc --nultiple-w

Authors

Prasanth Thomas Rajiv Mayani

Pegasus Team http://pegasus.isi.edu

280

http://pegasus.isi.edu

Reference Manual

pegasus-status — Pegasus workflow- and run-time status

Synopsis

pegasus-status [-h|--help]
[-V]--version] [-v]--verbose] [-d|--debug]
[-w]--watch [4]]
[-L |--[no]legend] [-c|--[no]color] [-U[--[no]utf8]
[-Q[--[no]lqueug] [-i]--[no]idl€] [--[no]held]
[--[no]heavy] [-S}--[no]success]
[-j|--jobtype jt] [-s|--site sid]
[-ul--user name]
{ [-I--long] | [-r|--rows] }
[rundir]

Description

pegasus-status showsthe current state of the Condor Q and aworkflow, depending on settings. If novalid rundirectory
could be determined, including the current directory, pegasus-status will show all jobs of the current user and no
workflows. If arun directory was specified, or the current directory isavalid run directory, status about the workflow

will al'so be shown.

Many options will modify the behavior of this program, not withstanding a proper UTF-8 capable terminal, watch
mode, the presence of jobs in the queue, progressin the workflow directory, etc.

Options

-h, --help
-V, --version

-w [sec] , --watch
[sec]

-L, --legend, --
nolegend

-c, --color , --nocol-
or

-U, --utf8, --noutf8

-Q, --queue, --no-
queue

Prints a concise help and exits.
Prints the version information and exits.

This option enables the watch mode. In watch mode, the program repeatedly polls the status
sources and shows them in an updating window. The optional argument sec to this option
determines how often these sources are polled.

We strongly recommend to set thisinterval not too low, as frequent polling will degrade the
scheduler performance and increase the host load. In watch mode, the terminal size is the
limiting factor, and parts of the output may be truncated to fit it onto the given terminal.

Watch modeis disabled by default. The sec argument defaults to 60 seconds.
This option shows alegend explaining the columns in the output, or turns off legends.
By default, legends are turned off to save terminal real estate.

This option turns on (or off) ANSI color escape sequences in the output. The single letter
option can only switch on colors.

By default, colors are turned off, asthey will not display well on aterminal with black back-
ground.

Thisoption turnson (or off) the output of Unicode box drawing characters as UTF-8 encoded
sequences. The single option can only turn on box drawing characters.

The defaults for this setting depend on the LANG environment variable. If the variable con-
tains a value ending in something indicating UTF-8 capabilities, the option is turned on by
default. It is off otherwise.

This option turns on (or off) the output from parsing Condor Q.

281

Reference Manual

-v, --verbose

-d, --debug

-Uu name, --user
name

-i, --idle, --noidle

--held , --noheld

--heavy , --noheavy

- jt, -—-jobtypejt

-sdite, --sitesite

-l, --long
-r, --rows, --
norows

By default, Condor Q will be parsed for jobs of the current user. If aworkflow run directory
is specified, it will furthermore be limited to jobs only belonging to the workflow.

This option increases the expert level, showing more information about the condor_q state.
Being an incremental option, two increases are supported.

Additionally, the signals SGUSR1 and S GUSR2 will increase and decrease the expert level
respectively during run-time.

By default, the simplest queue view is enabled.

Thisisaninternal debugging tool and should not be used outside the development team. As
incremental option, it will show Pegasus-specific ClassAd tuples for each job, more in the
second level.

By default, debug mode is off.

This option permitsto query the queue for a different user than the current one. This may be
of interest, if you are debugging the workflow of another user.

By default, the current user is assumed.
With this option, jobs in Condor state idle are omitted from the queue outpuit.
By default, idle jobs are shown.

This option enables or disabled showing of the reason ajob entered Condor’ s held state. The
reason will somewhat destroy the screen layout.

By default, the reason is shown.

If the terminal is UTF-8 capable, and output is to aterminal, this option decides whether to
use heavyweight or lightweight line drawing characters.

By default, heavy lines connect the jobs to workflows.

This option filters the Condor jobs shown only to the Pegasus jobtypes given as argument
or arguments to this option. It is a multi-option, and may be specified multiple times, and
may use commarseparated lists. Use this option with an argument help to see all valid and
recognized jobtypes.

By default, all Pegasus jobtypes are shown.

This option limits the Condor jobs shown to only those pertaining to the (remote) site site.
Thisisan multi-option, and may be specified multiple times, and may use comma-separated
lists.

By default, al sites are shown.

This option will show oneline per sub-DAG, including one line for the workflow. If thereis
only asingle DAG pertaining to the rundir, only total will be shown.

This option is mutually exclusive with the --rows option. If both are specified, the --long
option takes precedence.

By default, only DAG totals (sums) are shown.

Thisoptionisshowstheworkflow summary statisticsin rowsinstead of columns. Thisoption
isuseful for sending the statistics in email and later viewing them in a proportional font.

This option is mutually exclusive with the --long option. If both are specified, the --long
option takes precedence.

282

Reference Manual

By default, the summary is shown in columns.

-S, --success, --no- Thisoption modifies the previous --long option. It will omit (or show) fully successful sub-
success DAGs from the output.

By default, all DAGs are shown.

rundir This option show statistics about the given DAG that runsin rundir. To gather proper statis-
tics, pegasus-status needs to traverse the directory and all sub-directories. This can become
an expensive operation on shared filesystems.

By default, the rundir is assumed to be the current directory. If the current directory is not
avalid rundir, no DAG statistics will be shown.

Return Value

pegasus-status will typically return success in regular mode, and the termination signal in watch mode. Abnormal
behavior will result in a non-zero exit code.

Example

pegasus-status This invocation will parse the Condor Q for the current user and show all her
jobs. Additionally, if the current directory is a valid Pegasus workflow direc-
tory, totals about the DAG in that directory are displayed.

pegasus-status -l rundir As above, but providing a specific Pegasus workflow directory in argument
rundir and requesting to itemize sub-DAGs.

pegasus-status-j help This option will show all permissible job types and exit.

pegasus-status -vvw 300 -L | Thisinvocationwill parsethe queue, print itin high-expert mode, show legends,

itemize DAG statistics of the current working directory, and redraw theterminal
every five minutes with updated statistics.

Restrictions
Currently only supports a single (optional) run directory. If you want to watch multiple run directories, | suggest to

open multiple terminals and watch them separately. If that is not an option, or deemed too expensive, you can ask
pegasus-support at isi dot edu to extend the program.

See Also

condor_q(1), pegasus-statistics(1)

Authors
Jens-S. Vockler <voeckl er at isi dot edu>
Gaurang Mehta<gnehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

283

http://pegasus.isi.edu/

Reference Manual

Name

pegasus-submit-dag — Wrapper around * condor_submit_dag*. Not to be run by user.

Description

The pegasus-submit-dag is a wrapper that invokes condor_submit_dag. This is started automatically by pega-
sus-run. DO NOT USE DIRECTLY

Return Value

If the workflow is submitted succesfully pegasus-submit-dag exits with O, else exits with non-zero.
Environment Variables

PATH The path variable is used to locate binary for condor _submit_dag and pegasus-dagman
See Also

pegasus-run(1) pegasus-dagman(1)

Authors

Gaurang Mehta<gnehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

284

http://pegasus.isi.edu

Reference Manual

Name

pegasus-tc-client — A full featured generic client to handle adds, deletes and queries to the Transformation Catalog
(TC).

Synopsis

pegasus-tc-client [-Dproperty=value...] [-h] [-V] [-V]
OPERATION TRIGGERS[OPTIONS

Description

The pegasus-tc-client command is a generic client that performs the three basic operation of adding, deleting and
querying of any Transformation Catalog implemented to the TC API. The client implements all the operations sup-
ported by the TC API. It is up to the TC implementation whether they support all operations or modes.

The following 3 operations are supported by the pegasus-tc-client. One of these operations have to be specified to
run the client.

ADD This operation allows the client to add or update entries in the Transformation Catalog. Entries can be
added one by one on the command line or in bulk by using the BULK Trigger and providing afile with
the necessary entries. Also Profiles can be added to either the logical transformation or the physical
transformation.

DELETE Thisoperation allowsthe client to delete entries from the Transformation Catal og. Entries can be del et-
ed based on logical transformation, by resource, by transformation type as well as the transformation
system information. Also Profiles associated with the logical or physical transformation can be deleted.

QUERY This operation allows the client to query for entries from the Transformation Catalog. Queries can be
made for printing all the contents of the Catal og or for specific entries, for all thelogical transformations
or resources etc.

Seethe TRIGGERS and VALID COMBINATIONS section for more details.

Operations

To select one of the 3 operations.

-a, --add Perform addition operations on the TC.

-d, --delete Perform del ete operations on the TC.

-q, --query Perform query operations on the TC.
Triggers

Triggers modify the behavior of an OPERATION. For example, if you want to perform a bulk operation you would
use a BULK Trigger or if you want to perform an operation on a Logical Transformation then you would use the
LFN Trigger.

Thefollowing 7 Triggersareavailable. Seethe VAL ID COMBINATIONS section for the correct grouping and usage.

-B Triggers abulk operation.

-L Triggers an operation on alogical transformation.
-P Triggers an operation on a physical transformation
-R Triggers an operation on aresource.

-E Triggers an operation on a Prcfile.

-T Triggers an operation on a Type.

285

Reference Manual

-S Triggers an operation on a System information.

Options

The following options are applicable for all the operations.

-Dproperty=value

1, --Ifn logical

-p, --pfn physical

-t, --type type

-I', --resour ce resource

-e, --profile profiles

-S, --system systeminfo

-V, --ver bose
-V, --version

-h, --help

Other Options

-0, --oldformat

-c, --conf

Valid Combinations

ADD

The-D options allows an experienced user to override certain propertieswhich
influence the program execution, among them the default location of the user’s
propertiesfileand the PEGA SUShomelocation. Onemay set several CLI prop-
erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
tiesfile property of the same key.

The logica transformation to be added. The format s
NAMESPACE::NAME:VERSION. The name is aways required, name-
space and version are optional.

The physical transformation to be added. For INSTALLED executables its a
local file path, for all othersitsaurl.

The type of physica transformation. Valid vadues ae INS
TALLED, STATIC_BINARY, DYNAMIC_BINARY, SCRIPT, SOURCE,
PACMAN_PACKAGE.

The resourcel D where the transformation is located.

The profiles for the transformation. Multiple profiles of same namespace can
be added simultaneously by separating them with a comma " ,". Each pro-
file section is written as NAMESPACE::KEY=VALUE,KEY2=VALUE2
eg. ENV::JAVA HOVE=/usr/ bin/java2, PEGASUS HOVE=/ usr/
| ocal / pegasus. To add multiple namespaces you need to repeat the -e op-
tion for each namespace. e.g. - € ENV: : JAVA_HOVE=/ usr/ bi n/j ava -
e GLOBUS: : JobType=MPI , COUNT=10

The architecture, os, osversion and glibc if any for the executable. Each system
info iswritten in the form ARCH::OS:OSVER:GLIBC

Displays the output in verbose mode (L ots of Debugging info).
Displays the Pegasus version.

Generates help

Generates the output in the old single line format

path to property file

The following are valid combinations of OPERATIONS, TRIGGERS, OPTIONS for the pegasus-tc-client.

Add TC Entry

Add PFN Profile

-a-l Ifn -p pfn -t type -r resource -s system [-e profiles...]

Adds asingle entry into the transformation catal og.

-a-P-E -p pfn -t type -r resource -e profiles ...

Adds profiles to a specified physical transformation on a given resource and of agiven

type.

286

Reference Manual

DELETE

QUERY

Add LFN Profile

Add Bulk Entries

Deleteall TC

Deleteby LFN

Delete by PFN

Delete by Type

Delete by Resource

Delete by Syslnfo

Delete Pfn Profile

Delete Lfn Profile

Query Bulk

Query LFN

Query PEN

-a-L -E -l Ifn-eprofiles ...
Adds profilesto a specified logical transformation.
-a-B -f file

Adds entries in bulk mode by supplying afile containing the entries. The format of the
file contains 6 columns. E.g.

#RESOURCE ~ LFN PFEN TYPE SYSI NFO PROFI LES

#

isi NS::NAME: VER /bin/date |NSTALLED ARCH::CS: OSVERS: GLI BC
NS: : KEY=VALUE, KEY=VALUE; NS2: : KEY=VALUE, KEY=VALUE

-d -BPRELST

Deletes the entire contents of the TC.
WARNING : USE WITH CAUTION.
-d-L -l Ifn [-r resource] [-t type]

Deletes entries from the TC for a particular logica transformation and additionally
aresource and or type.

-d-P -l Ifn -p pfn [-r resource] [-t type]

Deletes entries from the TC for a given logical and physical transformation and ad-
ditionally on a particular resource and or of a particular type.

-d-T -t type [-r resource]

Deletes entries from TC of a specific type and/or on a specific resource.
-d -R -r resource

Deletes the entries from the TC on a particular resource.

-d -S-ssysinfo

Deletes the entries from the TC for a particular system information type.
-d -P-E -p pfn -r resource -t type [-e profiles ..]

Deletes all or specific profiles associated with a physical transformation.
-d-L -E -l Ifn-eprofiles.....

Deletes al or specific profiles associated with alogical transformation.

-q -B

Queriesfor al the contents of the TC. It produces afile format TC which can be added
to another TC using the bulk option.

-q -L [-r resource] [-t type]

Queries the TC for logical transformation and/or on a particular resource and/or of a
particular type.

-q-P -l Ifn [-r resource] [-t type]

287

Reference Manual

Queries the TC for physical transformations for a give logica transformation and/or
on a particular resource and/or of a particular type.

Query Resource -q-R -l Ifn [-t type]

Queries the TC for resources that are registered and/or resources registered for a spe-
cific type of transformation.

Query LFN Profile -q-L-E-l'lfn
Queries for profiles associated with a particular logical transformation
Query Pfn Profile -q -P -E -p pfn -r resource -t type

Queries for profiles associated with a particular physical transformation

Properties
These are the properties you will need to set to use either the File or Database TC.
For more details please check the SPEGASUS HOM E/etc/sample.propertiesfile.

pegasus.catalog.transfor mation | dentifieswhat impel emntation of TC will be used. If relative nameisused then
the path org.griphyn.cPlanner.tc is prefixed to the name and used as the class
name to load. The default value if Text. Other supported modeis File

pegasus.catalog.transformation.file The file path where the text based TC is located. By default the path
$PEGASUS HOME/var/tc.datais used.

Files
$PEGASUS HOME/var/tc.data isthe suggested |ocation for the file corresponding to the Transformation Cat-
alog
$PEGASUS HOME/etc/proper- is the location to specify properties to change what Transformation Catalog
ties Implementation to use and the implementation related PROPERTI ES.
pegasus,jar contains al compiled Java bytecode to run the Pegasus planner.

Environment Variables
PEGASUS HOME Path to the PEGASUS installation directory.
JAVA_HOME Path to the JAVA 1.4.x installation directory.

CLASSPATH The classpath should be set to contain all necessary PEGA SUS files for the execution environ-
ment. To automatically add the CLASSPATH to you environment, in the $SPEGASUS HOME
directory run the script source setup-user-env.csh or source setup-user-env.sh.

Authors
Gaurang Mehta<gnehta at isi dot edu>
Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

288

http://pegasus.isi.edu

Reference Manual

Name

pegasus-tc-converter — A client to convert transformation catalog from one format to another format.
Synopsis

pegasus-tc-converter [-Dproperty=value...] [-v] [-q] [-V] [-h]
[-I fmt] [-O fmt]
[-N dbusername] [-P dbpassword] [-U dburl] [-H dbhost]
-i infilg],infile,...] -0 outfile

Description
The tc-convert program is used to convert the transformation catalog from one format to another.
Currently, the following formats of transformation catalog exist:
Text Thisis aeasy to read multi line textual format.

A sample entry in this format looks as follows:

tr exanple::keg:1.0 {
site isi {
profile env "JAVA HOVE' "/bin/java. 1. 6"
pfn "/path/tol keg"
arch "x86"
0s "1inux"
osrel ease "fc"
osversion "4"
type "installed"

}

File Thisis atuple based format which contains 6 columns.

RESOURCE LFN PFN TYPE SYSINFO PRCFILES

A sample entry in this format looks as follows

isi exanple::keg:1.0 /path/to/keg |INSTALLED |NTEL32::LINUX: fc_4:
env:: JAVA_HOVE="/bin/java. 1. 6"

Database Only MySQL is supported for the time being.
Options

-Dproperty=value The-D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’ s propertiesfile and
the PEGASUS HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-l fmt, --iformat fmt The input format of the input files. Valid values for the input format are: File, Text,
and Database.

-O fmt --oformat fmt The output format of the output file. Valid values for the output format are: File, Text, and
Database.

-i infilg[,infile,...] --input infile[,infile,...] The comma separated list of input files that need to be converted to afile
in the format specified by the --ofor mat option.

-ooutfile, --output out- The output file to which the output needs to be written out to.
file

289

Reference Manual

Other Options

-N dbusername, --db-user-name
dbusername

-P dbpassword , --db-user-pwd
dbpassword

-U dburl , --db-url dburl
-H dbhost , --db-host dbhost
-v, --verbose
-q, -—-quiet
-V, --version
-h, --help
Example

Text to file format conversion
pegasus-tc-converter -i tc.data

File to Database(new) format con-

version

pegasus-tc-converter -i tc.data
-H l ocal host -O Database -v

Database (username, password,
host, url specified in propertiesfile)

to text format conversion

pegasus-tc-converter

Authors

Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

The database user name.

The database user password.

The database url.
The database host.

Increases the verbosity of messages about what is going on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

Decreasesthe verbosity of messages about what isgoing on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

Displays the current version number of the Pegasus Workflow Planner Soft-
ware.

Displays all the options to the pegasus-tc-converter command.

-l File -o tc.txt -O Text -v

-1 File -N nysql _user -P nysql _pwd -U jdbc:nysql://Iocal host: 3306/tc

-1 Database -0 tc.txt -O Text -vvvvv

290

http://pegasus.isi.edu

Reference Manual

Name
pegasus-transfer — Handles data transfers in Pegasus workflows.
Synopsis
pegasus-transfer [-h]

[-I level] [-f inputfil€]
[--max-attempts attempts]

Description

pegasus-transfer takes alist of url pairs, either on stdin or with an input file, determines the correct tool to use for
thetransfer and executes the transfer. Some of the protocols pegasus-transfer can handle are GridFTP, SRM, Amazon
S3, HTTP, and local cp/symlinking. Failed transfers are retried.

Options
-h, --help Prints a usage summary with all the available command-line options.
-l level , --loglevel level The debugging output level. Valid values are: debug, info, warning, error.
Default valueisinfo.
-f inputfile, --fileinputfile File with input pairs. If not given, stdin will be used.
--max-attempts attempts Maximum number of attempts for retrying failed transfers.
Example

$ pegasus-transfer
file:///etcl/hosts
file:///tmp/foo
CTRL+D

Author

Pegasus Team http://pegasus.isi.edu

291

http://pegasus.isi.edu

Reference Manual

Name

pegasus-version — print or match the version of the toolkit.

Synopsis

pegasus-version [-Dproperty=value] [-m [-q]] [-V] [-f] [-]]

Description

This program prints the version string of the currently active Pegasus toolkit on stdout.

pegasus-version is asimple command-line tool that reports the version number of the Pegasus distribution being used.
In its most basic invocation, it will show the current version of the Pegasus software you have installed:

$ pegasus-version
3.1.0cvs

If you want to know more details about the installed version, i.e. which system it was compiled for and when, use

the long or full mode:

$ pegasus-version

-f

3. 1. 0cvs-x86_64_cent _5.6-20110706191019Z

Options

-Dproperty=value

-f, --full

-l, --long
-V, --version

--verbose

Return Value

The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’ s properties file and
the PEGASUS HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

The --full mode displays internal build metrics, like OS type and libc version, addition
to the version number. It appends the build time as time stamp to the version. The time
stamp uses | SO 8601 format, and isa UTC stamp.

Thisoption isan alias for --full.

Displays the version of the Pegasus planner you are using.

isignored in this tool. However, to provide a uniform interface for al tools, the option
isrecognized and will not trigger an error.

The program will usually return with success (0). In match mode, if the internal version does not match the external
installation, an exit code of 1 isreturned. If run-time errors are detected, an exit code of 2 isreturned, 3 for fatal errors.

Environment Variables

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as
$JAVA_HOME/bin/java.

Example

$ pegasus-version
3.1.0cvs

$ pegasus-version

-f

3.1.0cvs-x86_64_cent _5. 6-20110706191019Z

292

Reference Manual

Authors

Jens-S. Vockler <voeckl er at isi dot edu>

Pegasus Team http://pegasus.isi.edu

293

http://pegasus.isi.edu

Chapter 11. Useful Tips
Migrating From Pegasus 3.1 to Pegasus 4.X

With Pegasus 4.0 effort has been made to move the Pegasusinstallation to be FHS compliant, and to make workflows
run better in Cloud environments and distributed grid environments. This chapter isfor existing users of Pegasus who
use Pegasus 3.1 to run their workflows and walks through the steps to move to using Pegasus 4.0

Move to FHS layout

Pegasus 4.0 isthefirst release of Pegasus which is Filesystem Hierarchy Standard (FHS) [http://www.pathname.com/
fhs/] compliant. The native packages no longer installs under /opt. Instead, pegasus-* binaries are in /usr/bin/ and
example workflows can be found under /usr/share/pegasus/examples/.

To find Pegasus system components, a pegasus-config tool is provided. pegasus-config supports setting up the envi-
ronment for

e Python
o Perl

e Java
* Shell

For example, to find the PY THONPATH for the DAX API, run:

export PYTHONPATH=" pegasus-config --python’

For complete description of pegasus-config, see the man page.

Stampede Schema Upgrade Tool

Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sgl/schema._tool.py or /path/to/pegasus-4.x/share/pegasus/sgl/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQL ite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQL ite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workfl ow directory/w th/3.x.nmonitord. db
Check the db version

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tolthe/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 29: 43. 330476Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |
2012- 02-29T01: 29: 43. 330708Z | NFO
net | ogger . anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |
2012-02-29T01: 29: 43. 348995Z I NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 29: 43. 349133Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema

294

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Useful Tips

| Schena version 3.1 found - expecting 4.0 - database admin will
need to run upgrade tool.

Convert the Database to be version 4.x conpliant

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=sqlite:////tolthe/ workflow directory/wth/
wor kf | ow. st anpede. db
2012- 02- 29T01: 35: 35. 046317Z I NFO netl ogger. anal ysi s. schena. schema_check. SchemaCheck. i nit |
2012- 02-29T01: 35: 35. 046554Z | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |
2012-02-29T01: 35: 35. 064762Z | NFO netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Current version set to: 3.1.
2012- 02-29T01: 35: 35. 064902Z ERROR netl ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schema
| Schema version 3.1 found - expecting 4.0 - database admn will
need to run upgrade tool.
2012- 02-29T01: 35: 35. 065001Z | NFO
net | ogger. anal ysi s. schenma. schenma_check. SchenmaCheck. upgrade_to_4_0
| Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -c connString=sqlite:////tolthe/ workflow directory/wth/

wor kf | ow. st anpede. db

2012- 02-29T01: 39: 17. 218902Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. i nit |

2012- 02-29T01: 39: 17. 219141Z | NFO
net | ogger. anal ysi s. schema. schema_check. SchemaCheck. check_schena. start |

2012- 02-29T01: 39: 17. 237492Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. check_schema |
Current version set to: 4.0.

2012- 02-29T01: 39: 17. 237624Z I NFO netl ogger. anal ysi s. schena. scherma_check. SchemaCheck. check_schema |
Schema up to date.

For upgrading a MySQL dat abase the steps renmin the sane. The only thing that changes is the
connection String to the database
E. g.

/ usr/ shar e/ pegasus/ sql / schema_t ool . py -u connString=nysql ://user nane: passwor d@er ver : port/ dbnane

After the database has been upgraded you can use either 3.x or 4.x clientsto query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer .

Existing users running in a condor pool with a non shared
filesystem setup

Existing users that are running workflowsin acloud environment with anon shared filesystem setup have to do some
trickery inthe site catal og to include placehol dersfor local/submit host paths for execution siteswhen using Condor1O.
In Pegasus 4.0, this has been rectified.

For example, for a 3.1 user, to run on alocal-condor pool without a shared filesystem and use Condor file 10 for file
transfers, the site entry looks something like this

<site handl e="local -condor" arch="x86" os="LI NUX">
<grid type="gt2" contact="|ocal host/jobnmanager-fork" schedul er="Fork" jobtype="auxillary"/>
<grid type="gt2" contact="1ocal host/jobnmanager-condor" schedul er="unknown"

j obt ype="conpute"/>

<head- f s>
<l-- the paths for scratch filesystemare the paths on local site as we execute create dir
job
on local site. Inprovenents planned for 4.0 rel ease.-->
<scratch>
<shared>

<file-server protocol="file" url="file:///" nount-point="/submnit-host/scratch"/>
<i nternal - nount - poi nt nount - poi nt ="/ subni t - host/scratch"/>
</ shar ed>
</ scratch>
<storage>
<shared>
<file-server protocol="file" url="file:///" nount-point="/glusterfs/scratch"/>
<i nternal - nount - poi nt nount - poi nt ="/ gl usterfs/scratch"/>
</ shar ed>
</ st or age>

295

Useful Tips

</ head- f s>

<replica-catalog type="LRC' url="rlsn://dumyVal ue.url.edu" />

<profil e namespace="env" key="PEGASUS HOVE"' >/cl uster-software/pegasus/2.4.1</profil e>
<profil e namespace="env" key="GLOBUS_LOCATI ON' >/cl uster-software/ gl obus/5.0.1</profil e>

<!-- profies for site to be treated as condor pool -->

<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>

<l-- to enable kickstart staging fromlocal site-->
<profil e namespace="condor" key="transfer_executabl e">true</profile>

</site>

With Pegasus 4.0 the site entry for alocal-condor pool can be as concise as the following

<site handl e="condorpool" arch="x86" os="LI NUX">
<head- f s>
<scratch />
<storage />
</ head- f s>
<profil e namespace="pegasus" key="style" >condor</profile>
<profil e namespace="condor" key="universe" >vanilla</profile>
</site>

The planner in 4.0 correctly picks up the paths from thelocal site entry to determine the staging location for the condor
io on the submit host.

Users should read pegasus data staging configuration chapter and also look in the examples directory (share/pega-
sus/examples).

New Clients for directory creation and file cleanup

Pegasus 4.0 has new clients for directory creation and cleanup.
¢ pegasus-create-dir
¢ pegasus-cleanup

Both these clients are python based wrapper scripts around various protocol specific clientsthat are used to determine
what client to pick up.

Table 11.1. Clientsinterfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server
srm-mkdir to create directories against a SRM server.
mkdir to create adirectory on the local filesystem
pegasus-s3 to create a s3 bucket in the amazon cloud

scp staging files using scp

imkdir to create adirectory against an IRODS server

Table 11.2. Clientsinterfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove afile against a gridftp/ftp server. Inthiscase a
zero bytefileis created

srm-rm to removefiles against a SRM server.

rm to remove afile on the local filesystem

296

Useful Tips

Client Used For

pegasus-s3 to remove afile from the s3 bucket.

scp to remove a file against a scp server. In this case a zero
byte fileis created.

irm to remove afile against an IRODS server

With Pegasus 4.0, the planner will prefer to run the create dir and cleanup jobs locally on the submit host. The only
case, where these jobs are scheduled to run remotely iswhen for the staging site, afile server is specified.

Migrating From Pegasus 2.X to Pegasus 3.X

With Pegasus 3.0 effort has been made to simplify configuration. This chapter is for existing users of Pegasus who
use Pegasus 2.x to run their workflows and walks through the steps to move to using Pegasus 3.0

PEGASUS HOME and Setup Scripts

Earlier versions of Pegasus required users to have the environment variable PEGASUS_HOME set and to source
a setup file SPEGASUS_HOME/setup.sh | $PEGASUS_HOME/setup.csh before running Pegasus to setup CLASS-
PATH and other variables.

Starting with Pegasus 3.0 this is no longer required. The above paths are automaticallly determined by the Pegasus
tools when they are invoked.

All the users need to do is to set the PATH variable to pick up the pegasus executables from the bin directory.

$ export PATH=/ sone/install/pegasus-3.0.0/bin: $PATH

Changes to Schemas and Catalog Formats
DAX Schema

Pegasus 3.0 by default now parses DAX documents conforming to the DAX Schema 3.2 available here [http://
pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on API references.

Starting Pegasus 3.0 , DAX generation API's are provided in Java/Python and Perl for users to use in their DAX
Generators. The use of API'sis highly encouraged. Support for the old DAX schema's has been deprecated and will
be removed in afuture version.

For users, who still want to run using the old DAX formatsi.e 3.0 or earlier, can for the time being set the following
property in the properties and point it to dax-3.0 xsd of the installation.

pegasus. schema. dax /sone/install/pegasus-3.0/etc/dax-3.0.xsd

Site Catalog Format

Pegasus 3.0 by default now parses Site Catalog format conforming to the SC schema 3.0 (XML3) available here
[http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-sc-converter that will convert users old site catalog (XML) to the XML3 format.
Sample usageis given below.

$ pegasus-sc-converter -i sanple.sites.xml -1 XM -0 sanple.sites.xm 3 -O XM.3

2010.11.22 12:55:14.169 PST: Witten out the converted file to sanple.sites.xm 3
To use the converted site catal og, in the properties do the following
1. unset pegasus.catalog.site or set pegasus.catalog.site to XML3

2. point pegasus.catalog.site.file to the converted site catalog

297

http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd

Useful Tips

Transformation Catalog Format

Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sanple.tc.data -1 File -o sanple.tc.text -O Text

2010. 11. 22 12:53:16. 661 PST: Successfully converted Transfornmation Catalog fromFile to Text
2010. 11. 22 12: 53: 16. 666 PST: The output transfomation catalog is in file /Ifsl/software/install/
pegasus/ pegasus- 3. 0. Ocvs/ et c/ sanpl e. tc. t ext

To use the converted transformation catal og, in the properties do the following

1. unset pegasus.catal og.transformation or set pegasus.catal og.transformation to Text

2. point pegasus.catal og.transformation.file to the converted transformation catalog

Properties and Profiles Simplification
Starting with Pegasus 3.0 al| profiles can be specified in the propertiesfile. Profiles specified in the propertiesfile have

thelowest priority. Profilesare explained in the detail in the Profileschapter. Asaresult of thisalot of existing Pegasus
Properties were replaced by profiles. The table below lists the properties removed and the new profile based names.

Table 11.3. Table 1: Property Keysremoved and their Profile based replacement

Old Property Key New Property Key
pegasus.local .env no replacement. Specify env profiles for local site in the
site catalog
pegasus.condor.rel ease condor.periodic_release
pegasus.condor.remove condor.periodic_remove
pegasus.job.priority condor.priority
pegasus.condor.output.stream pegasus.condor.output.stream
pegasus.condor.error.stream condor.stream_error
pegasus.dagman.retry dagman.retry
pegasus.exitcode.impl dagman.post
pegasus.exitcode.scope dagman.post.scope
pegasus.exitcode.arguments dagman.post.arguments
pegasus.exitcode.path.* dagman.post.path.*
pegasus.dagman.maxpre dagman.maxpre
pegasus.dagman.maxpost dagman.maxpost
pegasus.dagman.maxidle dagman.maxidle
pegasus.dagman.maxjobs dagman.maxjobs
pegasus.remote.schedul er.min.maxwalltime globus.maxwalltime
pegasus.remote.schedul er.min.maxtime globus.maxtime
pegasus.remote.schedul er.min.maxcputime globus.maxcputime
pegasus.remote.schedul er.queues globus.queue

Profile Keys for Clustering

The pegasus profile keys for job clustering were renamed. The following table lists the old and the new names for
the profile keys.

298

Useful Tips

Table11.4. Table 2: Old and New Names For Job Clustering Profile Keys

Old Pegasus Profile Key

New Pegasus Profile Key

collapse

clusters.size

bundle

clusters.num

Transfers Simplification

Pegasus 3.0 has a new default transfer client pegasus-transfer that is invoked by default for first level and second
level staging. The pegasus-transfer client is a python based wrapper around various transfer clients like globus-url-
copy, lcg-copy, wget, cp, In . pegasus-transfer looks at source and destination url and figures out automatically which
underlying client to use. pegasus-transfer is distributed with the PEGASUS and can be found in the bin subdirectory .

Also, the Bundle Transfer refiner has been made the default for pegasus 3.0. Most of the users no longer need to set
any transfer related properties. The names of the profiles keys that control the Bundle Transfers have been changed .
The following table lists the old and the new names for the Pegasus Profile Keys and are explained in details in the

Profiles Chapter.

Table11.5. Table 3: Old and New Names For Transfer Bundling Profile Keys

Old Pegasus Profile Key

New Pegasus Profile Keys

stageout.remote.clusters

bundle.stagein stagein.clusters | stagein.local.clusters |
stagein.remote.clusters
bundle.stageout stageout.clusters [stageout.local.clusters |

Worker Package Staging

Starting Pegasus 3.0 there is a separate boolean property pegasus.transfer.worker.package to enable work-
er package staging to the remote compute sites. Earlier it was bundled with user executables staging i.e if
pegasus.catalog.tr ansfor mation.mapper property was set to Staged .

Clients in bin directory

Starting with Pegasus 3.0 the pegasus clients in the bin directory have a pegasus prefix. The table below lists the old
client names and new names for the clients that replaced them

Table 11.6. Table 1: Old Client Names and their New Names

Old Client New Client
rc-client pegasus-rc-client
te-client pegasus-tc-client
pegasus-get-sites pegasus-sc-client
sc-client pegasus-sc-converter
tailstatd pegasus-monitord
genstats and genstats-breakdown pegasus-statistics
show-job pegasus-plots
cleanup pegasus-cleanup
dirmanager pegasus-dirmanager
exitcode pegasus-exitcode
rank-dax pegasus-rank-dax
transfer pegasus-transfer

299

Useful Tips

Best Practices For Developing Portable Code

This document lists out issues for the algorithm developers to keep in mind while developing the respective codes.
Keeping thesein mind will alleviate alot of problems while trying to run the codes on the Grid through workflows.

Supported Platforms

Most of the hosts making a Grid run variants of Linux or in some case Solaris. The Grid middleware mostly supports
UNIX and it'svariants.

Running on Windows

The magjority of the machines making up the various Grid sitesrun Linux. In fact, there is no widespread deployment
of a Windows-based Grid. Currently, the server side software of Globus does not run on Windows. Only the client
tools can run on Windows. The algorithm developers should not code exclusively for the Windows platforms. They
must make sure that their codes run on Linux or Solaris platforms. If the code is written in a portable language like
Java, then porting should not be an issue.

If for some reason the code can only be executed on windows platform, please contact the pegasus team at pegasus aT
isi dot edu . In certain casesit is possible to stand up alinux headnode in front of a windows cluster running Condor
asit's scheduler.

Packaging of Software

Asfar as possible, binary packages (preferably statically linked) of the codes should be provided. If for some reason
the codes, need to be built from the source then they should have an associated makefile (for C/C++ based tools) or
an ant file (for Javatools). The building process should refer to the standard libraries that are part of anormal Linux
installation. If the codes require non-standard libraries, clear documentation needs to be provided, as to how to install
those libraries, and make the build process refer to those libraries.

Further, installing software as root is not a possibility. Hence, al the external libraries that need to be installed can
only be installed as non-root in non-standard locations.

MPI Codes

If any of the algorithm codes are MPI based, they should contact the Grid group. MPI can be run on the Grid but the
codes need to be compiled against the installed MPI libraries on the various Grid sites. The pegasus group has some
experience running MPI code through PBS.

Maximum Running Time of Codes

Each of the Grid sites has a policy on the maximum time for which they will allow ajob to run. The algorithms catalog
should have the maximum time (in minutes) that thejob can run for. Thisinformation is passed to the Grid siteswhile
submitting a job, so that Grid site does not kill ajob before that published time expires. It is OK, if the job runs only
afraction of the max time.

Codes cannot specify the directory in which they should be
run

Codes areinstalled in some standard location on the Grid Sites or staged on demand. However, they are not invoked
from directories where they are installed. The codes should be able to be invoked from any directory, aslong as one
can access the directory where the codes are installed.

Thisisespecially relevant, whilewriting scripts around the algorithm codes. At that point specifying the relative paths
do not work. This is because the relative path is constructed from the directory where the script is being invoked. A
suggested workaround is to pick up the base directory where the software is installed from the environment or by

300

Useful Tips

using the dirname cmd or api. The workflow system can set appropriate environment variables while launching jobs
on the Grid.

No hard-coded paths

The agorithms should not hard-code any directory paths in the code. All directories paths should be picked up ex-
plicitly either from the environment (specifying environment variables) or from command line options passed to the
algorithm code.

Wrapping legacy codes with a shell wrapper

When wrapping a legacy code in a script (or another program), it is necessary that the wrapper knows where the
executablelives. Thisisaccomplished using an environmental variable. Be suretoincludethisdetail inthe component
description when submitting a component for use on the Grid -- include a brief descriptive name like GDA_BIN.

Propogating back the right exitcode

A job in the workflow is only released for execution if its parents have executed successfully. Hence, it is very im-
portant that the algorithm codes exit with the correct error code in case of success and failure. The algorithms should
exit with astatus of 0 in case of success, and anon zero statusin case of error. Failure to do so will result in erroneous
workflow execution where jobs might be released for execution even though their parents had exited with an error.

Thealgorithm codes should catch all errorsand exit with anon zero exitcode. The successful execution of thealgorithm
code can only be determined by an exitcode of 0. The algorithm code should not rely upon something being written
to the stdout to designate success for e.g. if the algorithm code writes out to the stdout SUCCESS and exits with a
non zero status the job would be marked as failed.

In *nix, aquick way to seeif acodeis exiting with the correct code is to execute the code and then execute echo $?.

$ conponent-x input-file.lisp
... some output ...

$ echo $?

0

If the code is not exiting correctly, it is necessary to wrap the code in a script that tests some final condition (such as
the presence or format of aresult file) and uses exit to return correctly.

Static vs. Dynamically Linked Libraries

Sincethereisno way to know the profile of the machinethat will be executing the code, it isimportant that dynamically
linked libraries are avoided or that reliance on them is kept to a minimum. For example, a component that requires
libc 2.5 may or may not run on a machine that uses libc 2.3. On *nix, you can use the Idd command to see what
libraries a binary depends on.

If for some reason you install an algorithm specific library in a non standard location make sure to set the
LD LI BRARY_PATH for the agorithm in the transformation catal og for each site.

Temporary Files

If the algorithm codes create temporary files during execution, they should be cleared by the codes in case of errors
and success terminations. The algorithm codes will run on scratch file systems that will also be used by others. The
scratch directories get filled up very easily, and jobs will fail in case of directories running out of free space. The
temporary files are the files that are not being tracked explicitly through the workflow generation process.

Handling of stdio

When writing a new application, it often appears feasible to use stdin for asingle file data, and stdout for asinglefile
output data. The stderr descriptor should be used for logging and debugging purposes only, never to put dataoniit. In
the *nix world, thiswill work well, but may hiccup in the Windows world.

301

Useful Tips

We are suggesting that you avoid using stdio for datafiles, because thereistheimplied expectation that stdio data gets
magically handled. Thereisno magic! If you produce data on stdout, you need to declare to Pegasus that your stdout
has your data, and what LFN Pegasus can track it by. After the application is done, the data product will be aremote
file just like all other data products. If you have an input file on stdin, you must track it in a similar manner. If you
produce logs on stderr that you care about, you must track it in a similar manner. Think about it this way: Whenever
you are redirecting stdio in a*nix shell, you will aso have to specify afile name.

Most execution environments permit to connect stdin, stdout or stderr to any file, and Pegasus supports this case.
However, there are certain very specific corner cases where thisis not possible. For this reason, we recommend that
in new code, you avoid using stdio for data, and provide alternative means on the commandline, i.e. via--input f n
and --output f n commandline arguments instead relying on stdin and stdout.

Configuration Files

If your code requires a configuration file to run and the configuration changes from one run to another, then thisfile
needs to be tracked explicitly via the Pegasus WMS. The configuration file should not contain any absolute paths to
any data or libraries used by the code. If any libraries, scripts etc need to be referenced they should refer to relative
paths starting with a . / xyz where xyz is a tracked file (defined in the workflow) or as $ENV-VAR/xyz where
$ENV- VARIs set during execution time and evaluated by your application code internaly.

Code Invocation and input data staging by Pegasus

Pegasus will create one temporary directory per workflow on each site where the workflow is planned. Pegasus will
stage all thefilesrequired for the execution of the workflow in these temporary directories. Thisdirectory is shared by
all theworkflow componentsthat executed on the site. Y ou will have no control over wherethisdirectory isplaced and
as such you should have no expectations about where the code will be run. The directories are created per workflow
and not per job/alogrithm/task. Suppose there is a component component-x that takes one argument: input-filelisp (a
file containing the data to be operated on). The staging step will bring input-file.lisp to the temporary directory. In
*nix the call would look like this:

$ /nfs/software/conponent-x input-file.lisp

Note that Pegasus will call the component using the full path to the component. If inside your code/script you invoke
some other code you cannot assume a path for this code to be relative or absolute. You have to resovle it either
using a dirname $0 trick in shell assuming the child code is in the same directory as the parent or construct the path
by expecting an enviornment variable to be set by the workflow system. These env variables need to be explicitly
published so that they can be stored in the transformation catal og.

Now suppose that internally, component-x writes its results to /tmp/component-x-results.lisp. Thisis not good. Com-
ponents should not expect that a /tmp directory exists or that it will have permission to write there. Instead, compo-
nent-x should do one of two things: 1. write component-x-results.lisp to the directory whereit is run from or 2. com-
ponent-x should take a second argument output-file.lisp that specifies the name and path of where the results should
be written.

Logical File naming in DAX

The logical file names used by your code can be of two types.
« Without adirectory pathe.g.f. a,f. b etc
e Withadirectory patheg.a/ 1/f.a,b/2/f. b

Both types of files are supported. We will create any directory structure mentioned in your logical files on the remote
execution site when we stage in data as well as when we store the output data to a permanent location. An example
invocation of a code that consumes and produces fileswill be

$/bin/test --input f.a --output f.b
OR

$/bin/test --input a/l/f.a --output b/1/f.b

302

Useful Tips

Note

A logical file name should never be an absolute file path, e.g. /a/1/f.a In other words, there should not be
astarting slash (/) in alogical filename.

303

Chapter 12. Funding, citing, and
anonymous usage statistics

Citing Pegasus in Academic Works

The preferred generic way to cite Pegasusis:
Pegasus. a Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Ewa Deelman, Gurmeet
Sngh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman,

John Good, Anastasia Laity, Joseph C. Jacob, Daniel S. Katz. Scientific Programming Journal, Vol 13(3), 2005,
Pages 219-237.

Usage Statistics Collection

Purpose

Pegasus WMSis primarily aNSF funded project as part of the NSF SI2 [http://www.nsf.gov/funding/pgm_summ.jsp?
pims_id=504817] track. The SI2 program focuses on robust, reliable, usable and sustainable software infrastructure
that is critical to the CIF21 vision. As part of the requirements of being funded under this program, Pegasus WMSiis
required to gather usage statistics of Pegasus WM S and report it back to NSF in annual reports. The metrics will also
enable us to improve our software as they will include errors encountered during the use of our software.

Overview
We plan to instrument and augment the following clients in our distribution to report the metrics.
* pegasus-plan
¢ pegasus-transfer
¢ pegasus-monitord
For the Pegasus WM S 4.2 release, only the pegasus-plan client has been instrumented to send metrics.

All the metrics are sent in JSON format to a server at USC/ISI over HTTP. The datareported is as generic as possible
andislisted in detail in the section titled "Metrics Collected".

Configuration

By default, the clients will report usage metrics to a server at 1Sl. However, users have an option to configure the
report by setting the following environment variables

« PEGASUS METRICS
A boolean value (true | false) indicating whether metrics reporting is turned ON/OFF
¢ PEGASUS USER_METRICS SERVER

A comma separated list of URLSs of the servers to which to report the metrics in addition to the default server.

Metrics Collected

All metrics are sent in JSON format and the metrics sent by the various clients include the following data

304

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817

Funding, citing, and anony-
mous usage statistics

Table 12.1. Common Data Sent By Pegasus WM S Clients

JSON KEY DESCRIPTION

client the name of the client (e.g "pegasus-plan”)

version the version of the client

type type of data- "metrics’ | "error"

start_time start time of the client (in epoch secondswith millisecond
precision)

end_time end time of the client (in epoch seconds with millisecond
precision)

duration the duration of the client

exitcode the exitcode with which the client exited

wf_uuid the uuid of the executable workflow. It is generated by

pegasus-plan at planning time.

Pegasus Planner Metrics

The metrics messages sent by the planner in addition include the following data

Table 12.2. Metrics Data Sent by pegasus-plan

JSON KEY DESCRIPTION
root wf_uuid the root workflow uuid. For non hierarchal workflowsthe
root workflow uuid is the same as the workflow uuid.
data_config the data configuration mode of pegasus

compute_tasks

the number of compute tasks in the workflow

dax_tasks the number of dax tasksin the abstract workflow (DAX)

dag_tasks the number of dag tasks in the abstract workflow (DAX)

total_tasks the number of the total tasks in the abstract workflow
(DAX)

compute_jobs the number of compute jobs in the executable workflow

clustered_jobs the number of clustered jobsin the executable workflow.

Si_tx_jobs the number of data stage-in jobs in the executable work-
flow.

so_tx_jobs the number of data stage-out jobsin the executable work-
flow.

inter_tx_jobs the number of inter site datatransfer jobsin the executable
workflow.

reg_job the number of registration jobs in the executable work-
flow.

cleanup_jobs the number of cleanup jobs in the executable workflow.

create dir_jobs

the number of create directory jobs in the executable
workflow.

dax_jobs the number of sub workflows corresponding to dax tasks
in the executable workflow.

dag_jobs the number of sub workflows corresponding to dag tasks
in the executable workflow.

chmod_jobs the number of jobs that set the xbit of the staged executa-

bles

305

Funding, citing, and anony-
mous usage statistics

JSON KEY DESCRIPTION
total_jobs the total number of jobsin the workflow

In addition if pegasus-plan encounters an error during the planning process the metrics message has an additional field
in addition to the fields listed above.

Table 12.3. Error Message sent by pegasus-plan

JSON KEY DESCRIPTION

error the error payload isthe stack trace of errors caught during
planning

Note

pegasus-plan leaves a copy of the metrics sent in the workflow submit directory in the file ending with
".metrics" extension. As a user you will aways have access to the metrics sent.

306

Chapter 13. Glossary

Glossary

A

C

Abstract Workflow

Concrete Workflow

Condor-G

Clustering

DAGMan

Directed Acyclic Graph (DAG)

DAX

Deferred Planning

Executable Workflow

Full Ahead Planning

Globus

See DAX

See Executable Workflow

A task broker that manages jobs to run at various distributed sites, using
Globus GRAM to launch jobs on the remote sites.http://cs.wisc.edu/condor

The process of clustering short running jobs together into alarger job. Thisis
done to minimize the scheduling overhead for the jobs. The scheduling over-
head is only incurred for the clustered job. For example if scheduling over-
head is x seconds and 10 jobs are clustered into a larger job, the scheduling
overhead for 10 jobs will be x instead of 10x.

The workflow execution engine used by Pegasus.

A graph in which all the arcs (connections) are unidirectional, and which has
no loops (cycles).

The workflow input in XML format given to Pegasus in which transforma-
tionsand filesare represented aslogical names. It isan execution-independent
specification of computations

Planning mode to set up Pegasus. In this mode, instead of mapping the job
at submit time, the decision of mapping ajob to asite is deferred till alater
point, when thejob is about to be run or near to run.

A workflow automatically genetared by Pegasusin which files are represent-
ed by physical filenames, and in which sites or hosts have been selected for
running each task.

Planning mode to set up Pegasus. In thismode, all the jobs are mapped before
submitting the workflow for execution to the grid.

The Globus Alliance is a community of organizations and individuals devel-
oping fundamental technologies behind the "Grid," which lets people share
computing power, databases, instruments, and other on-line tools securely

307

Glossary

Globus Toolkit

GRAM

Grid

GridFTP

Grid Service

Logical File Name

Metadata

Monitoring and Discovery Service

Physical File Name

Partitioner

Pegasus

Replica Catalog

Replica Location Service

Site

across corporate, institutional, and geographi ¢ boundaries without sacrificing
local autonomy.

See Globus Toolkit

Globus Toalkit is an open source software toolkit used for building Grid sys-
tems and applications.

A Globus service that enable users to locate, submit, monitor and cancel re-
mote jobs on Grid-based compute resources. It provides a single protocol for
communicating with different batch/cluster job schedulers.

A collection of many compute resources, each under different administrative
domains connected via a network (usualy the Internet).

A high-performance, secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. It is based upon the Internet FTP proto-
col, and uses basic Grid security on both control (command) and data chan-
nels.

A service which uses standardized web service mechanisms to model and
access stateful resources, perform lifecycle management and query resource
state. The Globus Toolkit includes core grid services for execution manage-
ment, data management and information management.

Theunique logical identifier for adatafile. Each LFN isassociated with aset
of PFN’sthat are the physical instantiations of thefile.

Any attributes of adataset that are explicitly represented in the workflow sys-
tem. These may include provenance information (e.g., which component was
used to generate the dataset), execution information (e.g., time of creation of
the dataset), and properties of the dataset (e.g., density of a node type).

A Globus service that implements a site catal og.

The physical file name of the LFN.

A tool in Pegasus that slices up the DAX into smaller DAX’s for deferred
planning.

A system that maps a workflow instance into an executable workflow to run
on the grid.

A catalog that maps logical file names on to physical file names.

A Globus service that implements areplica catalog

A set of compute resources under a single administrative domain.

308

Glossary

Site Catalog

Transformation

Transformation Catalog

Workflow Instance

A catalog indexed by logical site identifiers that maintains information about
thevarious grid sites. The site catalog can be populated from a static database
or maybe populated dynamically by monitoring tools.

Any executable or code that is run as atask in the workflow.

A catalog that maps transformation names onto the physical pathnames of the
transformation at agiven grid site or local test machine.

A workflow created in Wings and given to Pegasus in which workflow com-
ponents and files are represented as|ogical names. It is an execution-indepen-
dent specification of computations

309

Appendix A. Tutorial VM

Introduction

This appendix providesinformation on how to launch the Pegasus Tutorial VM. The VM isaquick way to get started
using Pegasus. It comes pre-configured with Pegasus, DAGMan and Condor so that you can begin running workflows
immediately.

In the following sections we will cover how to start, log into, and stop the tutorial VM locally, using the VirtualBox
virtualization software, and remotely on Amazon EC2 and FutureGrid.

VirtualBox

VirtualBox is afree desktop virtual machine manager. Y ou can useit to run the Pegasus Tutorial VM on your desktop
or laptop.

Install VirtualBox

First, download and install the Virtual Box platform package from the Virtual Box website: https://www.virtualbox.org

Download VM Image

Next, download the Pegasus Tutorial VM from the Pegasus download page: http://pegasus.isi.edu/downloads

Unzip the downloaded file and move the . virdk fileit contains to somewhere that you can find it later.

Create Virtual Machine

Start VirtualBox. Y ou should get a screen that looks like this:

Figure A.l. VirtualBox Welcome Screen

(’:.._.‘, B WM -__.':,..J_._Iqu\, Manaager

K, Tah™
o

New Settings Start Discard

Welcome to VirtualBox!

The left part of this window is a list of all virtual machines on your
computer. The list is empty now because you haven't created any virtual
machines yet. &

[2=
In order to create a new virtual machine, press T 1\
the New button in the main tool bar located at g
the top of the window.

7
You can press the 387 key to get instant help, or &, ;
visit www.virtualbox.org for the latest -
information and news.

310

https://www.virtualbox.org
http://pegasus.isi.edu/downloads

Tutorial VM

Click on the"New" button. The "Create New Virtual Machine Wizard" will appear:

Figure A.2. Create New Virtual Machine Wizard

Create New Virtual Machine
Welcome to the New Virtual Machine Wizard!
This wizard will guide you through the steps that are necessary to create a new
virtual machine for VirtualBox.
Use the Continue button to go to the next page of the wizard and the Go Back

button to return to the previous page. You can also press Esc if you want to
cancel the execution of this wizard.

Go Back | Continue

Click "Continue" to get to the VM Name and OS Type step:

Figure A.3. VM Nameand OS Type

Create New Virtual Machine

VM Name and OS Type

Enter a name for the new virtual machine and select the type of the guest
operating system you plan to install onto the virtual machine.

The name of the virtual machine usually indicates its software and hardware
configuration. It will be used by all VirtualBox components to identify your
virtual machine.

Name

Pegasus Tutorial

05 Type
Operating System: | Linux = (4
I
Version: | Red Hat (64 bit) |
| GoBack | | Continue

Inthe Namefield type "Pegasus Tutorial". Set the Operating System to "Linux" and the Version to "Red Hat (64 bit)".

Warning

Make sure to select "Red Hat (64 bit)" as the Version. If thisis incorrect the virtual machine may not be
ableto start.

311

Tutorial VM

Click "Continue" to get to the Memory step. Y ou can leave this at the default of 512 MB.

Figure A.4. Memory

Create New Virtual Machine

Memory

Select the amount of base memory (RAM) in megabytes to be allocated to the
virtual machine.

The recommended base memory size is 512 MB.
Base Memory Size
512 MB

4 MB 8192 MB

| GoBack | | Continue

Click "Continue" again to get to the "Virtual Hard Disk" step:

Figure A.5. Virtual Hard Disk

Create New Virtual Machine

Virtual Hard Disk

If you wish you can now add a start-up disk to the new machine. You can either
create a new virtual disk or select one from the list or from another location
using the folder icon.

If you need a more complex virtual disk setup you can skip this step and make
the changes to the machine settings once the machine is created.

The recommended size of the start-up disk is 8.00 GB.
|_/| Start-up Disk

() Create new hard disk
(=) Use existing hard disk

| PegasusTutorialVM-4.0.1.vmdk (Normal, 4.00 GB) &l

| GoBack | | Continue

Leave "Start-up Disk" checked. Choose "Use existing hard disk". Click the folder icon and locate the .vmdk file that
you downloaded earlier.

When you have selected the .vmdk file, choose "Open" and then click "Continue" to get to the Summary page:

312

Tutorial VM

Figure A.6. Summary

Create New Virtual Machine

Summary

You are going to create a new virtual machine with the following parameters:

Name: Pegasus Tutorial

05 Type: Red Hat (64 bit)

Base Memaory: 512 MB

Start-up Disk: PegasusTutorialVM-4.0.1.vmdk (Normal, 4.00 GB)

If the above is correct press the Create button. Once you press it, a new virtual
machine will be created.

Note that you can alter these and all other setting of the created virtual machine
at any time using the Settings dialog accessible through the menu of the main
window.

| CoBack | | Create |

Click "Create". You will get back to the welcome screen showing the new virtual machine:

Figure A.7. Welcome Screen with new virtual machine

Oracle VM VirtualBox Manager

2 @ 2

New Settings Start Discard

JE#@‘ @gasus Tutorial | = General = Preview
Mame: Pegasus Tutorial

0S Type: Red Hat (64 bit)

fﬂ Details

@ Snapshots

System Pegasus Tutorial
Base Memory: 512 MB
Boot Order: Floppy,

CD/DVD-ROM,

Hard Disk

Acceleration: VT-x/AMD-V,

Display

Video Memory: 12 MB
Remote Desktop Server: Disabled

P

Click on the name of the virual machine and then click "Start". After afew secondsyou should get to the login screen:

313

Tutorial VM

Figure A.8. Login Screen

ent03 release 6.3 (Final)
kKernel 2.6.32-279.2.1.el6.xB6_64 on an xBb_64

localhost login: _

B0 2: 003 FlLeft 8
Loginasuser "tutorial" with password "pegasus’.

After you log in you can return to the tutorial chapter to complete the tutorial .

Terminating the VM

When you are done with the tutorial you can shut down the VM by typing:

$ sudo /sbi n/ power of f
at the prompt and then enter the tutorial user's password.

Alternatively, you can just close the window and choose "Power off the machine".

Amazon EC2

In order to launch the tutorial VM you need to sign up for an Amazon Web Services account here: http://
aws.amazon.com

Launching the VM

Once you have an account, sign into the AWS Management Console at this URL: http://console.aws.amazon.com.
You will get a page that looks like this:

314

http://aws.amazon.com
http://aws.amazon.com
http://console.aws.amazon.com

Tutorial VM

Figure A.9. AWS Management Console

600 {0 AWS Management Console | % |
€« € | & hitps://console.aws.amazon.com/console/home T A
W Services v Edgitshorcut~ | @D EC2 | § aM | WM s3 | & CloudWateh EwaDeelman ~ Help ~
=
Welcome Amazon Web Services Announcements
The AWS Management Console Compute & Networking Deployment & Management Annwndiﬂgz High IO Instances for
provides a graphical interface to . EC2 m CloudFormation
Amazon Web Services. Leam more Virtual Servers in the Cloud Ema‘lon AWS ghadws Metrics for EC2 Status
about how lo use our services to o Elastic MapReduce CloudWatch
meet your needs, or get started by WP managed Hadoop Framework ‘ c»uumﬁa o icaton Easily DrgEsmgn Your Emalls with
selecting a service. Route 53 Monitoring
Scalable Domain Name System Elastic B talk More...
astic Beans
. . s VPC : AWS Application Gontainer
Getting started guides "W¥ isolated Cloud Resources AM e
Reference architectures . ? Sacure AWS Access Control Sewlce HBE nh Edit
Storage & Content Delivery
Free Ui Tier & CloudFront Apo Services Click Edit to add at least one
"g® Gicbal Content Dalivery Network service and at least one region fo
CloudSearch monitor.
gc?al ble Storage in the Cloud Managad Search Sanice
n
Set Start Page able Storage In the Clou SES Service Health Dashboard
- ISEgra?: Gatewally - Email Sending Sarvice
Console Home -~ In rates on-premises
= environments with Cloud storage SNS
Push Notification Service
Database 5Qs
Message Queue Service
DynamoDB
(o~ AWS Marketplace . Predictable and Scalable NoSQL SWF
Find & buy software, launch Data Store Workflow Service for S
with 1-Click and pay by the ElastiCache ?"‘“"“":@ Application
hour. In-Memory Cache -
3
[] RDS ¥
| Rt e e e 1]
© 2008 - 2012, Amazon Web Services LLC or its affiliates. All rights reserved. | Feedback | Support | Privacy Policy | TermsofUse | An amazonocom. company

Choose the "EC2" icon under "Amazon Web Services'

Figure A.10. EC2 Management Console

o066

«

1}l EC2 Management Console

x

. You will get this page:

C | @ hitps://console.aws.amazon.com/ec2/home?region=us-west-2&#

r

vl N

Region:

[E USWest (Oregon) ~

Services ~

EditShoncut ~ |) EC2 |

Getting Started

T iaM | M s3 | B CloudWatch

= My Resources

Ewa Deelman v

EC2 Dashboard

You are using the following Amazon

2 Refresh

To start using Amazon EC2 you will want to

Events launch a virtual server, known as an Amazon
=) INSTANCES EC2 instance.
Instances
Spot Requests Launch Instance |
Reserved Instances
Note: Your instances will launch in the US
= IMAGES
West region.
AMIs (Oregon) regl
Bundle Tasks
= ELASTIC BLOCK STORE Service Health -
Volumes
Snapshots Service Status
= NETWORK & SECURITY Current Status Details
Security Groups & Amazon EC2 (US West - Oregon) [Resolved]
Internet
Elastic IPs Connectivity
Placement Groups and
Load Balancers Elevated
APL
Key Poire latencies.

Network Interfaces

© 2008 - 2012, Amazon Web Services LLC or its affiliates. All rights reserved. Feedback Support

» View complete service health details

Availability Zone Status

EC2 resources in the US West (Oregon)
region:

i@ 2 Running Instances § O Elastic IPs

10 EBS Volumes [9 EBS Snapshots

® 4 Key Pairs ,*;l:ll.oad Balancers

5] Placement Groups () 5 Security Groups
A\ Not supported

Events =

& US West (Oregon): No events

. Refresh

Related Links =

-

Getting Started Guide

> Documentation

* All EC2Z Resources

* Find software on AWS Marketplace

Privacy Policy Terms of Use

Help ~

Amazon EC2 Console Dashboard

™y

[« T

An amazoncom. company

4

315

Tutorial VM

First, make sure the “Region:” drop-down in the upper left-hand corner is set to “US West (Oregon)”.

Click on the “AMIs” link on the left side and set “Viewing:” to “All Images’, “All Platforms’, and type “Pegasus
Tutorial VM” in the search box:

Figure A.11. Locating the Tutorial VM

EC2 Management Console

&« & https://console.aws.amazon.com/ec2 /home?region=us-west-2&#s=Images qj‘\? @ \j ‘\
.I Services ~ Edit Shortcut ~ . EC2 | ? 1AM | ' 83 | 5 CloudWatch gideon @ pegasus ¥ Help ~
WEVIGEHOm | KREZGH Wachine Tmeges
Region: ifiLaunch _iSpotRequest | [ARegister New AMI || [De-regisier (L Permissions [TiShow/Hide || Refresh || i@Help
= -
— US West (Qregon) Viewing: | All Images + || All Platforms + | Pegasus Tuterial VM € &€ 1to2of2AMIs 5% 5|

EC2 Dashboard
Events

INSTANCES
Instances

Spot Requests
Reserved Instances
IMAGES

AMIs

Bundie Tasks
ELASTIC BLOCK STORE
Volumes
Snapshots

NETWORK & SECURITY

“® AMIID
@ ami-64c84754 405596411149/Pegasus Tutorial VM 4.0.1a
@] ami-68c04758 405596411149/Pegasus Tutorial VM 4.0.1b

Name Source

| Pegasus Tutorial VM 4.0.1a
Pegasus Tutorial VM 4.0.1b

<

1 EC2 Amazon Machine Image selected
@ EC2 Amazon Machine Image: ami-68c94758

Description Tags

Security Groups
Elastic IPs
Placement Groups

AMI ID: ami-68c94758

AMI Name: Pegasus Tuterial VM 4.0.1b

Load Balancers

Description: Pegasus Tutorial VM 4.0.1b

Key Pairs 405596411149/Pegasus Tutorial VM 4.0.1b

Network Interfaces

Source:

Owner: A ik Bskalin Pl sk P

© 2008 - 2012, Amazon Web Services LLC or its affiliates. All rights reserved. Feedback = Support | Privacy Policy | Terms of Use

An amazoncom. comnany

You will see several versions of the VM. If you don't see any AMIs named “Pegasus Tutorial VM” you may need to
click the Refresh button. We update the VM regularly, so your search results will not match the picture above.

Check the check box next to the latest Pegasus Tutorial VM and click the “Launch” button. The "Request Instances
Wizard" will pop up:

316

Tutorial VM

Figure A.12. Request Instances Wizard: Step 1

Request Instances Wizard Cancel %

INSTANCE DETAILS

Provide the details for your instance(s). You may also decide whether you want to launch your instances as "on-demand"” or "spot®
instances.

Number of Instances: 4 Instance Type: Large (m1.large, 7.5 GIB) -

® Launch Instances

EC2 Instances let you pay for compute capacity by the hour with no long term commitments. This transforms what are
commonly large fixed costs into much smaller variable costs.

Launch into: ®Ec2 OvpC

Availability Zone: [Mo Preference |

O Request Spot Instances

. Back | continue | |

In the first step of the Request Instances Wizard choose the “Large” instance type and click “ Continue”:

Figure A.13. Request Instances Wizard: Step 2

Request Instances Wizard Caneel | %

CH N AM INSTANCE DETAILS

Number of Instances: 1 Availability Zone: No Preference

Advanced Instance Options

Here you can choose a specific kernel or RAM disk to use with your instances. You can also choose to enable CloudWatch Detailed
Monitoring or enter data that will be available from your instances once they launch.

Kernel 1D: ("Use Default 2] RAM Disk 1D: [Use Default %)

Monitoring: [Enable CloudWatch detailed monitoring for this instance
(additional charges will apply)

User Data:
@ as text
p
O as file
as ([base64 encoded
Termination O prevention against accidental termination. Shutdown Behavior: | stop 2
Protection:

IAMRole: @ [None &)

< Back

Don’'t change anything on the “ Advanced Instance Options’ step and click “ Continue’:

317

Tutorial VM

Figure A.14. Request Instances Wizard: Step 3

Request Instances Wizard Cancel | %
CHOOSE AN AM INSTANCE DETAILS

Number of Instances: 1

Availability Zone: No Preference

Storage Device Configuration

Your instance will be launched with the following storage device settings. Edit these settings to add EBS volumes, instance store

volumes, or edit the settings of the root volume.

® Root Volume | (D EBS Volumes | O Instance Store Volumes

Optionally edit the the root volume of your instance.

: 0 A Delete on
Volume Size: 10 [GiB Termination: ¥
Device: /dev/sda1 ([E save
Type Device Snapshot ID Size Delete on Termination
Root fdev/sdal snap-1f2bd675 10GiB true
Continue L4

< Back

On the" Storage Device Configuration” step make sure“Delete on Termination” isset to "true”, then click “ Continue”:

Figure A.15. Request Instances Wizard: Step 4

Request Instances Wizard Caneel | %

{OOSE AN AM INSTANCE DETAILS

Add tags to your instance to simplify the administration of your EC2 infrastructure. A form of metadata, tags consist of a
case-sensitive key/value pair, are stored in the cloud and are private to your account. You can create user-friendly names
that help you organize, search, and browse your resources. For example, you could define a tag with key = Name and
value = Webserver. You can add up to 10 unigue keys to each instance along with an optional value for each key. For

more information, go to Using Tags in the EC2 User Guide.

Key (127 characters maximum) Value (255 characters maximum) Remove
MName Pegasus Tutorial b 4
P4

Add another Tag. (Maximum of 10)

« Back

On the next step type “ Pegasus Tutorial” into the “Value” field and click “Continue™:

318

Tutorial VM

Figure A.16. Request Instances Wizard: Step 5

Request Instances Wizard Cancel X

CHOOSE AN AMI INSTANCE DETAILS CREATE KEY PAIR

Public/private key pairs allow you to securely connect to your instance after it launches. To create a key pair, enter a name and click
Create & Download your Key Pair. You will then be prompted to save the private key to your computer. Note, you only need to
generate a key pair once - not each time you want to deploy an Amazon EC2 instance.

® Choose from your existing Key Pairs

Your existing Key Pairs*: | gijeon-keypair-oregon +

O Create a new Key Pair
O Proceed without a Key Pair

< Back

On the next page choose one of your existing key pairs and click “Continue’. If you don't have an existing key pair
you can also choose “Proceed without a Key Pair” (you will log in with a username/password).

Figure A.17. Request Instances Wizard: Step 6
Request Instances Wizard Cancel | %

CONFIGURE FIREWALL
Security groups determine whether a network port is open or blocked on your instances. You may use an existing security group, or we

can help you create a new security group to allow access to your instances using the suggested ports below. Add additional ports now or
update your security group anytime using the Security Groups page.

(O Choose one or more of your existing Security Groups

(») Create a new Security Group

Group Name Pegasus Tutorial

Group Description 38H

Inbound Rules

Create a [Custom TCP rule =] TCP
le:

new rule Port (Service) Source Action
Port range: 22 :

(o3, 80 or 49152-65933) 22 (SSH) 0.0.0.0/0 Delete
Source: 0.0.0.0/0

(e.g., 192.168.2.0/24, sg-47ad482e, or

1234567890/default)

oF Add Rule

319

Tutorial VM

On the next page choose “ Create a new Security Group”. Name the security group “Pegasus Tutoria” and give it a
description. Create an inbound TCP rule to allow connections on port 22 (SSH) from source 0.0.0.0/0 and click "Add
Rule". Then click “Continue”.

Note that you will only need to create this security group once. If you launch the Pegasus Tutoria VM again the
security group should appear in the list of existing security groups.

Figure A.18. Request Instances Wizard: Step 7

Request Instances Wizard Cancel X

Please review the information below, then click Launch.

AMI: A
- Other Linux AMI ID ami-8643ccb6 (x86_64) Edit AMI

Number of Instances:
Availability Zone:
Instance Type:
Instance Class:

Monitoring:

1
No Preference
Large (m1l.large)

On Demand Edit Instance Details

Termination

Disabled Protection: Disabled
Tenancy: Default
Kernel ID: Use Default Shutdown Behavior: Stop
RAM Disk ID: Use Default

Network Interfaces:
Secondary IP

Addresses:
User Data:
IAM Role: Edit Advanced Details
Key Pair Name: gideon-keypair-oregon Edit Key Pair
Security Group(s): sg-ec29bfdc Edit Firewall

< Back fach |

On the last step of the wizard validate your selections and click “Launch”.

320

Tutorial VM

Figure A.19. Running I nstances

aala

EC2 Management Console

L C' A hitps://console.aws.amazon.com/ec2 /home?region=us-west-2&#s=Instances w7 N
i" Services v Edit Shoricut ~ | ‘ EC2 ? 1AM ‘ 83 | ‘, CloudWatch Ewa Deelman ~ Help ~
Nvaton —— oy matances
Region: ifiLaunch Instance | Instance Actions | « [Iishow/Hide || ¥’ Refresh | @Help

==} - ; — — |
| US West (Oregon) v g: | Running Instances +|(All Instance Types. + | Pegasus Tutorial € € 1tolofllnstances » 3|
EC2 Dashboard Name * Instance AMI ID Root Device Type State Status Checks
Evants ¥ | Pegasus Tutorial gl i-€07cd0da ami-8643ccbB ebs milarge @ running Loading..
= INSTANCES
Instances
Spot Requests

Reserved Instances
1 EC2 Instance selected.
= IMAGES

AMIs | @l EC2 Instance: Pegasus Tutorial (i-e97cd0da)

Bundle Tasks ec2-50-112-45-59,us-west-2.compute.amazonaws.com
= ELASTIC BLOCK STORE

Volumes Description || Status Checks || Monitoring || Tags |

Snapshots AMI:

Al H]
. Pegasus Tutorlal (ami-B8643ccb6) farm Status nane
+ NETWORK & SECURITY

Security Groups:

Foomt ub-west-28 Pegasus Tutorial. view rules

Type: m1l.large State: running

Scheduled Events: No scheduled events Owner: 405596411149

VPC ID: - Subnet ID:

Source/Dest. Check: Virtualization: paravirtual a
Placement Groun: Reservation: r-c514defs 1

@ 2008 - 2012, Amazon Web Services LLC or its affiliates. All rights reserved. Feedback Support Privacy Policy Terms of Use An amazoncom. company

Finally, navigate to the “Instances” section and check the checkbox next to the “ Pegasus Tutoria” instance. Copy the
DNS name to the clipboard. In this example the name is: ec2-50-112-45-59.us-west-2.compute.amazonaws.com.
Yourswill almost surely be different.

At this point your VM will take a few minutes to boot. Wait until the “ Status Checks’ column reads: “2/2 checks
passed” before continuing. Y ou may need to click the Refresh button.

Logging into the VM
Log into the VM using SSH. The username s ‘tutorial’ and the password is ‘ pegasus'.

On UNIX machines such as Linux or Mac OS X you can log in via SSH by opening aterminal and typing:

$ ssh tutorial @c2-50-112-45-59. us-west - 2. conput e. anazonaws. com

The authenticity of host 'ec2-50-112-45-59. us-west-2. conpute. amazonaws. com (50. 112.45.59)' can't be
est abl i shed.

RSA key fingerprint is 56:b0:11: ba: 8f:98: ba: dd: 75: f 6: 3c: 09: ef : b9: 2a: ac.

Are you sure you want to continue connecting (yes/no)? yes

tutorial's password: pegasus

[tutorial @ocal host ~]$

where “ec2-50-112-45-59.us-west-2.compute.amazonaws.com” is the DNS name of your VM that you copied from
the AWS Management Console.

If you are on Windows you will need to install an SSH client. You can download the PUTTY SSH client and find
documentation for how to configure it here: http://www.chiark.greenend.org.uk/~sgtatham/putty

Shutting down the VM

When you are finished with the tutorial, make sure you terminate the VM. If you forget to do this you will be charged
for all of the hours that the VM runs.

To terminate the VM click on “Instances’ link on the left side of the AWS Management Console, check the box next
to the “Pegasus Tutorial” VM, and click “Instance Actions’-->“Terminate”:

321

http://www.chiark.greenend.org.uk/~sgtatham/putty

Tutorial VM

Figure A.20. Terminate I nstance

000/ 7 EC2 Management Console % \'\\ -

€ C @ https://console.aws.amazon.com/ec? /home’region=us-west-2&#s=Instances WA
B Services v | Egnsrorcut~ | @ EC2 | § 1AM | M S3 | M CloudWatch Ewa Deslman ~ Help ~
Instance Management
|| #Launchinstance | connect [T3showiMide || Refresh || @Help |
[E USWest(Oregon) Get System Log
| View Running I Pegasus Tutorial
wing (Sunning | Get Windows Admin Password tol | TS diotiortmances | 1
EC2 Dashboard Name Create Image (EBS AMI) Root Device Type State Status Checks
Evants ¥ Pegasus Tutor \dd/Edit Tags sbs milarge) running & 22 checks passed
= INSTANCES Change Security Group
Change Source/Dast. Check
Instances)
s asts Bundie Instance (instance store AMI)
pot Raqu Launch More Like This J
fRSen Vel ISt ca 1 EC2 Instancasd D'S2ssociate IP Address =
= IMAGES Change Termination Protection
AMIs | @l EC21Insta] View/Change User Data)
Bundie Tasks Change Instance Type
" €c2-50-112-4] gange Shutdown Behavior Aws.com
— \J
ELASTIC BLOCK STORE Description I Attach Network Interface
Volumes Detach Network Interface
Snapshots AMI; s Tutorial Manage Private 1P Addresses Alarm Status: none
+ NETWORK & SECURITY
Zone: Instance Actions Security Groups:
Terminate Pegasus Tutorial, view rules
Type: Reboot State: running
Scheduled Eve| :::rpt Owner: 405596411149
VPC ID: Subnet ID: =
M
Source/Dest. (CloudWatch Monitoring Virtualization: paravirtual L:
& Enable Detailed Monitoring 7
t a 1 . a Reservation: r-c514deff
Disable Detailed Monitoring
© 2008 - 2012, Amazon Web Services LLC or its aﬂ’1 Add/Edit Alarms Lpport Privacy Policy Terms of Use An amazon.com. company

Then click "Yes, terminate”:

Figure A.21. Yes, Terminate I nstance

000/ 7 EC2 Management Console x"\)

€ -

A

C' @ https://console.aws.amazon.com/ec /home?region=us-west-2&#s=Instances

7N

Terminate Instances

Cancel x|

Are you sure you want to terminate this instance?

Warning: On an EBS-backed instance, the default action is for
the root EBS volume to be deleted when the instance is
terminated. Storage on any local drives will be lost.

* i-e97cdOda (Pegasus Tutorial)

Clean up associated resources
Assoclated resources may Incur costs after this instance is
terminated

» Delete EBS volumes

322

Tutorial VM

FutureGrid

The FutureGrid Project (https://portal .futuregrid.org) is a cloud computing testbed supported by the National Science
Foundation. It consists of a collection of computational, networking, and storage resources located throughout the
United States. The goal of the FutureGrid Project is to study the behavior and usefulness of cloud computing tech-
nologies. It provides a platform where researchers can experiment with different cloud technologies.

Getting Started

The Pegasus Tutorial VM has been deployed to the FutureGrid "India" site using OpenStack. In order to launch the
VM, you will need to have a FutureGrid account. Y ou can get one by going to https://portal .futuregrid.org and either
joining an existing project, or starting a new project.

If you are not familiar with using OpenStack on FutureGrid, we recommend that you review the "Using OpenStack
on FutureGrid" tutorial found here: https://portal .futuregrid.org/tutorial sopenstack.

Launching the VM

First, log into the India site using your FutureGrid username and password:

$ ssh USERNAME@ ndi a. futuregrid.org

If you have not already done so, source the novar c file that contains your OpenStack credentials:

$ source ~/.futuregrid/ openstack/novarc

Also, load the euca200ls module to add them to your environment:

$ nodul e | oad euca2ool s

Next, query OpenStack to find the latest Pegasus Tutorial VM image:

$ euca-describe-inages | grep PegasusTutorial VM
| MAGE ami - 0000003e j uve/ PegasusTutorial VM 4.0. 1. fg. mani fest.xnm avail able public x86_64 ...

Find the image ID (ami-0000003e in the example above). If you get multiple results, use the latest version.

Launch the tutorial VM using the euca- r un-i nst ances command with theimage ID you found in the previous
step:

$ euca-run-instances ami - 0000003e
RESERVATI ON r-y9ueOrs7 461884eef 90047f bb4eb9ec92f 22ale3 defaul t
| NSTANCE i -00000c38 ami - 0000003e server-3128 server-3128 pendi ng

Note the instance ID (i-00000c38 in the example). Monitor the status of your VM by invoking the euca- de-
scri be-i nst ances command periodically with the instance ID until the VM status changes from "pending” to
"running":

$ euca-describe-instances i-00000c38
RESERVATI ON r-y9ueOrs7 461884eef 90047f bb4eb9ec92f 22ale3 def aul t

| NSTANCE i -00000c38 ami - 0000003e server-3128 server-3128 pendi ng

$...

$ euca-describe-instances i-00000c38

RESERVATI ON r-y9ue0Ors7 461884eef 90047f bb4eb9ec92f 22ale3 def aul t

| NSTANCE i -00000c38 ami - 0000003e 149. 165. 158. 123 server-3128 runni ng

Note down the I P address of the instance (149.165.158.123 in the exampl€). Log into the VM as the tutorial user:

$ ssh tutorial @49. 165. 158. 123
The password is "pegasus’.
At this point you should return to the tutorial chapter and complete the tutorial.

Terminating the VM

Log out of the VM by typing:

323

https://portal.futuregrid.org
https://portal.futuregrid.org
https://portal.futuregrid.org/tutorials/openstack

Tutorial VM

$ exit

Using the instance ID you found in the last section (NOT the image ID), terminate the VM by typing:

$ euca-ternm nate-instances i-00000c38
I NSTANCE i -00000c38

When you invoke euca- descri be-i nst ances you should no longer see the VM running (you should not get
any output):

$ euca-describe-instances i-00000c38
$

324

