
Pegasus 4.5.2 User Guide

Pegasus 4.5.2 User Guide

iii

Table of Contents
1. Introduction . 1

Overview and Features . 1
Workflow Gallery . 2
About this Document . 2

2. Tutorial . 3
Introduction . 3
Getting Started . 3
Generating the Workflow .. 3
Information Catalogs . 5

The Site Catalog . 5
The Transformation Catalog . 6
The Replica Catalog . 7

Configuring Pegasus . 7
Planning the Workflow .. 7
Submitting the Workflow .. 8
Monitoring the Workflow .. 9
Debugging the Workflow .. 9
Collecting Statistics . 10
Workflow Dashboard . 12
Conclusion . 21

3. Installation . 22
Prerequisites . 22
Optional Software . 22
Environment . 22
Native Packages (RPM/DEB) .. 23

RHEL / CentOS / Scientific Linux .. 23
Debian . 23

Pegasus from Tarballs . 23
4. Creating Workflows .. 25

Abstract Workflows (DAX) .. 25
Data Discovery (Replica Catalog) . 27

File . 27
Regex .. 28
Directory . 29
JDBCRC .. 29
MRC .. 30

Resource Discovery (Site Catalog) . 31
XML4 .. 31
XML3 .. 33
Site Catalog Converter pegasus-sc-converter . 34

Executable Discovery (Transformation Catalog) . 35
MultiLine Text based TC (Text) . 35
Singleline Text based TC (File) . 36
Database TC (Database) . 37
TC Client pegasus-tc-client . 37
TC Converter Client pegasus-tc-converter . 38

5. Running Workflows .. 39
Executable Workflows (DAG) .. 39
Mapping Refinement Steps . 40

Data Reuse . 41
Site Selection . 42
Job Clustering . 44
Addition of Data Transfer and Registration Nodes . 44
Addition of Create Dir and Cleanup Jobs . 46
Code Generation . 47

Data Staging Configuration . 48
Shared File System .. 49

Pegasus 4.5.2 User Guide

iv

Non Shared Filesystem .. 50
Condor Pool Without a Shared Filesystem .. 52

PegasusLite . 53
Pegasus-Plan . 54
Basic Properties . 54

pegasus.home .. 55
Catalog Related Properties . 55
Data Staging Configuration Properties . 60

6. Monitoring, Debugging and Statistics . 63
Workflow Status . 63

pegasus-status . 63
pegasus-analyzer . 64
pegasus-remove .. 65
Resubmitting failed workflows .. 65

Plotting and Statistics . 65
pegasus-statistics . 65
pegasus-plots . 71

Dashboard . 76
Workflow Dashboard . 76

Notifications . 86
Specifying Notifications in the DAX .. 87
Notify File created by Pegasus in the submit directory . 87
Configuring pegasus-monitord for notifications . 88
Default Notification Scripts . 89

Monitoring Database . 90
pegasus-monitord . 90
Overview of the Workflow Database Schema. 91

7. Execution Environments . 94
Localhost . 94
Condor Pool . 94

Glideins . 96
CondorC .. 96

Cloud (Amazon EC2/S3, Google Cloud, ...) . 98
Amazon EC2 .. 99
Google Cloud Platform .. 100

Remote Cluster using Globus GRAM ... 101
Remote Cluster using CREAMCE .. 102
Local Cluster Using Glite . 103

Setting PBS specific parameters for the jobs . 104
Setting SGE specific parameters for the jobs . 106
Specifying directory for the jobs . 108

Remote Cluster using BOSCO and SSH submissions . 108
Campus Cluster . 109
XSEDE .. 109
Open Science Grid Using glideinWMS .. 110

.. 110
8. Example Workflows .. 111

Grid Examples . 111
Black Diamond .. 111
NASA/IPAC Montage . 113
Rosetta . 113

Condor Examples . 113
Black Diamond - condorio . 113

Local Shell Examples . 114
Black Diamond .. 114

Notifications Example . 114
Workflow of Workflows .. 114

Galactic Plane . 114
9. Data Management . 116

Replica Selection . 116

Pegasus 4.5.2 User Guide

v

Configuration . 116
Supported Replica Selectors . 116

Data Transfers . 118
Data Staging Configuration . 118
Local versus Remote Transfers . 123
Controlling Transfer Parallelism .. 123
Symlinking Against Input Data . 123
Addition of Separate Data Movement Nodes to Executable Workflow .. 124
Executable Used for Transfer Jobs . 126
Staging of Executables . 127
Staging of Pegasus Worker Package . 128
Staging of Job Checkpoint Files . 128
Using Amazon S3 as a Staging Site . 129
iRODS data access . 130
GridFTP over SSH (sshftp) . 130

Credentials Management . 130
X.509 Grid Proxies . 131
Amazon AWS S3 .. 131
Google Storage . 131
iRods Password . 132
SSH Keys . 132

Output Mappers . 132
Data Cleanup .. 133

Data Cleanup in Hierarchal Workflows .. 134
Executables used for Directory Creation and Cleanup Jobs . 134

10. Optimizing Workflows for Efficiency and Scalability . 136
Optimizing Short Jobs / Scheduling Delays . 136
Job Clustering . 136

Overview .. 136
How to Scale Large Workflows .. 148
Hierarchical Workflows .. 148

Introduction . 148
Specifying a DAX Job in the DAX .. 149
Specifying a DAG Job in the DAX .. 150
File Dependencies Across DAX Jobs . 151
Recursion in Hierarchal Workflows .. 151
Example . 153

Optimizing Data Transfers . 153
Job Throttling . 154

Job Throttling Across Workflows .. 155
11. Pegasus Service . 157

Service Administration . 157
Service Configuration . 157
Running the Service . 158

Dashboard . 158
Running Pegasus Service under Apache HTTPD .. 158
Ensemble Manager . 159

12. Configuration . 161
Differences between Profiles and Properties . 161
Profiles . 161

Profile Structure Heading . 161
Sources for Profiles . 161
Profiles Conflict Resolution . 164
Details of Profile Handling . 164
The Env Profile Namespace . 165
The Globus Profile Namespace . 165
The Condor Profile Namespace . 167
The Dagman Profile Namespace . 169
The Pegasus Profile Namespace . 171
The Hints Profile Namespace . 175

Pegasus 4.5.2 User Guide

vi

Properties . 176
Local Directories Properties . 176
Site Directories Properties . 177
Schema File Location Properties . 179
Database Drivers For All Relational Catalogs . 180
Catalog Related Properties . 182
Replica Selection Properties . 187
Site Selection Properties . 190
Data Staging Configuration Properties . 193
Transfer Configuration Properties . 195
Monitoring Properties . 199
Job Clustering Properties . 201
Logging Properties . 202
Cleanup Properties . 204
Miscellaneous Properties . 205

13. Submit Directory Details . 209
Layout . 209
Condor DAGMan File . 210

Sample Condor DAG File . 210
Kickstart XML Record . 211

Reading a Kickstart Output File . 212
Jobstate.Log File . 213

Pegasus Workflow Job States and Delays . 215
Braindump File . 215
Pegasus static.bp File . 216

14. API Reference . 218
DAX XML Schema .. 218

DAX XML Schema In Detail . 218
DAX XML Schema Example . 226

DAX Generator API . 227
The Java DAX Generator API . 227
The Python DAX Generator API . 230
The Perl DAX Generator . 231

DAX Generator without a Pegasus DAX API . 233
15. Command Line Tools . 234

pegasus-analyzer . 235
pegasus-cleanup .. 239
pegasus-cluster . 240
pegasus-config . 244
pegasus-create-dir . 246
pegasus-dagman .. 247
pegasus-dax-validator . 248
pegasus-db-admin .. 249
pegasus-em .. 251
pegasus-exitcode . 252
pegasus-graphviz . 254
pegasus-gridftp . 255
pegasus-halt . 257
pegasus-invoke . 258
pegasus-keg . 260
pegasus-kickstart . 263
pegasus-monitord . 271
pegasus-mpi-cluster . 275
pegasus-plan . 285
pegasus-plots . 292
pegasus-rc-client . 294
pegasus-remove .. 297
pegasus-run . 299
pegasus-s3 . 301
pegasus-sc-converter . 307

Pegasus 4.5.2 User Guide

vii

pegasus-service . 309
pegasus-statistics . 310
pegasus-status . 312
pegasus-submit-dag . 315
pegasus-submitdir . 316
pegasus-tc-client . 317
pegasus-tc-converter . 321
pegasus-transfer . 323
pegasus-version . 325

16. Useful Tips . 327
Migrating From Pegasus <4.5 to Pegasus >=4.5 . 327
Migrating From Pegasus 3.1 to Pegasus 4.X .. 328

Move to FHS layout . 328
Stampede Schema Upgrade Tool . 328
Existing users running in a condor pool with a non shared filesystem setup . 329
New Clients for directory creation and file cleanup .. 330

Migrating From Pegasus 2.X to Pegasus 3.X .. 331
PEGASUS_HOME and Setup Scripts . 331
Changes to Schemas and Catalog Formats . 331
Properties and Profiles Simplification . 332
Transfers Simplification . 333
Clients in bin directory . 333

Best Practices For Developing Portable Code . 334
Supported Platforms .. 334
Packaging of Software . 334
MPI Codes . 334
Maximum Running Time of Codes . 334
Codes cannot specify the directory in which they should be run . 334
No hard-coded paths . 335
Wrapping legacy codes with a shell wrapper . 335
Propogating back the right exitcode . 335
Static vs. Dynamically Linked Libraries . 335
Temporary Files . 335
Handling of stdio . 335
Configuration Files . 336
Code Invocation and input data staging by Pegasus . 336
Logical File naming in DAX .. 336

Slot Partitioning and CPU Affinity in Condor . 337
17. Funding, citing, and anonymous usage statistics . 338

Citing Pegasus in Academic Works . 338
Usage Statistics Collection . 338

Purpose . 338
Overview .. 338
Configuration . 338
Metrics Collected . 338

18. Glossary . 341
A. Tutorial VM ... 344

Introduction . 344
VirtualBox .. 344

Install VirtualBox .. 344
Download VM Image .. 344
Create Virtual Machine . 344
Terminating the VM ... 348

Amazon EC2 .. 348
Launching the VM ... 348
Logging into the VM ... 355
Shutting down the VM ... 355

viii

List of Figures
2.1. Diamond Workflow .. 4
2.2. Diamond DAG .. 8
2.3. Dashboard Home Page . 13
2.4. Dashboard Workflow Page . 14
2.5. Dashboard Job Description Page . 16
2.6. Dashboard Invocation Page . 17
2.7. Dashboard Statistics Page . 18
2.8. Dashboard Plots - Job Distribution . 19
2.9. Dashboard Plots - Time Chart . 20
2.10. Dashboard Plots - Workflow Gantt Chart . 21
4.1. Sample Workflow .. 26
4.2. Schema Image of the JDBCRC. 29
4.3. Schema Image of the Site Catalog XML4 .. 31
4.4. Schema Image of the Site Catalog XML 3 .. 33
5.1. Black Diamond DAG .. 39
5.2. Workflow Data Reuse . 41
5.3. Workflow Site Selection . 44
5.4. Addition of Data Transfer Nodes to the Workflow .. 45
5.5. Addition of Data Registration Nodes to the Workflow .. 46
5.6. Addition of Directory Creation and File Removal Jobs . 47
5.7. Final Executable Workflow .. 48
5.8. Shared File System Setup . 50
5.9. Non Shared Filesystem Setup . 51
5.10. Condor Pool Without a Shared Filesystem .. 52
5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching compute jobs 53
6.1. pegasus-plot index page . 71
6.2. DAX Graph .. 72
6.3. DAG Graph .. 73
6.4. Gantt Chart . 73
6.5. Host over time chart . 74
6.6. Time chart . 75
6.7. Breakdown chart . 76
6.8. Dashboard Home Page . 77
6.9. Dashboard Workflow Page . 79
6.10. Dashboard Job Description Page . 81
6.11. Dashboard Invocation Page . 82
6.12. Dashboard Statistics Page . 83
6.13. Dashboard Plots - Job Distribution . 84
6.14. Dashboard Plots - Time Chart . 85
6.15. Dashboard Plots - Workflow Gantt Chart . 86
6.16. Workflow Database Schema .. 92
7.1. The distributed resources appear to be part of a HTCondor pool. 95
7.2. Cloud Sample Site Layout . 98
7.3. Amazon EC2 .. 99
7.4. Grid Sample Site Layout . 101
9.1. Shared File System Setup . 119
9.2. Non Shared Filesystem Setup . 120
9.3. Condor Pool Without a Shared Filesystem .. 122
9.4. BalancedCluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System 125
9.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System 126
10.1. Clustering by clusters.size . 138
10.2. Clustering by clusters.num .. 139
10.3. Clustering by runtime .. 142
10.4. Label-based clustering . 143
10.5. Recursive clustering . 145
10.6. Planning of a DAX Job .. 148
10.7. Planning of a DAG Job .. 149

Pegasus 4.5.2 User Guide

ix

10.8. Recursion in Hierarchal Workflows .. 152
10.9. Execution Time-line for Hierarchal Workflows .. 153
A.1. VirtualBox Welcome Screen . 344
A.2. Create New Virtual Machine Wizard . 345
A.3. VM Name and OS Type .. 345
A.4. Memory .. 346
A.5. Virtual Hard Disk . 346
A.6. Summary .. 347
A.7. Welcome Screen with new virtual machine . 347
A.8. Login Screen . 348
A.9. AWS Management Console . 349
A.10. EC2 Management Console . 349
A.11. Locating the Tutorial VM ... 350
A.12. Request Instances Wizard: Step 1 . 351
A.13. Request Instances Wizard: Step 2 . 351
A.14. Request Instances Wizard: Step 3 . 352
A.15. Request Instances Wizard: Step 4 . 352
A.16. Request Instances Wizard: Step 5 . 353
A.17. Request Instances Wizard: Step 6 . 353
A.18. Request Instances Wizard: Step 7 . 354
A.19. Running Instances . 355
A.20. Terminate Instance . 356
A.21. Yes, Terminate Instance . 356

x

List of Tables
5.1. Table 1: Key Value Pairs that are currently generated for the site selector temporary file that is generated
in the NonJavaCallout. 42
5.2. Table2: Basic Properties that need to be set . 54
5.3. Replica Catalog Properties . 56
5.4. Site Catalog Properties . 59
5.5. Transformation Catalog Properties . 60
5.6. Data Configuration Properties . 60
6.1. Workflow Statistics . 69
6.2. Job statistics . 69
6.3. Transformation Statistics . 70
6.4. Invocation statistics by host per day . 71
6.5. Table 1. Invoke Element attributes and meaning. 87
7.1. Table mapping translation of profiles to corresponding PBS parameters . 105
7.2. Table mapping translation of Pegasus profiles to corresponding PBS parameters . 106
7.3. Table mapping translation of profiles to corresponding SGE parameters . 107
7.4. Table mapping translation of Pegasus profiles to corresponding SGE parameters . 108
9.1. Property Variations for pegasus.transfer.*.remote.sites . 123
9.2. Pegasus Profile Keys For the Cluster Transfer Refiner . 124
9.3. Transfer Clients interfaced to by pegasus-transfer . 126
9.4. Transformation Mappers Supported in Pegasus . 127
9.5. Clients interfaced to by pegasus-create-dir . 134
9.6. Clients interfaced to by pegasus-cleanup .. 134
10.1. Table : Pegasus Profiles that can be associated with jobs in the DAX for PMC .. 146
10.2. Options inherited from parent workflow .. 149
10.3. Useful dagman Commands that can be specified in the properties file. 154
10.4. Useful HTCondor Job Throttling Configuration Parameters . 155
10.5. Pegasus Job Types To Condor Concurrency Limits . 156
11.1. Pegasus Service Configuration Options . 157
12.1. Useful Environment Settings . 165
12.2. Useful Globus RSL Instructions . 166
12.3. RSL Instructions that are not permissible . 166
12.4. Useful Condor Commands . 167
12.5. Table 5: Condor commands prohibited in condor profiles . 168
12.6. Useful dagman Commands that can be associated at a per job basis . 169
12.7. Useful dagman Commands that can be specified in the properties file. 170
12.8. Useful pegasus Profiles. 171
12.9. Useful Hints Profile Keys . 175
12.10. Local Directories Related Properties . 176
12.11. Site Directories Related Properties . 177
12.12. Schema File Location Properties . 179
12.13. Database Driver Properties . 180
12.14. Replica Catalog Properties . 182
12.15. Site Catalog Properties . 186
12.16. Transformation Catalog Properties . 186
12.17. Replica Selection Properties . 187
12.18. Site Selection Properties . 190
12.19. Data Configuration Properties . 193
12.20. Transfer Configuration Properties . 195
12.21. Monitoring Properties . 199
12.22. Job Clustering Properties . 201
12.23. Logging Properties . 202
12.24. Cleanup Properties . 204
12.25. Miscellaneous Properties . 205
13.1. Table 1: The job lifecycle when executed as part of the workflow .. 214
13.2. Table 2: Information Captured in Braindump File . 215
14.1. 219
14.2. 221

Pegasus 4.5.2 User Guide

xi

14.3. 224
14.4. 224
16.1. Clients interfaced to by pegasus-create-dir . 330
16.2. Clients interfaced to by pegasus-cleanup .. 330
16.3. Table 1: Property Keys removed and their Profile based replacement . 332
16.4. Table 2: Old and New Names For Job Clustering Profile Keys . 333
16.5. Table 3: Old and New Names For Transfer Bundling Profile Keys . 333
16.6. Table 1: Old Client Names and their New Names . 333
17.1. Common Data Sent By Pegasus WMS Clients . 339
17.2. Metrics Data Sent by pegasus-plan . 339
17.3. Error Message sent by pegasus-plan . 340

1

Chapter 1. Introduction
Overview and Features

Pegasus WMS [http://pegasus.isi.edu] is a configurable system for mapping and executing abstract application work-
flows over a wide range of execution environment including a laptop, a campus cluster, a Grid, or a commercial or
academic cloud. Today, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science Grid, the TeraGrid, and
many campus clusters. One workflow can run on a single system or across a heterogeneous set of resources. Pegasus
can run workflows ranging from just a few computational tasks up to 1 million.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computation-
al resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution environment or the particulars of the low-level spec-
ifications required by the middleware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current
cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description
of the abstract workflow in XML format.

Pegasus allows researchers to translate complex computational tasks into workflows that link and manage ensembles
of dependent tasks and related data files. Pegasus automatically chains dependent tasks together, so that a single
scientist can complete complex computations that once required many different people. New users are encouraged to
explore the tutorial chapter to become familiar with how to operate Pegasus for their own workflows. Users create
and run a sample project to demonstrate Pegasus capabilities. Users can also browse the Useful Tips chapter to aid
them in designing their workflows.

Pegasus has a number of features that contribute to its useability and effectiveness.

• Portability / Reuse

User created workflows can easily be run in different environments without alteration. Pegasus currently runs work-
flows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus, and
many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.

• Performance

The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.

• Scalability

Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few computational tasks up to 1 million. The number of resources
involved in executing a workflow can scale as needed without any impediments to performance.

• Provenance

By default, all jobs in Pegasus are launched via the kickstart process that captures runtime provenance of the job
and helps in debugging. The provenance data is collected in a database, and the data can be summaries with tools
such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

• Data Management

Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to
a workflow as auxilliary jobs by the Pegasus planner.

• Reliability

Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer
helps the user to debug the workflow in case of non-recoverable failures.

• Error Recovery

http://pegasus.isi.edu
http://pegasus.isi.edu

Introduction

2

When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by
providing workflow-level checkpointing, by re-mapping portions of the workflow, by trying alternative data sources
for staging data, and, when all else fails, by providing a rescue workflow containing a description of only the work
that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have
enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance)
including the locations of data used and produced, and which software was used with which parameters.

• Operating Environments

Pegasus workflows can be deployed across a variety of environments:

• Local Execution

Pegasus can run a workflow on a single computer with Internet access. Running in a local environment is quicker
to deploy as the user does not need to gain access to muliple resources in order to execute a workfow.

• Condor Pools and Glideins

Condor is a specialized workload management system for compute-intensive jobs. Condor queues workflows,
schedules, and monitors the execution of each workflow. Condor Pools and Glideins are tools for submitting
and executing the Condor daemons on a Globus resource. As long as the daemons continue to run, the remote
machine running them appears as part of your Condor pool. For a more complete description of Condor, see the
Condor Project Pages [http://www.cs.wisc.edu/condor/description.html]

• Grids

Pegasus WMS is entirely compatible with Grid computing. Grid computing relies on the concept of distributed
computations. Pegasus apportions pieces of a workflow to run on distributed resources.

• Clouds

Cloud computing uses a network as a means to connect a Pegasus end user to distributed resources that are based
in the cloud.

Workflow Gallery
Pegasus is curently being used in a broad range of applications. To review example workflows, see the Example
Workflows chapter. To see additional details about the workflows of the applications see the Gallery of Workflows
[http://pegasus.isi.edu/workflow_gallery/].

We are always looking for new applications willing to leverage our workflow technologies. If you are interested please
contact us at pegasus at isi dot edu.

About this Document
This document is designed to acquaint new users with the capabilities of the Pegasus Workflow Management System
(WMS) and to demonstrate how WMS can efficiently provide a variety of ways to execute complex workflows on
distributed resources. Readers are encouraged to take the tutorial to acquaint themselves with the components of the
Pegasus System. Readers may also want to navigate through the chapters to acquaint themselves with the components
on a deeper level to understand how to integrate Pegasus with your own data resources to resolve your individual
computational challenges.

http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://pegasus.isi.edu/workflow_gallery/
http://pegasus.isi.edu/workflow_gallery/

3

Chapter 2. Tutorial
Introduction

This tutorial will take you through the steps of creating and running a simple workflow using Pegasus. This tutorial is
intended for new users who want to get a quick overview of Pegasus concepts and usage. The tutorial covers the cre-
ating, planning, submitting, monitoring, debugging, and generating statistics for a simple diamond-shaped workflow.
More information about the topics covered in this tutorial can be found in later chapters of this user's guide.

All of the steps in this tutorial are performed on the command-line. The convention we will use for command-line
input and output is to put things that you should type in bold, monospace font, and to put the output you should get
in a normal weight, monospace font, like this:

[user@host dir]$ you type this
you get this

Where [user@host dir]$ is the terminal prompt, the text you should type is “you type this”, and the
output you should get is "you get this". The terminal prompt will be abbreviated as $. Because some of the
outputs are long, we don’t always include everything. Where the output is truncated we will add an ellipsis '...' to
indicate the omitted output.

If you are having trouble with this tutorial, or anything else related to Pegasus, you can contact the Pegasus
Users mailing list at <pegasus-users@isi.edu> to get help.

Getting Started
Easiest way to start the tutorial is to connect to a hosted service using SSH as shown below.

$ ssh tutorial@pegasus-tutorial.isi.edu
tutorial@pegasus-tutorial.isi.edu's password: pegasus123

Note

The workflow dashboard is not run the hosted tutorial service. To try out the workflow dashboard use the
virtual machines provided below.

OR

We have provided several virtual machines that contain all of the software required for this tutorial. Virtual machine
images are provided for VirtualBox and Amazon EC2. Information about deploying the tutorial VM on these platforms
is in the appendix. If you want to use the tutorial VM, please go to the appendix for the platform you are using and
follow the instructions for starting the VM found there before continuing with this tutorial.

Advanced Users: If you have installed Pegasus and Condor on your own machine, then you don't need to use the VM
for the tutorial. If you installed Pegasus from one of the native packages (RPM, DEB, DMG), then you can find the
tutorial files in /usr/share/doc/pegasus/tutorial. If you installed a binary tarball, or compiled Pegasus
from source, then you can find the tutorial files in PEGASUS_HOME/share/doc/pegasus/tutorial. These
files will need to be modified in several places to fix the paths to the users home directory (which is assumed to be
/home/tutorial). It is assumed that Pegasus was installed from a native package, so the path to the Pegasus
install is assumed to be /usr. Condor should be installed in the "Personal Condor" configuration. You will also need
a passwordless ssh key to enable SCP file transfers to/from localhost. Getting everything set up correctly can be tricky,
so we recommend getting started with one of the VMs if you are not familiar with Condor and UNIX.

The remainder of this tutorial will assume that you have a terminal open to the directory where the tutorial files are
installed. If you are using one of the tutorial VMs these files are located in the tutorial user's home directory /home/
tutorial.

Generating the Workflow
We will be creating and running a simple diamond-shaped workflow that looks like this:

Tutorial

4

Figure 2.1. Diamond Workflow

In this diagram, the ovals represent computational jobs, the dog-eared squares are files, and the arrows are dependen-
cies.

Pegasus reads workflow descriptions from DAX files. The term “DAX” is short for “Directed Acyclic Graph in XML”.
DAX is an XML file format that has syntax for expressing jobs, arguments, files, and dependencies.

In order to create a DAX it is necessary to write code for a DAX generator. Pegasus comes with Perl, Java, and Python
libraries for writing DAX generators. In this tutorial we will show how to use the Python library.

The DAX generator for the diamond workflow is in the file generate_dax.py. Look at the file by typing:

$ more generate_dax.py
...

Tutorial

5

Tip

We will be using the more command to inspect several files in this tutorial. more is a pager application,
meaning that it splits text files into pages and displays the pages one at a time. You can view the next page
of a file by pressing the spacebar. Type 'h' to get help on using more. When you are done, you can type
'q' to close the file.

The code has 5 sections:

1. A few system libraries and the Pegasus.DAX3 library are imported. The search path is modified to include the
directory with the Pegasus Python library.

2. The name for the DAX output file is retrieved from the arguments.

3. A new ADAG object is created. This is the main object to which jobs and dependencies are added.

4. Jobs and files are added. The 4 jobs in the diagram above are added and the 6 files are referenced. Arguments are
defined using strings and File objects. The input and output files are defined for each job. This is an important
step, as it allows Pegasus to track the files, and stage the data if necessary. Workflow outputs are tagged with
“transfer=true”.

5. Dependencies are added. These are shown as arrows in the diagram above. They define the parent/child relation-
ships between the jobs. When the workflow is executing, the order in which the jobs will be run is determined by
the dependencies between them.

Generate a DAX file named diamond.dax by typing:

$./generate_dax.py diamond.dax
Creating ADAG...
Adding preprocess job...
Adding left Findrange job...
Adding right Findrange job...
Adding Analyze job...
Adding control flow dependencies...
Writing diamond.dax

The diamond.dax file should contain an XML representation of the diamond workflow. You can inspect it by
typing:

$ more diamond.dax
...

Information Catalogs
There are three information catalogs that Pegasus uses when planning the workflow. These are the Site Catalog,
Transformation Catalog, and Replica Catalog.

The Site Catalog
The site catalog describes the sites where the workflow jobs are to be executed. Typically the sites in the site catalog
describe remote clusters, such as PBS clusters or Condor pools. In this tutorial we assume that you have a Personal
Condor pool running on localhost. If you are using one of the tutorial VMs this has already been setup for you.

The site catalog is in sites.xml:

$ more sites.xml
...
 <!-- The local site contains information about the submit host -->
 <!-- The arch and os keywords are used to match binaries in the transformation catalog -->
 <site handle="local" arch="x86_64" os="LINUX">

 <!-- These are the paths on the submit host were Pegasus stores data -->
 <!-- Scratch is where temporary files go -->
 <directory type="shared-scratch" path="/home/tutorial/run">
 <file-server operation="all" url="file:///home/tutorial/run"/>
 </directory>
 <!-- Storage is where pegasus stores output files -->
 <directory type="local-storage" path="/home/tutorial/outputs">

Tutorial

6

 <file-server operation="all" url="file:///home/tutorial/outputs"/>
 </directory>

 <!-- This profile tells Pegasus where to find the user's private key for SCP transfers -->
 <profile namespace="env" key="SSH_PRIVATE_KEY">/home/tutorial/.ssh/id_rsa</profile>
 </site>

...

There are two sites defined in the site catalog: “local” and “PegasusVM”. The “local” site is used by Pegasus to learn
about the submit host where the workflow management system runs. The “PegasusVM” site is the personal Condor
pool running on your (virtual) machine. In this case, the local site and the PegasusVM site refer to the same machine,
but they are logically separate as far as Pegasus is concerned.

The local site is configured with a “storage” file system that is mounted on the submit host (indicated by the file://
URL). This file system is where the output data from the workflow will be stored. When the workflow is planned we
will tell Pegasus that the output site is “local”.

The PegasusVM site is configured with a “scratch” file system accessible via SCP (indicated by the scp:// URL). This
file system is where the working directory will be created. When we plan the workflow we will tell Pegasus that the
execution site is “PegasusVM”.

The local site also has an environment variable called SSH_PRIVATE_KEY that tells Pegasus where to find the
private key to use for SCP transfers. If you are running this tutorial on your own machine you will need to set up
a passwordless ssh key and add it to authorized_keys. If you are using the tutorial VM this has already been set up
for you.

Pegasus supports many different file transfer protocols. In this case the site catalog is set up so that input and output
files are transferred to/from the PegasusVM site using SCP. Since both the local site and the PegasusVM site are
actually the same machine, this configuration will just SCP files to/from localhost, which is just a complicated way
to copy the files.

Finally, the PegasusVM site is configured with two profiles that tell Pegasus that it is a plain Condor pool. Pegasus
supports many ways of submitting tasks to a remote cluster. In this configuration it will submit vanilla Condor jobs.

The Transformation Catalog
The transformation catalog describes all of the executables (called “transformations”) used by the workflow. This
description includes the site(s) where they are located, the architecture and operating system they are compiled for,
and any other information required to properly transfer them to the execution site and run them.

For this tutorial, the transformation catalog is in the file tc.dat:

$ more tc.dat
...
This is the transformation catalog. It lists information about each of the
executables that are used by the workflow.

tr preprocess {
 site PegasusVM {
 pfn "/home/tutorial/bin/preprocess"
 arch "x86_64"
 os "linux"
 type "INSTALLED"
 }
}

...

The tc.dat file contains information about three transformations: preprocess, findrange, and analyze. These three
transformations are referenced in the diamond DAX. The transformation catalog indicates that all three transformations
are installed on the PegasusVM site, and are compiled for x86_64 Linux.

The actual executable files are located in the bin directory. All three executables are actually symlinked to the same
Python script. This script is just an example transformation that sleeps for 30 seconds, and then writes its own name
and the contents of all its input files to all of its output files.

Tutorial

7

The Replica Catalog
The final catalog is the Replica Catalog. This catalog tells Pegasus where to find each of the input files for the workflow.

All files in a Pegasus workflow are referred to in the DAX using their Logical File Name (LFN). These LFNs are
mapped to Physical File Names (PFNs) when Pegasus plans the workflow. This level of indirection enables Pegasus
to map abstract DAXes to different execution sites and plan out the required file transfers automatically.

The Replica Catalog for the diamond workflow is in the rc.dat file:

$ more rc.dat
This is the replica catalog. It lists information about each of the
input files used by the workflow.

The format is:
LFN PFN site="SITE"

f.a file:///home/tutorial/input/f.a site="local"

This replica catalog contains only one entry for the diamond workflow’s only input file. This entry has an LFN of
“f.a” with a PFN of “file:///home/tutorial/input/f.a” and the file is stored on the local site, which implies that it will
need to be transferred to the PegasusVM site when the workflow runs. The Replica Catalog uses the keyword "pool"
to refer to the site. Don't be confused by this: the value of the pool variable should be the name of the site where the
file is located from the Site Catalog.

Configuring Pegasus
In addition to the information catalogs, Pegasus takes a configuration file that specifies settings that control how it
plans the workflow.

For the diamond workflow, the Pegasus configuration file is relatively simple. It only contains settings to help Pegasus
find the information catalogs. These settings are in the pegasus.conf file:

$ more pegasus.conf
This tells Pegasus where to find the Site Catalog
pegasus.catalog.site=XML3
pegasus.catalog.site.file=sites.xml

This tells Pegasus where to find the Replica Catalog
pegasus.catalog.replica=File
pegasus.catalog.replica.file=rc.dat

This tells Pegasus where to find the Transformation Catalog
pegasus.catalog.transformation=Text
pegasus.catalog.transformation.file=tc.dat

Planning the Workflow
The planning stage is where Pegasus maps the abstract DAX to one or more execution sites. The planning step includes:

1. Adding a job to create the remote working directory

2. Adding stage-in jobs to transfer input data to the remote working directory

3. Adding cleanup jobs to remove data from the remote working directory when it is no longer needed

4. Adding stage-out jobs to transfer data to the final output location as it is generated

5. Adding registration jobs to register the data in a replica catalog

6. Task clustering to combine several short-running jobs into a single, longer-running job. This is done to make short-
running jobs more efficient.

7. Adding wrappers to the jobs to collect provenance information so that statistics and plots can be created when the
workflow is finished

The pegasus-plan command is used to plan a workflow. This command takes quite a few arguments, so we created
a plan_dax.sh wrapper script that has all of the arguments required for the diamond workflow:

Tutorial

8

$ more plan_dax.sh
...

The script invokes the pegasus-plan command with arguments for the configuration file (--conf), the DAX
file (-d), the submit directory (--dir), the execution site (--sites), the output site (-o) and two extra arguments
that prevent Pegasus from removing any jobs from the workflow (--force) and that prevent Pegasus from adding
cleanup jobs to the workflow (--nocleanup).

Top plan the diamond workflow invoke the plan_dax.sh script with the path to the DAX file:

$./plan_dax.sh diamond.dax
2012.07.24 21:11:03.256 EDT:

I have concretized your abstract workflow. The workflow has been entered
into the workflow database with a state of "planned". The next step is to
start or execute your workflow. The invocation required is:

pegasus-run /home/tutorial/submit/tutorial/pegasus/diamond/run0001

2012.07.24 21:11:03.257 EDT: Time taken to execute is 1.103 seconds

Note the line in the output that starts with pegasus-run. That is the command that we will use to submit the
workflow. The path it contains is the path to the submit directory where all of the files required to submit and monitor
the workflow are stored.

This is what the diamond workflow looks like after Pegasus has finished planning the DAX:

Figure 2.2. Diamond DAG

For this workflow the only jobs Pegasus needs to add are a directory creation job, a stage-in job (for f.a), and a stage-
out job (for f.d). No registration jobs are added because all the files in the DAX are marked register="false", and no
cleanup jobs are added because we passed the --nocleanup argument to pegasus-plan.

Submitting the Workflow
Once the workflow has been planned, the next step is to submit it to DAGMan/Condor for execution. This is done
using the pegasus-run command. This command takes the path to the submit directory as an argument. Run the
command that was printed by the plan_dax.sh script:

$ pegasus-run submit/tutorial/pegasus/diamond/run0001

File for submitting this DAG to Condor : diamond-0.dag.condor.sub
Log of DAGMan debugging messages : diamond-0.dag.dagman.out

Tutorial

9

Log of Condor library output : diamond-0.dag.lib.out
Log of Condor library error messages : diamond-0.dag.lib.err
Log of the life of condor_dagman itself : diamond-0.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 19.

Your Workflow has been started and runs in base directory given below

cd submit/tutorial/pegasus/diamond/run0001

*** To monitor the workflow you can run ***

pegasus-status -l submit/tutorial/pegasus/diamond/run0001

*** To remove your workflow run ***
pegasus-remove submit/tutorial/pegasus/diamond/run0001

Monitoring the Workflow
After the workflow has been submitted you can monitor it using the pegasus-status command:

$ pegasus-status submit/tutorial/pegasus/diamond/run0001
STAT IN_STATE JOB
Run 01:48 diamond-0
Run 00:05 |-findrange_ID0000002
Run 00:05 _findrange_ID0000003
Summary: 3 Condor jobs total (R:3)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 2 0 0 3 0 3 0 37.5
Summary: 1 DAG total (Running:1)

This command shows the workflow (diamond-0) and the running jobs (in the above output it shows the two findrange
jobs). It also gives statistics on the number of jobs in each state and the percentage of the jobs in the workflow that
have finished successfully.

Use the watch command to continuously monitor the workflow:

$ watch pegasus-status submit/tutorial/pegasus/diamond/run0001
...

You should see all of the jobs in the workflow run one after the other. After a few minutes you will see:

(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 0 0 8 0 100.0
Summary: 1 DAG total (Success:1)

That means the workflow is finished successfully. You can type ctrl-c to terminate the watch command.

If the workflow finished successfully you should see the output file f.d in the output directory. This file was created
by the various transformations in the workflow and shows all of the executables that were invoked by the workflow:

$ more output/f.d
/home/tutorial/bin/analyze:
/home/tutorial/bin/findrange:
/home/tutorial/bin/preprocess:
This is the input file of the diamond workflow
/home/tutorial/bin/findrange:
/home/tutorial/bin/preprocess:
This is the input file of the diamond workflow

Remember that the example transformations in this workflow just print their name to all of their output files and then
copy all of their input files to their output files.

Debugging the Workflow
In the case that one or more jobs fails, then the output of the pegasus-status command above will have a non-
zero value in the FAILURE column.

Tutorial

10

You can debug the failure using the pegasus-analyzer command. This command will identify the jobs that failed
and show their output. Because the workflow succeeded, pegasus-analyzer will only show some basic statistics
about the number of successful jobs:

$ pegasus-analyzer submit/tutorial/pegasus/diamond/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

 Total jobs : 7 (100.00%)
 # jobs succeeded : 7 (100.00%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 0 (0.00%)

If the workflow had failed you would see something like this:

$ pegasus-analyzer submit/tutorial/pegasus/diamond/run0002
pegasus-analyzer: initializing...

**************************Summary*************************************

 Total jobs : 7 (100.00%)
 # jobs succeeded : 2 (28.57%)
 # jobs failed : 1 (14.29%)
 # jobs unsubmitted : 4 (57.14%)

**********************Failed jobs' details****************************

====================preprocess_ID0000001==============================

 last state: POST_SCRIPT_FAILED
 site: PegasusVM
submit file: preprocess_ID0000001.sub
output file: preprocess_ID0000001.out.003
 error file: preprocess_ID0000001.err.003

-----------------------Task #1 - Summary-----------------------------

site : PegasusVM
hostname : ip-10-252-31-58.us-west-2.compute.internal
executable : /home/tutorial/bin/preprocess
arguments : -i f.a -o f.b1 -o f.b2
exitcode : -128
working dir : -

-------------Task #1 - preprocess - ID0000001 - stderr---------------

FATAL: The main job specification is invalid or missing.

In this example I removed the bin/preprocess executable and re-planned/re-submitted the workflow (that is why
the command has run0002). The output of pegasus-analyzer indicates that the preprocess task failed with an
error message that indicates that the executable could not be found.

Collecting Statistics
The pegasus-statistics command can be used to gather statistics about the runtime of the workflow and its
jobs. The -s all argument tells the program to generate all statistics it knows how to calculate:

$ pegasus-statistics –s all submit/tutorial/pegasus/diamond/run0001

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs

Tutorial

11

that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

Type Succeeded Failed Incomplete Total Retries Total Run
Tasks 4 0 0 4 || 0 4
Jobs 7 0 0 7 || 0 7
Sub Workflows 0 0 0 0 || 0 0

Workflow wall time : 3 mins, 25 secs
Workflow cumulative job wall time : 2 mins, 0 secs
Cumulative job wall time as seen from submit side : 2 mins, 0 secs
Workflow cumulative job badput wall time : 0
Cumulative job badput wall time as seen from submit side : 0

Summary: submit/tutorial/pegasus/diamond/run0001/statistics/summary.txt

The output of pegasus-statistics contains many definitions to help users understand what all of the values
reported mean. Among these are the total wall time of the workflow, which is the time from when the workflow was
submitted until it finished, and the total cumulative job wall time, which is the sum of the runtimes of all the jobs.

The pegasus-statistics command also writes out several reports in the statistics subdirectory of the
workflow submit directory:

$ ls submit/tutorial/pegasus/diamond/run0001/statistics/
breakdown.csv jobs.txt summary.txt time.txt
breakdown.txt summary-time.csv time-per-host.csv workflow.csv
jobs.csv summary.csv time.csv workflow.txt

The file breakdown.txt, for example, has min, max, and mean runtimes for each transformation:

$ more submit/tutorial/pegasus/diamond/run0001/statistics/breakdown.txt
legends

Tutorial

12

Transformation - name of the transformation.
Count - the number of times the invocations corresponding to
the transformation was executed.
Succeeded - the count of the succeeded invocations corresponding
to the transformation.
Failed - the count of the failed invocations corresponding to
the transformation.
Min(sec) - the minimum invocation runtime value corresponding to
the transformation.
Max(sec) - the maximum invocation runtime value corresponding to
the transformation.
Mean(sec) - the mean of the invocation runtime corresponding to
the transformation.
Total(sec) - the cumulative of invocation runtime corresponding to
the transformation.

a1f5ba03-a827-4d0a-8d59-9941cbfbd83d (diamond)
Transformation Count Succeeded Failed Min Max Mean Total
analyze 1 1 0 30.008 30.008 30.008 30.008
dagman::post 7 7 0 5.0 6.0 5.143 36.0
findrange 2 2 0 30.009 30.014 30.011 60.023
pegasus::dirmanager 1 1 0 0.194 0.194 0.194 0.194
pegasus::transfer 2 2 0 0.248 0.411 0.33 0.659
preprocess 1 1 0 30.025 30.025 30.025 30.025

All
Transformation Count Succeeded Failed Min Max Mean Total
analyze 1 1 0 30.008 30.008 30.008 30.008
dagman::post 7 7 0 5.0 6.0 5.143 36.0
findrange 2 2 0 30.009 30.014 30.011 60.023
pegasus::dirmanager 1 1 0 0.194 0.194 0.194 0.194
pegasus::transfer 2 2 0 0.248 0.411 0.33 0.659
preprocess 1 1 0 30.025 30.025 30.025 30.025

In this case, because the example transformation sleeps for 30 seconds, the min, mean, and max runtimes for each of
the analyze, findrange, and preprocess transformations are all close to 30.

Workflow Dashboard

Note

If you are running this tutorial through the hosted service then skip this step. To try out the workflow dash-
board use the virtual machines provided above.

The Pegasus Dashboard is a web interface for monitoring and debugging workflows.

Note

The workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.

To start the Pegasus Dashboard execute the following command

$ pegasus-service --host 127.0.0.1 --port 5000

SSL is not configured: Using self-signed certificate
2015-04-13 16:14:23,074:Pegasus.service.server:79: WARNING: SSL is not configured: Using self-signed
 certificate
Service not running as root: Will not be able to switch users
2015-04-13 16:14:23,074:Pegasus.service.server:86: WARNING: Service not running as root: Will not be
 able to switch users

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

To access the workflow dashboard, in the VirtualBox VM you can launch Firefox by clicking the globe icon in the
top menu of the desktop. The home page for the dashboard is accessible at https://localhost:5000 . If you are using
EC2 you will need to replace 'localhost' with the IP address of your EC2 instance.

Tutorial

13

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level
workflows (Pegasus supports hierarchical workflows i.e. workflows within a workflow). The rows in the table are
color coded

• Green: indicates workflow finished successfully.

• Red: indicates workflow finished with a failure.

• Blue: indicates a workflow is currently running.

• Gray: indicates a workflow that was archived.

Figure 2.3. Dashboard Home Page

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page also displays pie charts showing the distribution of jobs based on status.

In addition, the details page displays a tab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

The information displayed for a job depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

Tutorial

14

Figure 2.4. Dashboard Workflow Page

Tutorial

15

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

The job instance section of the job details page lists all attempts made to run the job i.e. if a job failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

The job details page also shows tab's for failed, and successful task invocations (Pegasus allows users to group multiple
smaller task's into a single job i.e. a job may consist of one or more tasks)

Tutorial

16

Figure 2.5. Dashboard Job Description Page

The task invocation details page provides task specific information like task name, exit code, duration etc. Task details
differ from job details, as they are more granular in nature.

Tutorial

17

Figure 2.6. Dashboard Invocation Page

The dashboard also has web pages for workflow statistics and workflow charts, which graphically renders information
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

Tutorial

18

Figure 2.7. Dashboard Statistics Page

The Charts page shows the following charts.

1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

Tutorial

19

Figure 2.8. Dashboard Plots - Job Distribution

The time chart shown below shows the number of jobs/invocations in the workflow and their total runtime

Tutorial

20

Figure 2.9. Dashboard Plots - Time Chart

The workflow gantt chart lays out the execution of the jobs in the workflow over time.

Tutorial

21

Figure 2.10. Dashboard Plots - Workflow Gantt Chart

Conclusion
Congratulations! You have completed the tutorial.

If you used Amazon EC2 for this tutorial make sure to terminate your VM. Refer to the appendix for more information
about how to do this.

Refer to the other chapters in this guide for more information about creating, planning, and executing workflows with
Pegasus.

Please contact the Pegasus Users Mailing list at <pegasus-users@isi.edu> if you need help.

22

Chapter 3. Installation
Prerequisites

Pegasus has a few dependencies:

• Java 1.6 or higher. Check with:

java -version
java version "1.6.0_07"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.6.0_07-164)
Java HotSpot(TM) Client VM (build 1.6.0_07-87, mixed mode, sharing)

• Python 2.4 or higher. Check with:

python -v
Python 2.6.2

Note

Non-standard Python installation: Built-in Python installations may lead to a malfunction of the Pega-
sus installation. If you get the error message below, this means that you are not using the Python version
provided by your system. To fix this, you may change your shebang to point to the Python installed in
your system.

Could not locate column in row for column 'dbversion.version_number'

• HTCondor (formerly Condor) 8.0 or higher. See http://www.cs.wisc.edu/htcondor/ for more information. You
should be able to run condor_q and condor_status.

Optional Software
• Globus 5.0 or higher. Globus is only needed if you want to run against grid sites or use GridFTP for data transfers.

See http://www.globus.org/ for more information. Check Globus Installation

echo $GLOBUS_LOCATION
/path/to/globus/install

Make sure you source the Globus environment

GLOBUS_LOCATION/etc/globus-user-env.sh

Check the setup by running:#

globus-version
5.2.0

Environment
To use Pegasus, you need to have the pegasus-* tools in your PATH. If you have installed Pegasus from RPM/DEB
packages. the tools will be in the default PATH, in /usr/bin. If you have installed Pegasus from binary tarballs or
source, add the bin/ directory to your PATH.

 Example for bourne shells:

 # export PATH=/some/install/pegasus-4.3.0/bin:$PATH

Note

Pegasus 4.x is different from previous versions of Pegasus in that it does not require PEGASUS_HOME to
be set or sourcing of any environtment setup scripts.

http://www.cs.wisc.edu/htcondor/
http://www.globus.org/

Installation

23

If you want to use the DAX APIs, you might also need to set your PYTHONPATH, PERL5LIB, or CLASSPATH.
The right setting can be found by using pegasus-config:

export PYTHONPATH=`pegasus-config --python`
export PERL5LIB=`pegasus-config --perl`
export CLASSPATH=`pegasus-config --classpath`

Native Packages (RPM/DEB)
The preferred way to install Pegasus is with native (RPM/DEB) packages. It is recommended that you also install
HTCondor (formerly Condor) (yum [http://research.cs.wisc.edu/htcondor/yum/], debian [http://research.cs.wisc.edu/
htcondor/debian/]) from native packages.

RHEL / CentOS / Scientific Linux
Add the Pegasus repository to yum downloading the Pegasus repos file and adding it to /etc/yum.repos.d/.
For RHEL 5 based systemes:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/wms/download/rhel/5/
pegasus.repo

For RHEL 6 based systems:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/wms/download/rhel/6/
pegasus.repo

Search for, and install Pegasus:

yum search pegasus
pegasus.x86_64 : Workflow management system for Condor, grids, and clouds
yum install pegasus
Running Transaction
Installing : pegasus

Installed:
pegasus

Complete!

Debian
To be able to install and upgrade from the Pegasus apt repository, you will have to trust the repository key. You only
need to add the repository key once:

gpg --keyserver pgp.mit.edu --recv-keys 81C2A4AC
gpg -a --export 81C2A4AC | apt-key add -

Add the Pegasus apt repository to your /etc/apt/sources.list file:

deb http://download.pegasus.isi.edu/wms/download/debian wheezy main

Install Pegasus with apt-get :

apt-get update
...
apt-get install pegasus

Pegasus from Tarballs
The Pegasus prebuild tarballs can be downloaded from the Pegasus Download Page [http://pegasus.isi.edu/down-
loads].

Use these tarballs if you already have HTCondor installed or prefer to keep the HTCondor installation separate from
the Pegasus installation.

• Untar the tarball

http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads

Installation

24

tar zxf pegasus-*.tar.gz

• include the Pegasus bin directory in your PATH

export PATH=/path/to/pegasus-install/bin:$PATH

25

Chapter 4. Creating Workflows
Abstract Workflows (DAX)

The DAX is a description of an abstract workflow in XML format that is used as the primary input into Pegasus. The
DAX schema is described in dax-3.4.xsd [http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd] The docu-
mentation of the schema and its elements can be found in dax-3.4.html [http://pegasus.isi.edu/wms/docs/schemas/
dax-3.4/dax-3.4.html].

A DAX can be created by all users with the DAX generating API in Java, Perl, or Python format

Note
We highly recommend using the DAX API.

Advanced users who can read XML schema definitions can generate a DAX directly from a script

The sample workflow below incorporates some of the elementary graph structures used in all abstract workflows.

• fan-out, scatter, and diverge all describe the fact that multiple siblings are dependent on fewer parents.

The example shows how the Job 2 and 3 nodes depend on Job 1 node.

• fan-in, gather, join, and converge describe how multiple siblings are merged into fewer dependent child nodes.

The example shows how the Job 4 node depends on both Job 2 and Job 3 nodes.

• serial execution implies that nodes are dependent on one another, like pearls on a string.

• parallel execution implies that nodes can be executed in parallel

http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html

Creating Workflows

26

Figure 4.1. Sample Workflow

The example diamond workflow consists of four nodes representing jobs, and are linked by six files.

• Required input files must be registered with the Replica catalog in order for Pegasus to find it and integrate it into
the workflow.

• Leaf files are a product or output of a workflow. Output files can be collected at a location.

• The remaining files all have lines leading to them and originating from them. These files are products of some
job steps (lines leading to them), and consumed by other job steps (lines leading out of them). Often, these files
represent intermediary results that can be cleaned.

There are two main ways of generating DAX's

1. Using a DAX generating API in Java, Perl or Python.

Note: We recommend this option.

2. Generating XML directly from your script.

Note: This option should only be considered by advanced users who can also read XML schema definitions.

One example for a DAX representing the example workflow can look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2010-11-22T22:55:08Z -->

Creating Workflows

27

<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.2.xsd"
 version="3.2" name="diamond" index="0" count="1">
 <!-- part 2: definition of all jobs (at least one) -->
 <job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
 <argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /
></argument>
 <uses name="f.b2" link="output" register="false" transfer="false" />
 <uses name="f.b1" link="output" register="false" transfer="false" />
 <uses name="f.a" link="input" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000002">
 <argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
 <uses name="f.b1" link="input" register="false" transfer="false" />
 <uses name="f.c1" link="output" register="false" transfer="false" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000003">
 <argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
 <uses name="f.c2" link="output" register="false" transfer="false" />
 <uses name="f.b2" link="input" register="false" transfer="false" />
 </job>
 <job namespace="diamond" name="analyze" version="2.0" id="ID000004">
 <argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></
argument>
 <uses name="f.c2" link="input" register="false" transfer="false" />
 <uses name="f.d" link="output" register="false" transfer="true" />
 <uses name="f.c1" link="input" register="false" transfer="false" />
 </job>
 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" />
 <parent ref="ID000003" />
 </child>
</adag>

The example workflow representation in form of a DAX requires external catalogs, such as transformation catalog
(TC) to resolve the logical job names (such as diamond::preprocess:2.0), and a replica catalog (RC) to resolve the
input file f.a. The above workflow defines the four jobs just like the example picture, and the files that flow between
the jobs. The intermediary files are neither registered nor staged out, and can be considered transient. Only the final
result file f.d is staged out.

Data Discovery (Replica Catalog)
The Replica Catalog keeps mappings of logical file ids/names (LFN's) to physical file ids/names (PFN's). A single
LFN can map to several PFN's. A PFN consists of a URL with protocol, host and port information and a path to a file.
Along with the PFN one can also store additional key/value attributes to be associated with a PFN.

Pegasus supports the following implementations of the Replica Catalog.

1. File(Default)

2. Regex

3. Directory

4. Database via JDBC

5. MRC

File
In this mode, Pegasus queries a file based replica catalog. The file format is a simple multicolumn format. It is neither
transactionally safe, nor advised to use for production purposes in any way. Multiple concurrent instances will conflict

Creating Workflows

28

with each other. The site attribute should be specified whenever possible. The attribute key for the site attribute is
"pool".

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equal sign, it must be
quoted and escaped. The same conditions apply for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be quoted. The LFN sentiments about quoting apply.

The file mode is the Default mode. In order to use the File mode you have to set the following properties

1. pegasus.catalog.replica=File

2. pegasus.catalog.replica.file=<path to the replica catalog file>

Regex
In this mode, Pegasus queries a file based replica catalog. The file format is a simple multicolumn format. It is neither
transactionally safe purposes in any way. Multiple concurrent instances will conflict with each other. The site attribute
should be specified whenever possible. The attribute key for the site attribute is "pool".

In addition users can specifiy regular expression based LFN's. A regular expression based entry should be qualified
with an attribute named 'regex'. The attribute regex when set to true identifies the catalog entry as a regular expression
based entry. Regular expressions should follow Java regular expression syntax.

For example, consider a replica catalog as shown below.

Entry 1 refers to an entry which does not use a regular expressions. This entry would only match a file named 'f.a',
and nothing else.

Entry 2 referes to an entry which uses a regular expression. In this entry f.a referes to files having name as f<any-
character>a i.e. faa, f.a, f0a, etc.

#1
f.a file:///Volumes/data/input/f.a site="local"
#2
f.a file:///Volumes/data/input/f.a site="local" regex="true"

Regular expression based entries also support substitutions. For example, consider the regular expression based entry
shown below.

Entry 3 will match files with name alpha.csv, alpha.txt, alpha.xml. In addition, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being looked up is alpha.csv, the PFN for the file would be generated as file:///Vol-
umes/data/input/csv/alpha.csv. Similary if the file being lookedup was alpha.csv, the PFN for the file would be gen-
erated as file:///Volumes/data/input/xml/alpha.xml i.e. The section [0], [1] will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1] refers to a partial match in the input i.e. csv, or txt, or xml. Users can utilize
as many sections as they wish.

#3
alpha\.(csv|txt|xml) file:///Volumes/data/input/[1]/[0] site="local" regex="true"

In case of a LFN name matching multiple entries in the file, the implementation picks up the first matching regex as
it appears in the file. If you want to specify a default location for all LFN's that don't match any regex expression, you
can have this entry as the last entry in your file.

#4 all unmatched LFN's reside in the same input directory.

.* file:///Volumes/data/input/[0] site="local" regex="true"

Creating Workflows

29

Directory
In this mode, Pegasus does a directory listing on an input directory to create the LFN to PFN mappings. The directory
listing is performed recursively, resulting in deep LFN mappings. For example, if an input directory $input is specified
with the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D1/f.3 site="local"

Users can optionally specify additional properties to configure the behavior of this implementation.

1. pegasus.catalog.replica.directory.site to specify a site attribute other than local to associate with the mappings.

2. pegasus.catalog.replica.directory.flat.lfn to specify whether you want deep LFN's to be constructed or not. If not
specified, value defaults to false i.e. deep lfn's are constructed for the mappings.

3. pegasus.catalog.replica.directory.url.prefix to associate a URL prefix for the PFN's constructed. If not specified,
the URL defaults to file://

Tip

pegasus-plan has --input-dir option that can be used to specify an input directory on the command line.
This allows you to specify a separate replica catalog to catalog the locations of output files.

JDBCRC
In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. To create the schema for
JDBCRC use the pegasus-db-admin command line tool.

Note

A site attribute was added to the SQL schema as a unique key for 4.4. To update an existing database schema,
use pegasus-db-admin tool.

Figure 4.2. Schema Image of the JDBCRC.

To use JDBCRC, the user additionally needs to set the following properties

1. pegasus.catalog.replica JDBCRC

Creating Workflows

30

2. pegasus.catalog.replica.db.driver mysql | sqlite

3. pegasus.catalog.replica.db.url=<jdbc url to the database> e.g jdbc:mysql://data-
base-host.isi.edu/database-name | jdbc:sqlite:/shared/jdbcrc.db

4. pegasus.catalog.replica.db.user=<database user>

5. pegasus.catalog.replica.db.password=<database password>

Users can use the command line client pegasus-rc-client to interface to query, insert and remove entries from the
JDBCRC backend. Starting 4.5 release, there is also support for sqlite databases. Specify the jdbc url to refer to a
sqlite database .

MRC
In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid.

To use it set

1. pegasus.catalog.replica=MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies the following properties

• pegasus.catalog.replica.mrc.[value] - specifies the type of replica catalog.

• pegasus.catalog.replica.mrc.[value].key - specifies a property name key for a particular catalog

For example, to query a File catalog and JDBCRC at the same time specify the following:

• pegasus.catalog.replica.mrc.jdbcrc=JDBCRC

• pegasus.catalog.replica.mrc.jdbcrc.url=<jdbc url >

• pegasus.catalog.replica.mrc.file1=File

• pegasus.catalog.replica.mrc.file1.url=<path to file based replica catalog>

In the above example, jdbcrc and file1 are any valid identifier names and url is the property key that needed to be
specified.

Replica Catalog Client pegasus-rc-client

The client used to interact with the Replica Catalogs is pegasus-rc-client. The implementation that the client talks to
is configured using Pegasus properties.

Lets assume we create a file f.a in your home directory as shown below.

$ date > $HOME/f.a

We now need to register this file in the File replica catalog located in $HOME/rc using the pegasus-rc-client. Replace
the gsiftp://url with the appropriate parameters for your grid site.

$ pegasus-rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc insert \
 f.a gsiftp://somehost:port/path/to/file/f.a site=local

You may first want to verify that the file registeration is in the replica catalog. Since we are using a File catalog we
can look at the file $HOME/rc to view entries.

$ cat $HOME/rc

file-based replica catalog: 2010-11-10T17:52:53.405-07:00
f.a gsiftp://somehost:port/path/to/file/f.a site=local

The above line shows that entry for file f.a was made correctly.

Creating Workflows

31

You can also use the pegasus-rc-client to look for entries.

$ pegasus-rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc lookup
 LFN f.a

f.a gsiftp://somehost:port/path/to/file/f.a site=local

Resource Discovery (Site Catalog)
The Site Catalog describes the compute resources (which are often clusters) that we intend to run the workflow up-
on. A site is a homogeneous part of a cluster that has at least a single GRAM gatekeeper with a jobmanager-fork
andjobmanager-<scheduler> interface and at least one gridftp server along with a shared file system. The GRAM
gatekeeper can be either WS GRAM or Pre-WS GRAM. A site can also be a condor pool or glidein pool with a shared
file system.

The Site Catalog can be described as an XML . Pegasus currently supports two schemas for the Site Catalog:

1. XML4(Default) Corresponds to the schema described here [http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/
sc-4.0.html].

2. XML3(Deprecated) Corresponds to the schema described here [http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/
sc-3.0.html]

XML4
This is the default format for Pegasus 4.2. This format allows defining filesystem of shared as well as local type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.3. Schema Image of the Site Catalog XML4

Below is an example of the XML4 site catalog

<?xml version="1.0" encoding="UTF-8"?>

http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html
http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.html

Creating Workflows

32

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/workflows/scratch">
 <file-server operation="all" url="file:///tmp/workflows/scratch"/>
 </directory>
 <directory type="local-storage" path="/tmp/workflows/outputs">
 <file-server operation="all" url="file:///tmp/workflows/outputs"/>
 </directory>
 </site>

 <site handle="condor_pool" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <directory type="shared-scratch" path="/lustre">
 <file-server operation="all" url="gsiftp://smarty.isi.edu/lustre"/>
 </directory>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu"/>
 </site>

 <site handle="staging_site" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/data">
 <file-server operation="put" url="scp://obelix.isi.edu/data"/>
 <file-server operation="get" url="http://obelix.isi.edu/data"/>
 </directory>
 </site>

</sitecatalog>

Described below are some of the entries in the site catalog.

1. site - A site identifier.

2. Directory - Info about filesystems Pegasus can use for storing temporary and long-term files. There are several
configurations:

• shared-scratch - This describe a scratch file systems. Pegasus will use this to store intermediate data between
jobs and other temporary files.

• local-storage - This describes the storage file systems (long term). This is the directory Pegasus will stage output
files to.

• local-scratch - This describe the scratch file systems available locally on a compute node. This parameter is not
commonly used and can be left unset in most cases.

For each of the directories, you can specify access methods. Allowed methods are put, get, and all which means
both put and get. For each mehod, specify a URL including the protocol. For example, if you want share data via
http using the /var/www/staging directory, you can use scp://hostname/var/www for the put element and http://
hostname/staging for the get element.

3. arch,os,osrelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AIX, PPC.

OS can have one of the following values LINUX,SUNOS,MACOSX. The default value for sysinfo if none specified
is X86::LINUX

4. replica-catalog - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation
of the RC. This is optional and support for RLS has been dropped in Pegasus 4.5.0 release.

5. Profiles - One or many profiles can be attached to a pool.

One example is the environments to be set on a remote pool.

Creating Workflows

33

To use this site catalog the follow properties need to be set:

1. pegasus.catalog.site.file=<path to the site catalog file>

XML3

Warning

This format is now deprecated in favor of the XML4 format. If you are still using the File format you should
convert it to XML4 format using the client pegasus-sc-converter

This is the default format for Pegasus 3.0. This format allows defining filesystem of shared as well as local type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.4. Schema Image of the Site Catalog XML 3

Below is an example of the XML3 site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="isi" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="auxillary"/
>
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/nfs/scratch01" />
 <internal-mount-point mount-point="/nfs/scratch01"/>
 </shared>
 </scratch>
 <storage>

Creating Workflows

34

 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/exports/storage01"/>
 <internal-mount-point mount-point="/exports/storage01"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu"/>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/vdt/pegasus</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/vdt/globus</profile>
 </site>
</sitecatalog>

Described below are some of the entries in the site catalog.

1. site - A site identifier.

2. replica-catalog - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation
of the RC. This is optional and support for RLS has been dropped in Pegasus 4.5.0.

3. File Systems - Info about filesystems mounted on the remote clusters head node or worker nodes. It has several
configurations

• head-fs/scratch - This describe the scratch file systems (temporary for execution) available on the head node

• head-fs/storage - This describes the storage file systems (long term) available on the head node

• worker-fs/scratch - This describe the scratch file systems (temporary for execution) available on the worker
node

• worker-fs/storage - This describes the storage file systems (long term) available on the worker node

Each scratch and storage entry can contain two sub entries,

• SHARED for shared file systems like NFS, LUSTRE etc.

• LOCAL for local file systems (local to the node/machine)

Each of the filesystems are defined by used a file-server element. Protocol defines the protocol uses to access the
files, URL defines the url prefix to obtain the files from and mount-point is the mount point exposed by the file
server.

Along with this an internal-mount-point needs to defined to access the files directly from the machine without any
file servers.

4. arch,os,osrelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AIX, PPC.

OS can have one of the following values LINUX,SUNOS,MACOSX. The default value for sysinfo if none specified
is X86::LINUX

5. Profiles - One or many profiles can be attached to a pool.

One example is the environments to be set on a remote pool.

To use this site catalog the follow properties need to be set:

1. pegasus.catalog.site.file=<path to the site catalog file>

Site Catalog Converter pegasus-sc-converter
Pegasus 4.2 by default now parses Site Catalog format conforming to the SC schema 4.0 (XML4) available here [http://
pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd] and is explained in detail in the Catalog Properties section of
Running Workflows.

http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd
http://pegasus.isi.edu/wms/docs/schemas/sc-4.0/sc-4.0.xsd

Creating Workflows

35

Pegasus 4.2 comes with a pegasus-sc-converter that will convert users old site catalog (XML3) to the XML4 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML3 -o sample.sites.xml4 -O XML4

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml4

To use the converted site catalog, in the properties do the following:

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML

2. point pegasus.catalog.site.file to the converted site catalog

Executable Discovery (Transformation Catalog)
The Transformation Catalog maps logical transformations to physical executables on the system. It also provides
additional information about the transformation as to what system they are compiled for, what profiles or environment
variables need to be set when the transformation is invoked etc.

Pegasus currently supports two implementations of the Transformation Catalog

1. Text: A multiline text based Transformation Catalog (DEFAULT)

2. File: A simple multi column text based Transformation Catalog

3. Database: A database backend (MySQL or PostgreSQL) via JDB

In this guide we will look at the format of the Multiline Text based TC.

MultiLine Text based TC (Text)
The multile line text based TC is the new default TC in Pegasus. This format allows you to define the transformations

The file is read and cached in memory. Any modifications, as adding or deleting, causes an update of the memory
and hence to the file underneath. All queries are done against the memory representation. The file sample.tc.text in
the etc directory contains an example

tr example::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 profile env "HELLo" "WORLD"
 profile condor "FOO" "bar"
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "INSTALLED"
 }

 site wind {
 profile env "CPATH" "/usr/cpath"
 profile condor "universe" "condor"
 pfn "file:///path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "STAGEABLE"
 }
}

Creating Workflows

36

The entries in this catalog have the following meaning

1. tr tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are op-
tional.)

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally a url (file:/// or http:// or gridftp://) if of type STAGEABLE

3. site - The site identifier for the site where the transformation is available

4. type - The type of transformation. Whether it is Iinstalled ("INSTALLED") on the remote site or is availabe to
stage ("STAGEABLE").

5. arch, os, osrelease, osversion - The arch/os/osrelease/osversion of the transformation. osrelease and osversion are
optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
is x86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

6. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site.

To use this format of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transformation=Text

2. pegasus.catalog.transformation.file=<path to the transformation catalog file>

Singleline Text based TC (File)

Warning

This format is now deprecated in favor of the multiline TC. If you are still using the single line TC you
should convert it to multiline using the tc-converter client.

The format of the this TC is as follows.

#site logicaltr physicaltr type system profiles(NS::KEY="VALUE")

site1 sys::date:1.0 /usr/bin/date INSTALLED INTEL32::LINUX:FC4.2:3.6 ENV::PATH="/usr/
bin";PEGASUS_HOME="/usr/local/pegasus"

The system and profile entries are optional and will use default values if not specified. The entries in the file format
have the following meaning:

1. site - A site identifier.

2. logicaltr - The logical transformation name. The format is NAMESPACE::NAME:VERSION where NAMES-
PACE and NAME are optional.

3. physicaltr - The physical transformation path or URL.

If the transformation type is INSTALLED then it needs to be an absolute path to the executable. If the type is
STAGEABLE then the path needs to be a HTTP, FTP or gsiftp URL

4. type - The type of transformation. Can have on of two values

• INSTALLED: This means that the transformation is installed on the remote site

• STAGEABLE: This means that the transformation is available as a static binary and can be staged to a remote
site.

Creating Workflows

37

5. system - The system for which the transformation is compiled.

The formation of the sytem is ARCH::OS:OSVERSION:GLIBC where the GLIBC and OS VERSION are op-
tional. ARCH can have one of the following values INTEL32, INTEL64, SPARCV7, SPARCV9, AIX, AMD64.
OS can have one of the following values LINUX,SUNOS. The default value for system if none specified is
INTEL32::LINUX

6. Profiles - The profiles associated with the transformation. For indepth information about profiles and their priorities
read the Profile Guide.

The format for profiles is NS::KEY="VALUE" where NS is the namespace of the profile e.g.
Pegasus,condor,DAGMan,env,globus. The key and value can be any strings. Remember to quote the value with
double quotes. If you need to specify several profiles you can do it in several ways

• NS1::KEY1="VALUE1",KEY2="VALUE2";NS2::KEY3="VALUE3",KEY4="VALUE4"

This is the most optimized form. Multiple key values for the same namespace are separated by a comma "," and
different namespaces are separated by a semicolon ";"

• NS1::KEY1="VALUE1";NS1::KEY2="VALUE2";NS2::KEY3="VALUE3";NS2::KEY4="VALUE4"

You can also just repeat the triple of NS::KEY="VALUE" separated by semicolons for a simple format;

To use this format of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transformation=File

2. pegasus.catalog.transformation.file=<path to the transformation catalog file>

Database TC (Database)
The database TC alows you to use a relational database. To use the database TC you need to have installed a MySQL
or PostgreSQL server. The schema for the database is available in $PEGASUS_HOME/sql directory. You will have to
install the schema into either PostgreSQL or MySQL by running the appropriate commands to load the two scheams
create-XX-init.sql and create-XX-tc.sql where XX is either my (for MySQL) or pg (for PostgreSQL)

To use the Database TC you need to set the following properties

1. pegasus.catalog.transformation.db.driver=MySQL | Postgres

2. pegasus.catalog.transformation.db.url=<jdbc url to the databse>

3. pegasus.catalog.transformation.db.user=<database user>

4. pegasus.catalog.transformation.db.password=<database password>

TC Client pegasus-tc-client
We need to map our declared transformations (preprocess, findranage, and analyze) from the example DAX above
to a simple "mock application" name "keg" ("canonical example for the grid") which reads input files designated by
arguments, writes them back onto output files, and produces on STDOUT a summary of where and when it was run.
Keg ships with Pegasus in the bin directory. Run keg on the command line to see how it works.

$ keg -o /dev/fd/1

Timestamp Today: 20040624T054607-05:00 (1088073967.418;0.022)
Applicationname: keg @ 10.10.0.11 (VPN)
Current Workdir: /home/unique-name
Systemenvironm.: i686-Linux 2.4.18-3
Processor Info.: 1 x Pentium III (Coppermine) @ 797.425
Output Filename: /dev/fd/1

Now we need to map all 3 transformations onto the "keg" executable. We place these mappings in our File transfor-
mation catalog for site clus1.

Creating Workflows

38

Note

In earlier version of Pegasus users had to define entries for Pegasus executables such as transfer, replica
client, dirmanager, etc on each site as well as site "local". This is no longer required. Pegasus versions 2.0
and later automatically pick up the paths for these binaries from the environment profile PEGASUS_HOME
set in the site catalog for each site.

A single entry needs to be on one line. The above example is just formatted for convenience.

Alternatively you can also use the pegasus-tc-client to add entries to any implementation of the transformation catalog.
The following example shows the addiition the last entry in the File based transformation catalog.

$ pegasus-tc-client -Dpegasus.catalog.transformation=Text \
-Dpegasus.catalog.transformation.file=$HOME/tc -a -r clus1 -l black::analyze:1.0 \
-p gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg -t STAGEABLE -s INTEL32::LINUX \
-e ENV::KEY3="VALUE3"

2007.07.11 16:12:03.712 PDT: [INFO] Added tc entry sucessfully

To verify if the entry was correctly added to the transformation catalog you can use the pegasus-tc-client to query.

$ pegasus-tc-client -Dpegasus.catalog.transformation=File \
-Dpegasus.catalog.transformation.file=$HOME/tc -q -P -l black::analyze:1.0

#RESID LTX PFN TYPE SYSINFO

clus1 black::analyze:1.0 gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg
 STAGEABLE INTEL32::LINUX

TC Converter Client pegasus-tc-converter
Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file /lfs1/software/install/
pegasus/pegasus-3.0.0cvs/etc/sample.tc.text

To use the converted transformation catalog, in the properties do the following:

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

39

Chapter 5. Running Workflows
Executable Workflows (DAG)

The DAG is an executable (concrete) workflow that can be executed over a variety of resources. When the workflow
tasks are mapped to multiple resources that do not share a file system, explicit nodes are added to the workflow for
orchestrating data. transfer between the tasks.

When you take the DAX workflow created in Creating Workflows, and plan it for a single remote grid execution, here
a site with handle hpcc, and plan the workflow without clean-up nodes, the following concrete workflow is built:

Figure 5.1. Black Diamond DAG

Planning augments the original abstract workflow with ancillary tasks to facility the proper execution of the workflow.
These tasks include:

• the creation of remote working directories. These directories typically have name that seeks to avoid conflicts with
other simultaneously running similar workflows. Such tasks use a job prefix of create_dir.

• the stage-in of input files before any task which requires these files. Any file consumed by a task needs to be staged
to the task, if it does not already exist on that site. Such tasks use a job prefix of stage_in.If multiple files from
various sources need to be transferred, multiple stage-in jobs will be created. Additional advanced options permit
to control the size and number of these jobs, and whether multiple compute tasks can share stage-in jobs.

• the original DAX job is concretized into a compute task in the DAG. Compute jobs are a concatination of the job's
name and id attribute from the DAX file.

• the stage-out of data products to a collecting site. Data products with their transfer flag set to false will not be
staged to the output site. However, they may still be eligible for staging to other, dependent tasks. Stage-out tasks
use a job prefix of stage_out.

Running Workflows

40

• If compute jobs run at different sites, an intermediary staging task with prefix stage_inter is inserted between
the compute jobs in the workflow, ensuring that the data products of the parent are available to the child job.

• the registration of data products in a replica catalog. Data products with their register flag set to false will not
be registered.

• the clean-up of transient files and working directories. These steps can be omitted with the --no-cleanup option
to the planner.

The Data Management chapter details more about when and how staging nodes are inserted into the workflow.

The DAG will be found in file diamond-0.dag, constructed from the name and index attributes found in the root
element of the DAX file.

##
PEGASUS WMS GENERATED DAG FILE
DAG diamond
Index = 0, Count = 1
##

JOB create_dir_diamond_0_hpcc create_dir_diamond_0_hpcc.sub
SCRIPT POST create_dir_diamond_0_hpcc /opt/pegasus/default/bin/pegasus-exitcode
 create_dir_diamond_0_hpcc.out

JOB stage_in_local_hpcc_0 stage_in_local_hpcc_0.sub
SCRIPT POST stage_in_local_hpcc_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_in_local_hpcc_0.out

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /opt/pegasus/default/bin/pegasus-exitcode preprocess_ID000001.out

JOB findrange_ID000002 findrange_ID000002.sub
SCRIPT POST findrange_ID000002 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000002.out

JOB findrange_ID000003 findrange_ID000003.sub
SCRIPT POST findrange_ID000003 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000003.out

JOB analyze_ID000004 analyze_ID000004.sub
SCRIPT POST analyze_ID000004 /opt/pegasus/default/bin/pegasus-exitcode analyze_ID000004.out

JOB stage_out_local_hpcc_2_0 stage_out_local_hpcc_2_0.sub
SCRIPT POST stage_out_local_hpcc_2_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_out_local_hpcc_2_0.out

PARENT findrange_ID000002 CHILD analyze_ID000004
PARENT findrange_ID000003 CHILD analyze_ID000004
PARENT preprocess_ID000001 CHILD findrange_ID000002
PARENT preprocess_ID000001 CHILD findrange_ID000003
PARENT analyze_ID000004 CHILD stage_out_local_hpcc_2_0
PARENT stage_in_local_hpcc_0 CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000002
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000003
PARENT create_dir_diamond_0_hpcc CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD analyze_ID000004
PARENT create_dir_diamond_0_hpcc CHILD stage_in_local_hpcc_0
##
End of DAG
##

The DAG file declares all jobs and links them to a Condor submit file that describes the planned, concrete job. In the
same directory as the DAG file are all Condor submit files for the jobs from the picture plus a number of additional
helper files.

The various instructions that can be put into a DAG file are described in Condor's DAGMAN documentation [http://
www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html].The constituents of the submit directory
are described in the "Submit Directory Details"chapter

Mapping Refinement Steps
During the mapping process, the abstract workflow undergoes a series of refinement steps that converts it to an exe-
cutable form.

http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html

Running Workflows

41

Data Reuse

The abstract workflow after parsing is optionally handed over to the Data Reuse Module. The Data Reuse Algorithm
in Pegasus attempts to prune all the nodes in the abstract workflow for which the output files exist in the Replica
Catalog. It also attempts to cascade the deletion to the parents of the deleted node for e.g if the output files for the
leaf nodes are specified, Pegasus will prune out all the workflow as the output files in which a user is interested in
already exist in the Replica Catalog.

The Data Reuse Algorithm works in two passes

First Pass - Determine all the jobs whose output files exist in the Replica Catalog. An output file with the transfer
flag set to false is treated equivalent to the file existing in the Replica Catalog , if the output file is not an input to
any of the children of the job X.

Second Pass - The algorithm removes the job whose output files exist in the Replica Catalog and tries to cascade the
deletion upwards to the parent jobs. We start the breadth first traversal of the workflow bottom up.

(It is already marked for deletion in Pass 1
 OR
 (ALL of it's children have been marked for deletion
 AND
 Node's output files have transfer flags set to false
)
)

Tip

The Data Reuse Algorithm can be disabled by passing the --force option to pegasus-plan.

Figure 5.2. Workflow Data Reuse

Running Workflows

42

Site Selection

The abstract workflow is then handed over to the Site Selector module where the abstract jobs in the pruned workflow
are mapped to the various sites passed by a user. The target sites for planning are specified on the command line using
the --sites option to pegasus-plan. If not specified, then Pegasus picks up all the sites in the Site Catalog as candidate
sites. Pegasus will map a compute job to a site only if Pegasus can

• find an INSTALLED executable on the site

• OR find a STAGEABLE executable that can be staged to the site as part of the workflow execution.

Pegasus supports variety of site selectors with Random being the default

• Random

The jobs will be randomly distributed among the sites that can execute them.

• RoundRobin

The jobs will be assigned in a round robin manner amongst the sites that can execute them. Since each site cannot
execute every type of job, the round robin scheduling is done per level on a sorted list. The sorting is on the basis
of the number of jobs a particular site has been assigned in that level so far. If a job cannot be run on the first
site in the queue (due to no matching entry in the transformation catalog for the transformation referred to by the
job), it goes to the next one and so on. This implementation defaults to classic round robin in the case where all
the jobs in the workflow can run on all the sites.

• Group

Group of jobs will be assigned to the same site that can execute them. The use of the PEGASUS profile key
group in the DAX, associates a job with a particular group. The jobs that do not have the profile key associated
with them, will be put in the default group. The jobs in the default group are handed over to the "Random" Site
Selector for scheduling.

• Heft

A version of the HEFT processor scheduling algorithm is used to schedule jobs in the workflow to multiple grid
sites. The implementation assumes default data communication costs when jobs are not scheduled on to the same
site. Later on this may be made more configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus profile key runtime
with the entries.

The number of processors in a site is picked up from the attribute idle-nodes associated with the vanilla jobman-
ager of the site in the site catalog.

• NonJavaCallout

Pegasus will callout to an external site selector.In this mode a temporary file is prepared containing the job
information that is passed to the site selector as an argument while invoking it. The path to the site selector is
specified by setting the property pegasus.site.selector.path. The environment variables that need to be set to run
the site selector can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary file
contains information about the job that needs to be scheduled. It contains key value pairs with each key value
pair being on a new line and separated by a =.

The following pairs are currently generated for the site selector temporary file that is generated in the NonJava-
Callout.

Table 5.1. Table 1: Key Value Pairs that are currently generated for the site selector
temporary file that is generated in the NonJavaCallout.

Key Value

Running Workflows

43

version is the version of the site selector api,currently 2.0.

transformation is the fully-qualified definition identifier for the trans-
formation (TR) namespace::name:version.

derivation is the fully qualified definition identifier for the deriva-
tion (DV), namespace::name:version.

job.level is the job's depth in the tree of the workflow DAG.

job.id is the job's ID, as used in the DAX file.

resource.id is a pool handle, followed by whitespace, followed by a
gridftp server. Typically, each gridftp server is enumer-
ated once, so you may have multiple occurances of the
same site. There can be multiple occurances of this key.

input.lfn is an input LFN, optionally followed by a whitespace
and file size. There can be multiple occurances of this
key,one for each input LFN required by the job.

wf.name label of the dax, as found in the DAX's root element.
wf.index is the DAX index, that is incremented for each
partition in case of deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being used .e.g
condor

vo.name is the name of the virtual organization that is running
this workflow. It is currently set to NONE

vo.group unused at present and is set to NONE.

Tip

The site selector to use for site selection can be specified by setting the property pegasus.selector.site

Running Workflows

44

Figure 5.3. Workflow Site Selection

Job Clustering
After site selection, the workflow is optionally handed for to the job clustering module, which clusters jobs that are
scheduled to the same site. Clustering is usually done on short running jobs in order to reduce the remote execution
overheads associated with a job. Clustering is described in detail in the optimization chapter.

Tip

The job clustering is turned on by passing the --cluster option to pegasus-plan.

Addition of Data Transfer and Registration Nodes
After job clustering, the workflow is handed to the Data Transfer module that adds data stage-in , inter site and stage-
out nodes to the workflow. Data Stage-in Nodes transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the staging site associated with the job. The staging site for a job is
the execution site if running in a sharedfs mode, else it is the one specified by --staging-site option to the planner. In
case, multiple locations are specified for the same input file, the location from where to stage the data is selected using
a Replica Selector . Replica Selection is described in detail in the Replica Selection section of the Data Management
chapter. More details about staging site can be found in the data staging configuration chapter.

The process of adding the data stage-in and data stage-out nodes is handled by Transfer Refiners. All data transfer
jobs in Pegasus are executed using pegasus-transfer . The pegasus-transfer client is a python based wrapper around
various transfer clients like globus-url-copy, s3cmd, irods-transfer, scp, wget, cp, ln . It looks at source and destination

Running Workflows

45

url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the PEGASUS
and can be found in the bin subdirectory . Pegasus Transfer Refiners are are described in the detail in the Transfers
section of the Data Management chapter. The default transfer refiner that is used in Pegasus is the BalancedCluster
Transfer Refiner, that clusters data stage-in nodes and data stage-out nodes per level of the workflow, on the basis of
certain pegasus profile keys associated with the workflow.

Figure 5.4. Addition of Data Transfer Nodes to the Workflow

Data Registration Nodes may also be added to the final executable workflow to register the location of the output files
on the final output site back in the Replica Catalog . An output file is registered in the Replica Catalog if the register
flag for the file is set to true in the DAX.

Running Workflows

46

Figure 5.5. Addition of Data Registration Nodes to the Workflow

The data staged-in and staged-out from a directory that is created on the head node by a create dir job in the workflow.
In the vanilla case, the directory is visible to all the worker nodes and compute jobs are launched in this directory
on the shared filesystem. In the case where there is no shared filesystem, users can turn on worker node execution,
where the data is staged from the head node directory to a directory on the worker node filesystem. This feature will
be refined further for Pegasus 3.1. To use it with Pegasus 3.0 send email to pegasus-support at isi.edu.

Tip

The replica selector to use for replica selection can be specified by setting the property
pegasus.selector.replica

Addition of Create Dir and Cleanup Jobs

After the data transfer nodes have been added to the workflow, Pegasus adds a create dir jobs to the workflow. Pegasus
usually , creates one workflow specific directory per compute site , that is on the staging site associated with the job.
In the case of shared shared filesystem setup, it is a directory on the shared filesystem of the compute site. In case
of shared filesystem setup, this directory is visible to all the worker nodes and that is where the data is staged-in by
the data stage-in jobs.

The staging site for a job is the execution site if running in a sharedfs mode, else it is the one specified by --staging-site
option to the planner. More details about staging site can be found in the data staging configuration chapter.

After addition of the create dir jobs, the workflow is optionally handed to the cleanup module. The cleanup module
adds cleanup nodes to the workflow that remove data from the directory on the shared filesystem when it is no longer
required by the workflow. This is useful in reducing the peak storage requirements of the workflow.

Running Workflows

47

Tip

The addition of the cleanup nodes to the workflow can be disabled by passing the --nocleanup option to
pegasus-plan.

Figure 5.6. Addition of Directory Creation and File Removal Jobs

Tip

Users can specify the maximum number of cleanup jobs added per level by specifying the property
pegasus.file.cleanup.clusters.num in the properties.

Code Generation

The last step of refinement process, is the code generation where Pegasus writes out the executable workflow in a
form understandable by the underlying workflow executor. At present Pegasus supports the following code generators

1. Condor

This is the default code generator for Pegasus . This generator generates the executable workflow as a Condor DAG
file and associated job submit files. The Condor DAG file is passed as input to Condor DAGMan for job execution.

2. Shell

This Code Generator generates the executable workflow as a shell script that can be executed on the submit host.
While using this code generator, all the jobs should be mapped to site local i.e specify --sites local to pegasus-plan.

Running Workflows

48

Tip

To use the Shell code Generator set the property pegasus.code.generator Shell

3. PMC

This Code Generator generates the executable workflow as a PMC task workflow. This is useful to run on platforms
where it not feasible to run Condor such as the new XSEDE machines such as Blue Waters. In this mode, Pegasus
will generate the executable workflow as a PMC task workflow and a sample PBS submit script that submits this
workflow. Note that the generated PBS file needs to be manually updated before it can be submitted.

Tip

To use the Shell code Generator set the property pegasus.code.generator PMC

Figure 5.7. Final Executable Workflow

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

Running Workflows

49

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

You can specifiy the data configuration to use either in

1. properties - Specify the global property pegasus.data.configuration .

2. site catalog - Starting 4.5.0 release, you can specify pegasus profile key named data.configuration and associate
that with your compute sites in the site catalog.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

Running Workflows

50

Figure 5.8. Shared File System Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

Running Workflows

51

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 5.9. Non Shared Filesystem Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

Running Workflows

52

Condor Pool Without a Shared Filesystem
This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 5.10. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on the submit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

Running Workflows

53

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

PegasusLite
Starting Pegasus 4.0 , all compute jobs (single or clustered jobs) that are executed in a non shared filesystem setup,
are executed using lightweight job wrapper called PegasusLite.

Figure 5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching
compute jobs

When PegasusLite starts on a remote worker node to run a compute job , it performs the following actions:

1. Discovers the best run-time directory based on space requirements and create the directory on the local filesystem
of the worker node to execute the job.

2. Prepare the node for executing the unit of work. This involves discovering whether the pegasus worker tools are
already installed on the node or need to be brought in.

3. Use pegasus-transfer to stage in the input data to the runtime directory (created in step 1) on the remote worker node.

4. Launch the compute job.

Running Workflows

54

5. Use pegasus-transfer to stage out the output data to the data coordination site.

6. Remove the directory created in Step 1.

Pegasus-Plan
pegasus-plan is the main executable that takes in the abstract workflow (DAX) and generates an executable workflow
(usually a Condor DAG) by querying various catalogs and performing several refinement steps. Before users can
run pegasus plan the following needs to be done:

1. Populate the various catalogs

a. Replica Catalog

The Replica Catalog needs to be catalogued with the locations of the input files required by the workflows. This
can be done by using pegasus-rc-client (See the Replica section of Creating Workflows).

b. Transformation Catalog

The Transformation Catalog needs to be catalogued with the locations of the executables that the workflows
will use. This can be done by using pegasus-tc-client (See the Transformation section of Creating Workflows).

c. Site Catalog

The Site Catalog needs to be catalogued with the site layout of the various sites that the workflows can execute
on. A site catalog can be generated for OSG by using the client pegasus-sc-client (See the Site section of the
Creating Workflows).

2. Configure Properties

After the catalogs have been configured, the user properties file need to be updated with the types and locations
of the catalogs to use. These properties are described in the basic.properties files in the etc sub directory (see the
Properties section of the Configuration chapter.

The basic properties that need to be set usually are listed below:

Table 5.2. Table2: Basic Properties that need to be set

pegasus.catalog.replica

pegasus.catalog.replica.file | pegasus.catalog.replica.url

pegasus.catalog.transformation

pegasus.catalog.transformation.file

pegasus.catalog.site.file

To execute pegasus-plan user usually requires to specify the following options:

1. --dax the path to the DAX file that needs to be mapped.

2. --dir the base directory where the executable workflow is generated

3. --sites comma separated list of execution sites.

4. --output the output site where to transfer the materialized output files.

5. --submit boolean value whether to submit the planned workflow for execution after planning is done.

Basic Properties
Properties are primarily used to configure the behavior of the Pegasus Workflow Planner at a global level. The prop-
erties file is actually a java properties file and follows the same conventions as that to specify the properties.

Running Workflows

55

Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home

Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Catalog Related Properties

Running Workflows

56

Table 5.3. Replica Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : File

Pegasus queries a Replica Catalog to discover the physi-
cal filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Cata-
logs. This property specifies which type of Replica Cata-
log to use during the planning process.

JDBCRC In this mode, Pegasus queries a SQL
based replica catalog that is accessed via
JDBC. The sql schema's for this catalog
can be found at $PEGASUS_HOME/sql
directory. To use JDBCRC, the user addi-
tionally needs to set the following prop-
erties

1. pegasus.catalog.replica.db.driver =
mysql

2. pegasus.catalog.replica.db.url = jdbc
url to database e.g jdbc:mysql://data-
base-host.isi.edu/database-name

3. pegasus.catalog.replica.db.user =
database-user

4. pegasus.catalog.replica.db.password
= database-password

File In this mode, Pegasus queries a file based
replica catalog. It is neither transaction-
ally safe, nor advised to use for produc-
tion purposes in any way. Multiple con-
current instances will clobber each oth-
er!. The site attribute should be specified
whenever possible. The attribute key for
the site attribute is "site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Regex In this mode, Pegasus queries a file based
replica catalog. It is neither transactional-
ly safe, nor advised to use for production

Running Workflows

57

purposes in any way. Multiple concurrent
access to the File will end up clobbering
the contents of the file. The site attribute
should be specified whenever possible.
The attribute key for the site attribute is
"site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

In addition users can specifiy regular ex-
pression based LFN's. A regular expres-
sion based entry should be qualified with
an attribute named 'regex'. The attribute
regex when set to true identifies the cat-
alog entry as a regular expression based
entry. Regular expressions should follow
Java regular expression syntax.

For example, consider a replica catalog as
shown below.

Entry 1 refers to an entry which does
not use a resular expressions. This entry
would only match a file named 'f.a', and
nothing else. Entry 2 referes to an entry
which uses a regular expression. In this
entry f.a referes to files having name as
f[any-character]a i.e. faa, f.a, f0a, etc.

f.a file:///Vol/input/f.a
 site="local"
f.a file:///Vol/input/f.a
 site="local" regex="true"

Regular expression based entries also
support substitutions. For example, con-
sider the regular expression based entry
shown below.

Entry 3 will match files with name
alpha.csv, alpha.txt, alpha.xml. In addi-
tion, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being
looked up is alpha.csv, the PFN for
the file would be generated as file:///
Volumes/data/input/csv/alpha.csv. Simi-
lary if the file being lookedup was
alpha.csv, the PFN for the file would
be generated as file:///Volumes/data/in-
put/xml/alpha.xml i.e. The section [0], [1]
will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1]

Running Workflows

58

refers to a partial match in the input i.e.
csv, or txt, or xml. Users can utilize as
many sections as they wish.

alpha\.(csv|txt|xml) file:///
Vol/input/[1]/[0] site="local"
 regex="true"

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Directory In this mode, Pegasus does a directory
listing on an input directory to create the
LFN to PFN mappings. The directory list-
ing is performed recursively, resulting in
deep LFN mappings. For example, if an
input directory $input is specified with
the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the fol-
lowing LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D2/f.3
 site="local"

If you don't want the deep lfn's
to be created then, you can set
pegasus.catalog.replica.directory.flat.lfn
to true In that case, for the previous ex-
ample, Pegasus will create the following
LFN PFN mappings internally.

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
f.3 file://$input/D2/f.3
 site="local"

pegasus-plan has --input-dir option that
can be used to specify an input directory.

Users can optionally specify additional
properties to configure the behvavior of
this implementation.

pegasus.catalog.replica.directory.site to
specify a site attribute other than local to
associate with the mappings.

pegasus.catalog.replica.directory.url.prefix
to associate a URL prefix for the PFN's
constructed. If not specified, the URL de-
faults to file://

Running Workflows

59

MRC In this mode, Pegasus queries multiple
replica catalogs to discover the file loca-
tions on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be
configured via properties as follows.

The user associates a variable name re-
ferred to as [value] for each of the cata-
logs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For
each associated replica catalogs the user
specifies the following properties.

pegasus.catalog.replica.mrc.[value]
 specifies the type of \

 replica catalog.
pegasus.catalog.replica.mrc.
[value].key specifies a property
 name\

 key for a particular catalog

pegasus.catalog.replica.mrc.directory1
 LRC
pegasus.catalog.replica.mrc.directory1.url /
input/dir1
pegasus.catalog.replica.mrc.directory2
 LRC
pegasus.catalog.replica.mrc.directory2.url /
input/dir2

In the above example, directory1, direc-
tory2 are any valid identifier names and
url is the property key that needed to be
specified.

Property Key: pegasus.catalog.replica.url
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

When using the modern RLS replica catalog, the URI to
the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

Table 5.4. Site Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : XML

Pegasus supports two different types of site catalogs in
XML format conforming to sc-3.0.xsd and sc-4.0.xsd. Pe-
gasus is able to auto-detect what schema a user site cata-
log refers to. Hence, this property may no longer be set.

Property Key: pegasus.catalog.site.file
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/sites.xml

The path to the site catalog file, that describes the various
sites and their layouts to Pegasus.

Running Workflows

60

Table 5.5. Transformation Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.transformation
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : Text

The only recommended and supported version of Trans-
formation Catalog for Pegasus is Text. For the old File
based formats, users should use pegasus-tc-converter to
convert File format to Text Format.

Text In this mode, a multiline file based format is un-
derstood. The file is read and cached in memory.
Any modifications, as adding or deleting, causes
an update of the memory and hence to the file un-
derneath. All queries are done against the mem-
ory representation.

The file sample.tc.text in the etc directory con-
tains an example

Here is a sample textual format for transfoma-
tion catalog containing one transformation on
two sites

tr example::keg:1.0 {
#specify profiles that apply for all the
 sites for the transformation
#in each site entry the profile can be
 overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

Property Key: pegasus.catalog.transformation
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/tc.text

The path to the transformation catalog file, that describes
the locations of the executables.

Data Staging Configuration Properties

Table 5.6. Data Configuration Properties

Key Attributes Description

Property Key: pegasus.data.configuration
Profile Key: N/A
Scope : Properties
Since : 4.0.0
Values : sharedfs|nonsharedfs|condorio

This property sets up Pegasus to run in different environ-
ments.

sharedfs If this is set, Pegasus will be setup to
execute jobs on the shared filesystem

Running Workflows

61

Default : sharedfs
See Also : pegasus.transfer.bypass.input.staging

on the execution site. This assumes,
that the head node of a cluster and the
worker nodes share a filesystem. The
staging site in this case is the same
as the execution site. Pegasus adds a
create dir job to the executable work-
flow that creates a workflow specif-
ic directory on the shared filesystem .
The data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this
directory.The compute jobs in the ex-
ecutable workflow are launched in the
directory on the shared filesystem. In-
ternally, if this is set the following
properties are set.

pegasus.execute.*.filesystem.local
 false

condorio If this is set, Pegasus will be setup to
run jobs in a pure condor pool, with the
nodes not sharing a filesystem. Data is
staged to the compute nodes from the
submit host using Condor File IO. The
planner is automatically setup to use
the submit host (site local) as the stag-
ing site. All the auxillary jobs added by
the planner to the executable workflow
(create dir, data stagein and stage-out,
cleanup) jobs refer to the workflow
specific directory on the local site. The
data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory. When the compute jobs start,
the input data for each job is shipped
from the workflow specific directory
on the submit host to compute/worker
node using Condor file IO. The output
data for each job is similarly shipped
back to the submit host from the com-
pute/worker node. This setup is par-
ticularly helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.transfer.lite.*.impl
 Condor
pegasus.execute.*.filesystem.local
 true
pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

nonsharedfs If this is set, Pegasus will be setup to
execute jobs on an execution site with-

Running Workflows

62

out relying on a shared filesystem be-
tween the head node and the work-
er nodes. You can specify staging site
(using --staging-site option to pega-
sus-plan) to indicate the site to use as
a central storage location for a work-
flow. The staging site is independant
of the execution sites on which a work-
flow executes. All the auxillary jobs
added by the planner to the executable
workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to
the workflow specific directory on the
staging site. The data transfer jobs in
the executable workflow (stage_in_ ,
stage_inter_ , stage_out_) transfer
the data to this directory. When the
compute jobs start, the input data for
each job is shipped from the workflow
specific directory on the submit host
to compute/worker node using pega-
sus-transfer. The output data for each
job is similarly shipped back to the
submit host from the compute/work-
er node. The protocols supported are
at this time SRM, GridFTP, iRods,
S3. This setup is particularly help-
ful when running workflows on OSG
where most of the execution sites don't
have enough data storage. Only a few
sites have large amounts of data stor-
age exposed that can be used to place
data during a workflow run. This set-
up is also helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.execute.*.filesystem.local
 true
pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

63

Chapter 6. Monitoring, Debugging and
Statistics

Pegasus comes bundled with useful tools that help users debug workflows and generate useful statistics and plots
about their workflow runs. Most of the tools query a runtime workflow database (usually a sqllite in the workflow
submit directory) populated at runtime by pegasus-monitord. With the exception of pegasus-monitord (see below),
all tools take in the submit directory as an argument. Users can invoke the tools listed in this chapter as follows:

$ pegasus-[toolname] <path to the submit directory>

Workflow Status
As the number of jobs and tasks in workflows increase, the ability to track the progress and quickly debug a workflow
becomes more and more important. Pegasus comes with a series of utilities that can be used to monitor and debug
workflows both in real-time as well as after execution is already completed.

pegasus-status
To monitor the execution of the workflow run the pegasus-status command as suggested by the output of the pega-
sus-run command. pegasus-status shows the current status of the Condor Q as pertaining to the master workflow
from the workflow directory you are pointing it to. In a second section, it will show a summary of the state of all jobs
in the workflow and all of its sub-workflows.

The details of pegasus-status are described in its respective manual page. There are many options to help you gather
the most out of this tool, including a watch-mode to repeatedly draw information, various modes to add more infor-
mation, and legends if you are new to it, or need to present it.

$ pegasus-status /Workflow/dags/directory
STAT IN_STATE JOB
Run 05:08 level-3-0
Run 04:32 |-sleep_ID000005
Run 04:27 _subdax_level-2_ID000004
Run 03:51 |-sleep_ID000003
Run 03:46 _subdax_level-1_ID000002
Run 03:10 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 6 0 3 0 33.3
Summary: 3 DAGs total (Running:3)

Without the -l option, the only a summary of the workflow statistics is shown under the current queue status. However,
with the -l option, it will show each sub-workflow separately:

$ pegasus-status -l /Workflow/dags/directory
STAT IN_STATE JOB
Run 07:01 level-3-0
Run 06:25 |-sleep_ID000005
Run 06:20 _subdax_level-2_ID000004
Run 05:44 |-sleep_ID000003
Run 05:39 _subdax_level-1_ID000002
Run 05:03 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 1 0 1 0 50.0 Running level-2_ID000004/level-1_ID000002/
level-1-0.dag
 0 0 0 2 0 1 0 33.3 Running level-2_ID000004/level-2-0.dag
 0 0 0 3 0 1 0 25.0 Running *level-3-0.dag
 0 0 0 6 0 3 0 33.3 TOTALS (9 jobs)
Summary: 3 DAGs total (Running:3)

The following output shows a successful workflow of workflow summary after it has finished.

Monitoring, Debugging and Statistics

64

$ pegasus-status work/2011080514
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 0 0 7,137 0 100.0
Summary: 44 DAGs total (Success:44)

Warning

For large workflows with many jobs, please note that pegasus-status will take time to compile state from all
workflow files. This typically affects the initial run, and sub-sequent runs are faster due to the file system's
buffer cache. However, on a low-RAM machine, thrashing is a possibility.

The following output show a failed workflow after no more jobs from it exist. Please note how no active jobs are
shown, and the failure status of the total workflow.

$ pegasus-status work/submit
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 20 0 0 0 0 0 2 0.0
Summary: 1 DAG total (Failure:1)

pegasus-analyzer

Pegasus-analyzer is a command-line utility for parsing several files in the workflow directory and summarizing useful
information to the user. It should be used after the workflow has already finished execution. pegasus-analyzer quickly
goes through the jobstate.log file, and isolates jobs that did not complete successfully. It then parses their submit,
and kickstart output files, printing to the user detailed information for helping the user debug what happened to his/
her workflow.

The simplest way to invoke pegasus-analyzer is to simply give it a workflow run directory, like in the example below:

$ pegasus-analyzer /home/user/run0004
pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 26 (100.00%)
 # jobs succeeded : 25 (96.15%)
 # jobs failed : 1 (3.84%)
 # jobs unsubmitted : 0 (0.00%)

******************************Failed jobs' details******************************

============================register_viz_glidein_7_0============================

 last state: POST_SCRIPT_FAILURE
 site: local
submit file: /home/user/run0004/register_viz_glidein_7_0.sub
output file: /home/user/run0004/register_viz_glidein_7_0.out.002
 error file: /home/user/run0004/register_viz_glidein_7_0.err.002

-------------------------------Task #1 - Summary--------------------------------

site : local
executable : /lfs1/software/install/pegasus/default/bin/rc-client
arguments : -Dpegasus.user.properties=/lfs1/work/pegasus/run0004/pegasus.15181.properties \
-Dpegasus.catalog.replica.url=rlsn://smarty.isi.edu --insert register_viz_glidein_7_0.in
exitcode : 1
working dir : /lfs1/work/pegasus/run0004

---------Task #1 - pegasus::rc-client - pegasus::rc-client:1.0 - stdout---------

2009-02-20 16:25:13.467 ERROR [root] You need to specify the pegasus.catalog.replica property
2009-02-20 16:25:13.468 WARN [root] non-zero exit-code 1

In the case above, pegasus-analyzer's output contains a brief summary section, showing how many jobs have succeeded
and how many have failed. After that, pegasus-analyzer will print information about each job that failed, showing its
last known state, along with the location of its submit, output, and error files. pegasus-analyzer will also display any
stdout and stderr from the job, as recorded in its kickstart record. Please consult pegasus-analyzer's man page for more
examples and a detailed description of its various command-line options.

Monitoring, Debugging and Statistics

65

Note

Starting with 4.0 release, by default pegasus analyzer queries the database to debug the workflow. If you
want it to use files in the submit directory , use the --files option.

pegasus-remove
If you want to abort your workflow for any reason you can use the pegasus-remove command listed in the output of
pegasus-run invocation or by specifying the Dag directory for the workflow you want to terminate.

$ pegasus-remove /PATH/To/WORKFLOW DIRECTORY

Resubmitting failed workflows
Pegasus will remove the DAGMan and all the jobs related to the DAGMan from the condor queue. A rescue DAG
will be generated in case you want to resubmit the same workflow and continue execution from where it last stopped.
A rescue DAG only skips jobs that have completely finished. It does not continue a partially running job unless the
executable supports checkpointing.

To resubmit an aborted or failed workflow with the same submit files and rescue Dag just rerun the pegasus-run
command

$ pegasus-run /Path/To/Workflow/Directory

Plotting and Statistics
Pegasus plotting and statistics tools queries the Stampede database created by pegasus-monitord for generating the
output.The stampede scheme can be found here.

The statistics and plotting tools use the following terminology for defining tasks, jobs etc. Pegasus takes in a DAX
which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that consists of Jobs. In
case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable workflow. When
DAGMan executes a job, a job instance is populated . Job instances capture information as seen by DAGMan. In case
DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan finds a job instance has
finished , an invocation is associated with job instance. In case of clustered job, multiple invocations will be associated
with a single job instance. If a Pre script or Post Script is associated with a job instance, then invocations are populated
in the database for the corresponding job instance.

pegasus-statistics
Pegasus statistics can compute statistics over one or more than one workflow run.

Command to generate statistics over a single run is as shown below.

$ pegasus-statistics /scratch/grid-setup/run0001/ -s all

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed

Monitoring, Debugging and Statistics

66

during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 4 0 0 4 0 4
Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 5 mins, 18 secs
Workflow cumulative job wall time : 4 mins, 2 secs
Cumulative job wall time as seen from submit side : 4 mins, 10 secs
Workflow cumulative job badput wall time : 0
Cumulative job badput wall time as seen from submit side : 0

By default the output gets generated to a statistics folder inside the submit directory. The output that is generated
by pegasus-statistics is based on the value set for command line option 's'(statistics_level). In the sample run the
command line option 's' is set to 'all' to generate all the statistics information for the workflow run. Please consult the
pegasus-statistics man page to find a detailed description of various command line options.

Note

In case of hierarchal workflows, the metrics that are displayed on stdout take into account all the jobs/tasks/
sub workflows that make up the workflow by recursively iterating through each sub workflow.

Command to generate statistics over all workflow runs populated in a single database is as shown below.

$ pegasus-statistics -Dpegasus.monitord.output='mysql://s_user:s_user123@127.0.0.1:3306/stampede' -
o /scratch/workflow_1_2/statistics -s all --multiple-wf

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total

Monitoring, Debugging and Statistics

67

tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 8 0 0 8 0 8
Jobs 34 0 0 34 0 34
Sub-Workflows 0 0 0 0 0 0
--

Workflow cumulative job wall time : 8 mins, 5 secs
Cumulative job wall time as seen from submit side : 8 mins, 35 secs
Workflow cumulative job badput wall time : 0
Cumulative job badput wall time as seen from submit side : 0

Note

When computing statistics over multiple workflows, please note,

1. All workflow run information should be populated in a single STAMPEDE database.

2. The --output argument must be specified.

3. Job statistics information is not computed.

4. Workflow wall time information is not computed.

Pegasus statistics can also compute statistics over a few specified workflow runs, by specifying the either the submit
directories, or the workflow UUIDs.

pegasus-statistics -Dpegasus.monitord.output='<DB_URL>' -o <OUTPUT_DIR> <SUBMIT_DIR_1>
 <SUBMIT_DIR_2> .. <SUBMIT_DIR_n>

Monitoring, Debugging and Statistics

68

OR

pegasus-statistics -Dpegasus.monitord.output='<DB_URL>' -o <OUTPUT_DIR> --isuuid <UUID_1>
 <UUID_2> .. <UUID_n>

pegasus-statistics summary which is printed on the stdout contains the following information.

• Workflow summary - Summary of the workflow execution. In case of hierarchical workflow the calculation shows
the statistics across all the sub workflows.It shows the following statistics about tasks, jobs and sub workflows.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all
the jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total'
count and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of
total retries, succeeded and failed count.

• Workflow wall time - The wall time from the start of the workflow execution to the end as reported by the
DAGMAN.In case of rescue dag the value is the cumulative of all retries.

• Workflow cummulate job wall time - The sum of the wall time of all jobs as reported by kickstart. In case of
job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG and
SUBDAX jobs), the wall time value includes jobs from the sub workflows as well. This value is multiplied by the
multiplier_factor in the job instance table.

• Cumulative job wall time as seen from submit side - The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes job management overhead and delays. In case
of job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG
and SUBDAX jobs), the wall time value includes jobs from the sub workflows. This value is multiplied by the
multiplier_factor in the job instance table.

pegasus-statistics generates the following statistics files based on the command line options set.

Workflow statistics file per workflow [workflow.txt]

Workflow statistics file per workflow contains the following information about each workflow run. In case of hierar-
chal workflows, the file contains a table for each sub workflow. The file also contains a 'Total' table at the bottom
which is the cumulative of all the individual statistics details.

A sample table is shown below. It shows the following statistics about tasks, jobs and sub workflows.

• Workflow retries - number of times a workflow was retried.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all the
jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total' count
and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of total
retries, succeeded and failed count.

Monitoring, Debugging and Statistics

69

Table 6.1. Workflow Statistics

Type Succeeded Failed Incom-
plete

Total Retries Total Run Workflow
Retries

2a6df11b-9972-4ba0-
b4ba-4fd39c357af4

 0

 Tasks 4 0 0 4 0 4

 Jobs 13 0 0 13 0 13

 Sub Work-
flows

0 0 0 0 0 0

Job statistics file per workflow [jobs.txt]

Job statistics file per workflow contains the following details about the job instances in each workflow. A sample
file is shown below.

• Job - the name of the job instance

• Try - the number representing the job instance run count.

• Site - the site where the job instance ran.

• Kickstart(sec.) - the actual duration of the job instance in seconds on the remote compute node.

• Mult - multiplier factor from the job instance table for the job.

• Kickstart_Mult - value of the Kickstart column multiplied by Mult.

• CPU-Time - remote CPU time computed as the stime + utime (when Kickstart is not used, this is empty).

• Post(sec.) - the postscript time as reported by DAGMan.

• CondorQTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It is an estimate
of the time spent in the condor q on the submit node .

• Resource(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job instance spent in the remote queue .

• Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . Is always >=kickstart .

• Seqexec(sec.) - the time taken for the completion of a clustered job instance .

• Seqexec-Delay(sec.) - the time difference between the time for the completion of a clustered job instance and sum
of all the individual tasks kickstart time .

Table 6.2. Job statistics

Job Try Site Kick-
start

MultKickstart_MultCPU-
Time

Post Con-
dorQ-
Time

Re-
source

Run-
time

Se-
qexec

Seqex-
ec-De-

lay

analyze_ID00000041 local 60.002 1 60.002 59.843 5.0 0.0 - 62.0 - -

create_dir_diamond_0_local1 local 0.027 1 0.027 0.003 5.0 5.0 - 0.0 - -

findrange_ID00000021 local 60.001 10 600.01 59.921 5.0 0.0 - 60.0 - -

findrange_ID00000031 local 60.002 10 600.02 59.912 5.0 10.0 - 61.0 - -

preprocess_ID00000011 local 60.002 1 60.002 59.898 5.0 5.0 - 60.0 - -

register_local_1_01 local 0.459 1 0.459 0.432 6.0 5.0 - 0.0 - -

register_local_1_11 local 0.338 1 0.338 0.331 5.0 5.0 - 0.0 - -

register_local_2_01 local 0.348 1 0.348 0.342 5.0 5.0 - 0.0 - -

Monitoring, Debugging and Statistics

70

Job Try Site Kick-
start

MultKickstart_MultCPU-
Time

Post Con-
dorQ-
Time

Re-
source

Run-
time

Se-
qexec

Seqex-
ec-De-

lay

stage_in_local_local_01 local 0.39 1 0.39 0.032 5.0 5.0 - 0.0 - -

stage_out_local_local_0_01 local 0.165 1 0.165 0.108 5.0 10.0 - 0.0 - -

stage_out_local_local_1_01 local 0.147 1 0.147 0.098 7.0 5.0 - 0.0 - -

stage_out_local_local_1_11 local 0.139 1 0.139 0.089 5.0 6.0 - 0.0 - -

stage_out_local_local_2_01 local 0.145 1 0.145 0.101 5.0 5.0 - 0.0 - -

Transformation statistics file per workflow [breakdown.txt]

Transformation statistics file per workflow contains information about the invocations in each workflow grouped by
transformation name. A sample file is shown below.

• Transformation - name of the transformation.

• Count - the number of times invocations with a given transformation name was executed.

• Succeeded - the count of succeeded invocations with a given logical transformation name .

• Failed - the count of failed invocations with a given logical transformation name .

• Min (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multipler_factor.

• Max (sec.) - the minimum runtime value of invocations with a given logical transformation name times the
multiplier_factor.

• Mean (sec.) - the mean of the invocation runtimes with a given logical transformation name times the
multiplier_factor.

• Total (sec.) - the cumulative of runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Table 6.3. Transformation Statistics

Transfor-
mation

Count Succeeded Failed Min Max Mean Total

dagman::post 13 13 0 5.0 7.0 5.231 68.0

diamond::analyze 1 1 0 60.002 60.002 60.002 60.002

diamond::findrange 2 2 0 600.01 600.02 600.02 1200.03

diamond::preprocess 1 1 0 60.002 60.002 60.002 60.002

pegasus::dirmanager 1 1 0 0.027 0.027 0.027 0.027

pegasus::pegasus-
transfer

5 5 0 0.139 0.39 0.197 0.986

pegasus::rc-
client

3 3 0 0.338 0.459 0.382 1.145

Time statistics file [time.txt]

Time statistics file contains job instance and invocation statistics information grouped by time and host. The time
grouping can be on day/hour. The file contains the following tables Job instance statistics per day/hour, Invocation
statistics per day/hour, Job instance statistics by host per day/hour and Invocation by host per day/hour. A sample
Invocation statistics by host per day table is shown below.

• Job instance statistics per day/hour - the number of job instances run, total runtime sorted by day/hour.

• Invocation statistics per day/hour - the number of invocations , total runtime sorted by day/hour.

Monitoring, Debugging and Statistics

71

• Job instance statistics by host per day/hour - the number of job instances run, total runtime on each host sorted
by day/hour.

• Invocation statistics by host per day/hour - the number of invocations , total runtime on each host sorted by
day/hour.

Table 6.4. Invocation statistics by host per day

Date [YYYY-MM-DD] Host Count Runtime (Sec.)

2011-07-15 butterfly.isi.edu 54 625.094

pegasus-plots

Pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ pegasus-plots -p all /scratch/grid-setup/run0001/

...

** SUMMARY **

Graphs and charts generated by pegasus-plots can be viewed by opening the generated html file in the
 web browser :
/scratch/grid-setup/run0001/plots/index.html

**

By default the output gets generated to plots folder inside the submit directory. The output that is generated by pega-
sus-plots is based on the value set for command line option 'p'(plotting_level).In the sample run the command line
option 'p' is set to 'all' to generate all the charts and graphs for the workflow run. Please consult the pegasus-plots man
page to find a detailed description of various command line options.pegasus-plots generates an index.html file which
provides links to all the generated charts and plots. A sample index.html page is show below.

Figure 6.1. pegasus-plot index page

pegasus-plots generates the following plots and charts.

Dax Graph

Graph representation of the DAX file. A sample page is shown below.

Monitoring, Debugging and Statistics

72

Figure 6.2. DAX Graph

Dag Graph

Graph representation of the DAG file. A sample page is shown below.

Monitoring, Debugging and Statistics

73

Figure 6.3. DAG Graph

Gantt workflow execution chart

Gantt chart of the workflow execution run. A sample page is shown below.

Figure 6.4. Gantt Chart

Monitoring, Debugging and Statistics

74

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide job name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Host over time chart

Host over time chart of the workflow execution run. A sample page is shown below.

Figure 6.5. Host over time chart

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide host name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Time chart

Time chart shows job instance/invocation count and runtime of the workflow run over time. A sample page is shown
below.

Monitoring, Debugging and Statistics

75

Figure 6.6. Time chart

The toolbar at the top provides zoom in/out and pan left/right/top/bottom functionality. The toolbar at the bottom can
be used to switch between job instances/ invocations and day/hour filtering.

Breakdown chart

Breakdown chart shows invocation count and runtime of the workflow run grouped by transformation name. A sample
page is shown below.

Monitoring, Debugging and Statistics

76

Figure 6.7. Breakdown chart

The toolbar at the bottom can be used to switch between invocation count and runtime filtering. Legends can be clicked
to get more details.

Dashboard
As the number of jobs and tasks in workflows increase, the ability to track the progress and quickly debug a workflow
becomes more and more important. The dashboard provides users with a tool to monitor and debug workflows both
in real-time as well as after execution is already completed, through a browser.

Workflow Dashboard
Pegasus Workflow Dashboard is bundled with Pegasus. The pegasus-service is developed in Python and uses the Flask
framework to implement the web interface.The users can then connect to this server using a browser to monitor/debug
workflows.

Note

the workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.

To start the Pegasus Dashboard execute the following command

$ pegasus-service --host 127.0.0.1 --port 5000

SSL is not configured: Using self-signed certificate
2015-04-13 16:14:23,074:Pegasus.service.server:79: WARNING: SSL is not configured: Using self-signed
 certificate
Service not running as root: Will not be able to switch users

Monitoring, Debugging and Statistics

77

2015-04-13 16:14:23,074:Pegasus.service.server:86: WARNING: Service not running as root: Will not be
 able to switch users

By default, the server is configured to listen only on localhost/127.0.0.1 on port 5000. A user can view the dashboard
on https://localhost:5000/

To make the Pegasus Dashboard listen on all network interfaces OR on a different port, users can pass different values
to the --host and/or --port options.

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level
workflows (Pegasus supports hierarchical workflows i.e. workflows within a workflow). The rows in the table are
color coded

• Green: indicates workflow finished successfully.

• Red: indicates workflow finished with a failure.

• Blue: indicates a workflow is currently running.

• Gray: indicates a workflow that was archived.

Figure 6.8. Dashboard Home Page

Monitoring, Debugging and Statistics

78

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page also displays pie charts showing the distribution of jobs based on status.

In addition, the details page displays a tab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

Note

Failing jobs are currently running jobs (visible in Running tab), which have failed in previous attempts to
execute them.

The information displayed for a job depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

Monitoring, Debugging and Statistics

79

Figure 6.9. Dashboard Workflow Page

Monitoring, Debugging and Statistics

80

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

The job instance section of the job details page lists all attempts made to run the job i.e. if a job failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

The job details page also shows tab's for failed, and successful task invocations (Pegasus allows users to group multiple
smaller task's into a single job i.e. a job may consist of one or more tasks)

Monitoring, Debugging and Statistics

81

Figure 6.10. Dashboard Job Description Page

The task invocation details page provides task specific information like task name, exit code, duration etc. Task details
differ from job details, as they are more granular in nature.

Monitoring, Debugging and Statistics

82

Figure 6.11. Dashboard Invocation Page

The dashboard also has web pages for workflow statistics and workflow charts, which graphically renders information
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

Monitoring, Debugging and Statistics

83

Figure 6.12. Dashboard Statistics Page

The Charts page shows the following charts.

1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

Monitoring, Debugging and Statistics

84

Figure 6.13. Dashboard Plots - Job Distribution

The time chart shown below shows the number of jobs/invocations in the workflow and their total runtime

Monitoring, Debugging and Statistics

85

Figure 6.14. Dashboard Plots - Time Chart

The workflow gantt chart lays out the execution of the jobs in the workflow over time.

Monitoring, Debugging and Statistics

86

Figure 6.15. Dashboard Plots - Workflow Gantt Chart

Notifications
The Pegasus Workflow Mapper now supports job and workflow level notifications. You can specify in the DAX with
the job or the workflow

• the event when the notification needs to be sent

• the executable that needs to be invoked.

The notifications are issued from the submit host by the pegasus-monitord daemon that monitors the Condor logs for
the workflow. When a notification is issued, pegasus-monitord while invoking the notifying executable sets certain
environment variables that contain information about the job and workflow state.

The Pegasus release comes with default notification clients that send notifications via email or jabber.

Monitoring, Debugging and Statistics

87

Specifying Notifications in the DAX
Currently, you can specify notifications for the jobs and the workflow by the use of invoke elements.

Invoke elements can be sub elements for the following elements in the DAX schema.

• job - to associate notifications with a compute job in the DAX.

• dax - to associate notifications with a dax job in the DAX.

• dag - to associate notifications with a dag job in the DAX.

• executable - to associate notifications with a job that uses a particular notification

The invoke element can be specified at the root element level of the DAX to indicate workflow level notifications.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set

Table 6.5. Table 1. Invoke Element attributes and meaning.

Enumeration of Values for when attribute Meaning

never (default). Never notify of anything. This is useful to tem-
porarily disable an existing notifications.

start create a notification when the job is submitted.

on_error after a job finishes with failure (exitcode != 0).

on_success after a job finishes with success (exitcode == 0).

at_end after a job finishes, regardless of exitcode.

all like start and at_end combined.

You can specify multiple invoke elements corresponding to same when attribute value in the DAX. This will allow
you to have multiple notifications for the same event.

Here is an example that illustrates that.

<job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>
 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" register="false" transfer="true" type="data" />
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, at_end, all -->
 <invoke when="start">/path/to/notify1 arg1 arg2</invoke>
 <invoke when="start">/path/to/notify1 arg3 arg4</invoke>
 <invoke when="on_success">/path/to/notify2 arg3 arg4</invoke>
 </job>

In the above example the executable notify1 will be invoked twice when a job is submitted (when="start"), once with
arguments arg1 and arg2 and second time with arguments arg3 and arg4.

The DAX Generator API chapter has information about how to add notifications to the DAX using the DAX api's.

Notify File created by Pegasus in the submit directory
Pegasus while planning a workflow writes out a notify file in the submit directory that contains all the notifications
that need to be sent for the workflow. pegasus-monitord picks up this notifications file to determine what notifications
need to be sent and when.

Monitoring, Debugging and Statistics

88

1. ENTITY_TYPE ID NOTIFICATION_CONDITION ACTION

• ENTITY_TYPE can be either of the following keywords

• WORKFLOW - indicates workflow level notification

• JOB - indicates notifications for a job in the executable workflow

• DAXJOB - indicates notifications for a DAX Job in the executable workflow

• DAGJOB - indicates notifications for a DAG Job in the executable workflow

• ID indicates the identifier for the entity. It has different meaning depending on the entity type - -

• workflow - ID is wf_uuid

• JOB|DAXJOB|DAGJOB - ID is the job identifier in the executable workflow (DAG).

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

2. INVOCATION JOB_IDENTIFIER INV.ID NOTIFICATION_CONDITION ACTION

The INVOCATION lines are only generated for clustered jobs, to specifiy the finer grained notifications for each
constitutent job/invocation .

• JOB IDENTIFIER is the job identifier in the executable workflow (DAG).

• INV.ID indicates the index of the task in the clustered job for which the notification needs to be sent.

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

A sample notifications file generated is listed below.

WORKFLOW d2c4f79c-8d5b-4577-8c46-5031f4d704e8 on_error /bin/date1

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_error /bin/date_executable

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_error /bin/date_executable

DAXJOB subdax_black_ID000003 on_error /bin/date13
JOB analyze_ID00004 on_success /bin/date

Configuring pegasus-monitord for notifications
Whenever pegasus-monitord enters a workflow (or sub-workflow) directory, it will read the notifications file generated
by Pegasus. Pegasus-monitord will match events in the running workflow against the notifications specified in the
notifications file and will initiate the script specified in a notification when that notification matches an event in the
workflow. It is important to note that there will be a delay between a certain event happening in the workflow, and
pegasus-monitord processing the log file and executing the corresponding notification script.

The following command line options (and properties) can change how pegasus-monitord handles notifications:

• --no-notifications (pegasus.monitord.notifications=False): Will disable notifications completely.

• --notifications-max=nn (pegasus.monitord.notifications.max=nn): Will limit the number of concurrent notification
scripts to nn. Once pegasus-monitord reaches this number, it will wait until one notification script finishes before

Monitoring, Debugging and Statistics

89

starting a new one. Notifications happening during this time will be queued by the system. The default number of
concurrent notification scripts for pegasus-monitord is 10.

• --notifications-timeout=nn (pegasus.monitord.notifications.timeout=nn): This setting is used to change how long
will pegasus-monitord wait for a notification script to finish. By default pegasus-monitord will wait for as long as
it takes (possibly indefinitely) until a notification script ends. With this option, pegasus-monitord will wait for at
most nn seconds before killing the notification script.

It is also important to understand that pegasus-monitord will not issue any notifications when it is executed in replay
mode.

Environment set for the notification scripts

Whenever a notification in the notifications file matches an event in the running workflow, pegasus-monitord will
run the corresponding script specified in the ACTION field of the notifications file. Pegasus-monitord will set the
following environment variables for each notification script is starts:

• PEGASUS_EVENT: The NOTIFICATION_CONDITION that caused the notification. In the case of the "all" con-
dition, pegasus-monitord will substitute it for the actual event that caused the match (e.g. "start" or "at_end").

• PEGASUS_EVENT_TIMESTAMP: Timestamp in EPOCH format for the event (better for automated processing).

• PEGASUS_EVENT_TIMESTAMP_ISO: Same as above, but in ISO format (better for human readability).

• PEGASUS_SUBMIT_DIR: The submit directory for the workflow (usually the value from "submit_dir" in the
braindump.txt file)

• PEGASUS_STDOUT: For workflow notifications, this will correspond to the dagman.out file for that workflow.
For job and invocation notifications, this field will contain the output file (stdout) for that particular job instance.

• PEGASUS_STDERR: For job and invocation notifications, this field will contain the error file (stderr) for the
particular executable job instance. This field does not exist in case of workflow notifications.

• PEGASUS_WFID: Contains the workflow id for this notification in the form of DAX_LABEL + DAX_INDEX
(from the braindump.txt file).

• PEGASUS_JOBID: For workflow notifications, this contains the worfkflow wf_uuid (from the braindump.txt file).
For job and invocation notifications, this field contains the job identifier in the executable workflow (DAG) for
the particular notification.

• PEGASUS_INVID: Contains the index of the task in the clustered job for the notification.

• PEGASUS_STATUS: For workflow notifications, this contains DAGMan's exit code. For job and invocation no-
tifications, this field contains the exit code for the particular job/task. Please note that this field is not present for
'start' notification events.

Default Notification Scripts
Pegasus ships with two reference notification scripts. These can be used as starting point when creating your own
notification scripts, or if the default one is all you need, you can use them directly in your workflows. The scripts are:

• libexec/notification/email - sends email, including the output from pegasus-status (default) or pegasus-analyzer.

$./libexec/notification/email --help
Usage: email [options]

Options:
 -h, --help show this help message and exit
 -t TO_ADDRESS, --to=TO_ADDRESS
 The To: email address. Defines the recipient for the
 notification.
 -f FROM_ADDRESS, --from=FROM_ADDRESS
 The From: email address. Defaults to the required To:
 address.
 -r REPORT, --report=REPORT

Monitoring, Debugging and Statistics

90

 Include workflow report. Valid values are: none
 pegasus-analyzer pegasus-status (default)

• libexec/notification/jabber - sends simple notifications to Jabber/GTalk. This can be useful for job failures.

$./libexec/notification/jabber --help
Usage: jabber [options]

Options:
 -h, --help show this help message and exit
 -i JABBER_ID, --jabberid=JABBER_ID
 Your jabber id. Example: user@jabberhost.com
 -p PASSWORD, --password=PASSWORD
 Your jabber password
 -s HOST, --host=HOST Jabber host, if different from the host in your jabber
 id. For Google talk, set this to talk.google.com
 -r RECIPIENT, --recipient=RECIPIENT
 Jabber id of the recipient. Not necessary if you want
 to send to your own jabber id

For example, if the DAX generator is written in Python and you want notifications on 'at_end' events (successful or
failed):

job level notifications - in this case for at_end events
job.invoke('at_end', pegasus_home + "/libexec/notifications/email --to me@somewhere.edu")

Please see the notifications example to see a full workflow using notifications.

Monitoring Database
Pegasus launches a monitoring daemon called pegasus-monitord per workflow (a single daemon is launched if a
user submits a hierarchal workflow) . pegasus-monitord parses the workflow and job logs in the submit directory
and populates to a database. This chapter gives an overview of the pegasus-monitord and describes the schema of
the runtime database.

pegasus-monitord
Pegasus-monitord is used to follow workflows, parsing the output of DAGMan's dagman.out file. In addition to gen-
erating the jobstate.log file, which contains the various states that a job goes through during the workflow execution,
pegasus-monitord can also be used to mine information from jobs' submit and output files, and either populate a
database, or write a file with NetLogger events containing this information. Pegasus-monitord can also send notifi-
cations to users in real-time as it parses the workflow execution logs.

Pegasus-monitord is automatically invoked by pegasus-run, and tracks workflows in real-time. By default, it pro-
duces the jobstate.log file, and a SQLite database, which contains all the information listed in the Stampede schema.
When a workflow fails, and is re-submitted with a rescue DAG, pegasus-monitord will automatically pick up from
where it left previously and continue to write the jobstate.log file and populate the database.

If, after the workflow has already finished, users need to re-create the jobstate.log file, or re-populate the database
from scratch, pegasus-monitord's --replay option should be used when running it manually.

Populating to different backend databases

In addition to SQLite, pegasus-monitord supports other types of databases, such as MySQL and Postgres.
Users will need to install the low-level database drivers, and can use the --dest command-line option, or the
pegasus.monitord.output property to select where the logs should go.

As an example, the command:

$ pegasus-monitord -r diamond-0.dag.dagman.out

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. It will also create/use a SQLite database in the workflow's run directory, with the name
of diamond-0.stampede.db. If the database already exists, it will make sure to remove any references to the current
workflow before it populates the database. In this case, pegasus-monitord will process the workflow information
from start to finish, including any restarts that may have happened.

Monitoring, Debugging and Statistics

91

Users can specify an alternative database for the events, as illustrated by the following examples:

$ pegasus-monitord -r -d mysql://username:userpass@hostname/database_name diamond-0.dag.dagman.out

$ pegasus-monitord -r -d sqlite:////tmp/diamond-0.db diamond-0.dag.dagman.out

In the first example, pegasus-monitord will send the data to the database_name database located at server hostname,
using the username and userpass provided. In the second example, pegasus-monitord will store the data in the /
tmp/diamond-0.db SQLite database.

Note

For absolute paths four slashes are required when specifying an alternative database path in SQLite.

Users should also be aware that in all cases, with the exception of SQLite, the database should exist before pega-
sus-monitord is run (as it creates all needed tables but does not create the database itself).

Finally, the following example:

$ pegasus-monitord -r --dest diamond-0.bp diamond-0.dag.dagman.out

sends events to the diamond-0.bp file. (please note that in replay mode, any data on the file will be overwritten).

One important detail is that while processing a workflow, pegasus-monitord will automatically detect if/when sub-
workflows are initiated, and will automatically track those sub-workflows as well. In this case, although pegasus-mon-
itord will create a separate jobstate.log file in each workflow directory, the database at the top-level workflow will
contain the information from not only the main workflow, but also from all sub-workflows.

Monitoring related files in the workflow directory

Pegasus-monitord generates a number of files in each workflow directory:

• jobstate.log: contains a summary of workflow and job execution.

• monitord.log: contains any log messages generated by pegasus-monitord. It is not overwritten when it restarts.
This file is not generated in replay mode, as all log messages from pegasus-monitord are output to the console.
Also, when sub-workflows are involved, only the top-level workflow will have this log file. Starting with release
4.0 and 3.1.1, monitord.log file is rotated if it exists already.

• monitord.started: contains a timestamp indicating when pegasus-monitord was started. This file get overwritten
every time pegasus-monitord starts.

• monitord.done: contains a timestamp indicating when pegasus-monitord finished. This file is overwritten every
time pegasus-monitord starts.

• monitord.info: contains pegasus-monitord state information, which allows it to resume processing if a workflow
does not finish properly and a rescue dag is submitted. This file is erased when pegasus-monitord is executed in
replay mode.

• monitord.recover: contains pegasus-monitord state information that allows it to detect that a previous instance
of pegasus-monitord failed (or was killed) midway through parsing a workflow's execution logs. This file is only
present while pegasus-monitord is running, as it is deleted when it ends and the monitord.info file is generated.

• monitord.subwf.db: contains information that aids pegasus-monitord to track when sub-workflows fail and are
re-planned/re-tried. It is overwritten when pegasus-monitord is started in replay mode.

• monitord-notifications.log: contains the log file for notification-related messages. Normally, this file only includes
logs for failed notifications, but can be populated with all notification information when pegasus-monitord is run
in verbose mode via the -v command-line option.

Overview of the Workflow Database Schema.
Pegasus takes in a DAX which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that
consists of Jobs. In case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable

Monitoring, Debugging and Statistics

92

workflow. When DAGMan executes a job, a job instance is populated . Job instances capture information as seen by
DAGMan. In case DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan
finds a job instance has finished , an invocation is associated with job instance. In case of clustered job, multiple
invocations will be associated with a single job instance. If a Pre script or Post Script is associated with a job instance,
then invocations are populated in the database for the corresponding job instance.

The current schema version is 4.0 that is stored in the schema_info table.

Figure 6.16. Workflow Database Schema

Stampede Schema Upgrade Tool

Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema

Monitoring, Debugging and Statistics

93

 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Storing of Exitcode in the database

Kickstart records capture raw status in addition to the exitcode . The exitcode is derived from the raw status. Starting
with Pegasus 4.0 release, all exitcode columns (i.e invocation and job instance table columns) are stored with the raw
status by pegasus-monitord. If an exitcode is encountered while parsing the dagman log files , the value is converted
to the corresponding raw status before it is stored. All user tools, pegasus-analyzer and pegasus-statistics then convert
the raw status to exitcode when retrieving from the database.

Multiplier Factor

Starting with the 4.0 release, there is a multiplier factor associated with the jobs in the job_instance table. It defaults
to one, unless the user associates a Pegasus profile key named cores with the job in the DAX. The factor can be used
for getting more accurate statistics for jobs that run on multiple processors/cores or mpi jobs.

The multiplier factor is used for computing the following metrics by pegasus statistics.

• In the summary, the workflow cumulative job wall time

• In the summary, the cumulative job wall time as seen from the submit side

• In the jobs file, the multiplier factor is listed along-with the multiplied kickstart time.

• In the breakdown file, where statistics are listed per transformation the mean, min , max and average values take
into account the multiplier factor.

94

Chapter 7. Execution Environments
Pegasus supports a number of execution environments. An execution environment is a setup where jobs from a work-
flow are running.

Localhost
In this configuration, Pegasus schedules the jobs to run locally on the submit host. Running locally is a good approach
for smaller workflows, testing workflows, and for demonstations such as the Pegasus tutorial. Pegasus supports two
methods of local execution: local HTCondor pool, and shell planner. The former is preferred as the latter does not
support all Pegasus' features (such as notifications).

Running on a local HTCondor pool is achieved by executing the workflow on site local (--sites localoption to pega-
sus-plan). The site "local" is a reserved site in Pegasus and results in the jobs to run on the submit host in HTCondor
universe local. The site catalog can be left very simple in this case:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

</sitecatalog>

The simplest execution environment does not involve HTCondor. Pegasus is capable of planning small workflows for
local execution using a shell planner. Please refer to the share/pegasus/examples directory in your Pegasus
installation, the shell planner's documentation section, or the tutorials, for details.

Condor Pool
A HTCondor pool is a set of machines that use HTCondor for resource management. A HTCondor pool can be a
cluster of dedicated machines or a set of distributively owned machines. Pegasus can generate concrete workflows
that can be executed on a HTCondor pool.

Execution Environments

95

Figure 7.1. The distributed resources appear to be part of a HTCondor pool.

The workflow is submitted using DAGMan from one of the job submission machines in the HTCondor pool. It is the
responsibility of the Central Manager of the pool to match the task in the workflow submitted by DAGMan to the
execution machines in the pool. This matching process can be guided by including HTCondor specific attributes in
the submit files of the tasks. If the user wants to execute the workflow on the execution machines (worker nodes) in
a HTCondor pool, there should be a resource defined in the site catalog which represents these execution machines.
The universe attribute of the resource should be vanilla. There can be multiple resources associated with a single
HTCondor pool, where each resource identifies a subset of machine (worker nodes) in the pool.

When running on a HTCondor pool, the user has to decide how Pegasus should transfer data. Please see the Data
Staging Configuration for the options. The easiest is to use condorio as that mode does not require any extra setup -
HTCondor will do the transfers using the existing HTCondor daemons. For an example of this mode see the example
workflow in share/pegasus/examples/condor-blackdiamond-condorio/ . In HTCondorio mode,
the site catalog for the execution site is very simple as storage is provided by HTCondor:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="condorpool" arch="x86_64" os="LINUX">
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

</sitecatalog>

There is a set of HTCondor profiles which are used commonly when running Pegasus workflows. You may have to
set some or all of these depending on the setup of the HTCondor pool:

Execution Environments

96

 <!-- Change the style to HTCondor for jobs to be executed in the HTCondor Pool.
 By default, Pegasus creates jobs suitable for grid execution. -->
 <profile namespace="pegasus" key="style">condor</profile>

 <!-- Change the universe to vanilla to make the jobs go to remote compute
 nodes. The default is local which will only run jobs on the submit host -->
 <profile namespace="condor" key="universe" >vanilla</profhile>

 <!-- The requirements expression allows you to limit where your jobs go -->
 <profile namespace="condor" key="requirements">(Target.FileSystemDomain !=
 "yggdrasil.isi.edu")</profile>

 <!-- The following two profiles forces HTCondor to always transfer files. This
 has to be used if the pool does not have a shared filesystem -->
 <profile namespace="condor" key="should_transfer_files">True</profile>
 <profile namespace="condor" key="when_to_transfer_output">ON_EXIT</profile>

Glideins
In this section we describe how machines from different administrative domains and supercomputing centers can be
dynamically added to a HTCondor pool for certain timeframe. These machines join the HTCondor pool temporarily
and can be used to execute jobs in a non preemptive manner. This functionality is achieved using a HTCondor feature
called glideins (see http://cs.wisc.edu/condor/glidein [http://cs.wisc.edu/condor/glidein]) . The startd daemon is the
HTCondor daemon which provides the compute slots and runs the jobs. In the glidein case, the submit machine is
usually a static machine and the glideins are told configued to report to that submit machine. The glideins can be
submitted to any type of resource: a GRAM enabled cluster, a campus cluster, a cloud environment such as Amazon
AWS, or even another HTCondor cluster.

Tip

As glideins are usually coming from different compute resource, and/or the glideins are running in an ad-
ministrative domain different from the submit node, there is usually no shared filesystem available. Thus
the most common data staging modes are condorio and nonsharedfs .

There are many useful tools which submits and manages glideins for you:

• GlideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a tool and host environ-
ment used mostly on the Open Science Grid [http://www.opensciencegrid.org/].

• CorralWMS [http://pegasus.isi.edu/projects/corralwms] is a personal frontend for GlideinWMS. CorralWMS was
developed by the Pegasus team and works very well for high throughput workflows.

• condor_glidein [http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html] is a simple glidein tool for
Globus GRAM clusters. HTCondor_glidein is shipped with HTCondor.

• Glideins can also be created by hand or scripts. This is a useful solution for example for cluster which have no
external job submit mechanisms or do not allow outside networking.

CondorC
Using HTCondorC users can submit workflows to remote HTCondor pools. HTCondorC is a HTCondor specific
solution for remote submission that does not involve the setting up a GRAM on the headnode. To enable HTCondorC
submission to a site, user needs to associate pegasus profile key named style with value as HTCondorc. In case, the
remote HTCondor pool does not have a shared filesytem between the nodes making up the pool, users should use
pegasus in the HTCondorio data configuration. In this mode, all the data is staged to the remote node in the HTCondor
pool using HTCondor File transfers and is executed using PegasusLite.

A sample site catalog for submission to a HTCondorC enabled site is listed below

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"

http://cs.wisc.edu/condor/glidein
http://cs.wisc.edu/condor/glidein
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://pegasus.isi.edu/projects/corralwms
http://pegasus.isi.edu/projects/corralwms
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html

Execution Environments

97

 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="condorcpool" arch="x86_86" os="LINUX">
 <!-- the grid gateway entries are used to designate
 the remote schedd for the HTCondorC pool -->
 <grid type="condor" contact="ccg-condorctest.isi.edu" scheduler="Condor"
 jobtype="compute" />
 <grid type="condor" contact="ccg-condorctest.isi.edu" scheduler="Condor"
 jobtype="auxillary" />

 <!-- enable submission using HTCondorc -->
 <profile namespace="pegasus" key="style">condorc</profile>

 <!-- specify which HTCondor collector to use.
 If not specified defaults to remote schedd specified in grid gateway -->
 <profile namespace="condor" key="condor_collector">condorc-collector.isi.edu</profile>

 <profile namespace="condor" key="should_transfer_files">Yes</profile>
 <profile namespace="condor" key="when_to_transfer_output">ON_EXIT</profile>
 <profile namespace="env" key="PEGASUS_HOME" >/usr</profile>
 <profile namespace="condor" key="universe">vanilla</profile>

 </site>

</sitecatalog>

To enable PegasusLite in HTCondorIO mode, users should set the following in their properties

pegasus properties
pegasus.data.configuration HTCondorio

Execution Environments

98

Cloud (Amazon EC2/S3, Google Cloud, ...)

Figure 7.2. Cloud Sample Site Layout

This figure shows a sample environment for executing Pegasus across multiple clouds. At this point, it is up to the
user to provision the remote resources with a proper VM image that includes a HTCondor worker that is configured
to report back to a HTCondor master, which can be located inside one of the clouds, or outside the cloud.

The submit host is the point where a user submits Pegasus workflows for execution. This site typically runs a HTCon-
dor collector to gather resource announcements, or is part of a larger HTCondor pool that collects these announce-
ments. HTCondor makes the remote resources available to the submit host's HTCondor installation.

The figure above shows the way Pegasus WMS is deployed in cloud computing resources, ignoring how these re-
sources were provisioned. The provisioning request shows multiple resources per provisioning request.

The initial stage-in and final stage-out of application data into and out of the node set is part of any Pegasus-planned
workflow. Several configuration options exist in Pegasus to deal with the dynamics of push and pull of data, and when
to stage data. In many use-cases, some form of external access to or from the shared file system that is visible to the
application workflow is required to facilitate successful data staging. However, Pegasus is prepared to deal with a
set of boundary cases.

The data server in the figure is shown at the submit host. This is not a strict requirement. The data server for consumed
data and data products may both be different and external to the submit host, or one of the object storage solution
offered by the cloud providers

Execution Environments

99

Once resources begin appearing in the pool managed by the submit machine’s HTCondor collector, the ap-
plication workflow can be submitted to HTCondor. A HTCondor DAGMan will manage the application workflow
execution. Pegasus run-time tools obtain timing-, performance and provenance information as the application work-
flow is executed. At this point, it is the user's responsibility to de-provision the allocated resources.

In the figure, the cloud resources on the right side are assumed to have uninhibited outside connectivity. This enables
the HTCondor I/O to communicate with the resources. The right side includes a setup where the worker nodes use all
private IP, but have out-going connectivity and a NAT router to talk to the internet. The Condor connection broker
(CCB) facilitates this setup almost effortlessly.

The left side shows a more difficult setup where the connectivity is fully firewalled without any connectivity except
to in-site nodes. In this case, a proxy server process, the generic connection broker (GCB), needs to be set up in the
DMZ of the cloud site to facilitate HTCondor I/O between the submit host and worker nodes.

If the cloud supports data storage servers, Pegasus is starting to support workflows that require staging in two steps:
Consumed data is first staged to a data server in the remote site's DMZ, and then a second staging task moves the data
from the data server to the worker node where the job runs. For staging out, data needs to be first staged from the
job's worker node to the site's data server, and possibly from there to another data server external to the site. Pegasus
is capable to plan both steps: Normal staging to the site's data server, and the worker-node staging from and to the
site's data server as part of the job.

Amazon EC2

There are many different ways to set up an execution environment in Amazon EC2. The easiest way is to use a submit
machine outside the cloud, and to provision several worker nodes and a file server node in the cloud as shown here:

Figure 7.3. Amazon EC2

The submit machine runs Pegasus and a HTCondor master (collector, schedd, negotiator). The workers run a HTCon-
dor startd. And the file server node exports an NFS file system. The startd on the workers is configured to connect
to the master running outside the cloud, and the workers also mount the NFS file system. More information on set-
ting up HTCondor for this environment can be found at http://www.isi.edu/~gideon/condor-ec2 [http://www.isi.edu/
~gideon/condor-ec2/].

The site catalog entry for this configuration is similar to what you would create for running on a local Condor pool
with a shared file system.

http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/

Execution Environments

100

Google Cloud Platform

Using the Google Cloud Platform is just like any other cloud platform. You can choose to host the central manager /
submit host inside the cloud or outside. The compute VMs will have HTCondor installed and configured to join the
pool managed by the central manager.

Google Storage is supported using gsutil. First, create a .boto file by running:

gsutil config

Then, use a site catalog which specifies which .boto file to use. You can then use gs:// URLs in your workflow.
Example:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-4.0.xsd" version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp">
 <file-server operation="all" url="file:///tmp"/>
 </directory>
 <profile namespace="env" key="PATH">/opt/gsutil:/usr/bin:/bin</profile>

 </site>

 <!-- compute site -->
 <site handle="condorpool" arch="x86_86" os="LINUX">
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

 <!-- storage sites have to be in the site catalog, just liek a compute site -->
 <site handle="google_storage" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/my-bucket/scratch">
 <file-server operation="all" url="gs://my-bucket/scratch"/>
 </directory>
 <directory type="local-storage" path="/my-bucket/outputs">
 <file-server operation="all" url="gs://my-bucket/outputs"/>
 </directory>
 <profile namespace="pegasus" key="BOTO_CONFIG">/home/myuser/.boto</profile>
 </site>

</sitecatalog>

Execution Environments

101

Remote Cluster using Globus GRAM
Figure 7.4. Grid Sample Site Layout

A generic grid environment shown in the figure above. We will work from the left to the right top, then the right bottom.

On the left side, you have a submit machine where Pegasus runs, HTCondor schedules jobs, and workflows are
executed. We call it the submit host (SH), though its functionality can be assumed by a virtual machine image. In order
to properly communicate over secured channels, it is important that the submit machine has a proper notion of time,
i.e. runs an NTP daemon to keep accurate time. To be able to connect to remote clusters and receive connections from
the remote clusters, the submit host has a public IP address to facilitate this communication.

In order to send a job request to the remote cluster, HTCondor wraps the job into Globus calls via HTCondor-G. Globus
uses GRAM to manage jobs on remote sites. In terms of a software stack, Pegasus wraps the job into HTCondor.
HTCondor wraps the job into Globus. Globus transports the job to the remote site, and unwraps the Globus component,
sending it to the remote site's resource manager (RM).

To be able to communicate using the Globus security infrastructure (GSI), the submit machine needs to have the
certificate authority (CA) certificates configured, requires a host certificate in certain circumstances, and the user a
user certificate that is enabled on the remote site. On the remote end, the remote gatekeeper node requires a host
certificate, all signing CA certificate chains and policy files, and a goot time source.

In a grid environment, there are one or more clusters accessible via grid middleware like the Globus Toolkit [http://
www.globus.org/]. In case of Globus, there is the Globus gatekeeper listening on TCP port 2119 of the remote cluster.
The port is opened to a single machine called head node (HN).The head-node is typically located in a de-militarized
zone (DMZ) of the firewall setup, as it requires limited outside connectivity and a public IP address so that it can be
contacted. Additionally, once the gatekeeper accepted a job, it passes it on to a jobmanager. Often, these jobmanagers
require a limited port range, in the example TCP ports 40000-41000, to call back to the submit machine.

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/

Execution Environments

102

For the user to be able to run jobs on the remote site, the user must have some form of an account on the remtoe site.
The user's grid identity is passed from the submit host. An entity called grid mapfile on the gatekeeper maps the user's
grid identity into a remote account. While most sites do not permit account sharing, it is possible to map multiple user
certificates to the same account.

The gatekeeper is the interface through which jobs are submitted to the remote cluster's resource manager. A resource
manager is a scheduling system like PBS, Maui, LSF, FBSNG or HTCondor that queues tasks and allocates worker
nodes. The worker nodes (WN) in the remote cluster might not have outside connectivity and often use all private IP
addresses. The Globus toolkit requires a shared filesystem to properly stage files between the head node and worker
nodes.

Note

The shared filesystem requirement is imposed by Globus. Pegasus is capable of supporting advanced site
layouts that do not require a shared filesystem. Please contact us for details, should you require such a setup.

To stage data between external sites for the job, it is recommended to enable a GridFTP server. If a shared networked
filesystem is involved, the GridFTP server should be located as close to the file-server as possible. The GridFTP server
requires TCP port 2811 for the control channel, and a limited port range for data channels, here as an example the TPC
ports from 40000 to 41000. The GridFTP server requires a host certificate, the signing CA chain and policy files, a
stable time source, and a gridmap file that maps between a user's grid identify and the user's account on the remote site.

The GridFTP server is often installed on the head node, the same as the gatekeeper, so that they can share the grid map-
file, CA certificate chains and other setups. However, for performance purposes it is recommended that the GridFTP
server has its own machine.

An example site catalog entry for a GRAM enabled site looks as follow in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="Trestles" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="trestles.sdsc.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <grid type="gt5" contact="trestles.sdsc.edu/jobmanager-pbs" scheduler="unknown"
 jobtype="compute"/>

 <directory type="shared-scratch" path="/oasis/projects/nsf/USERNAME">
 <file-server operation="all" url="gsiftp://trestles-dm1.sdsc.edu/oasis/projects/nsf/
USERNAME"/>
 </directory>

 <!-- specify the path to a PEGASUS WORKER INSTALL on the site -->
 <profile namespace="env" key="PEGASUS_HOME" >/path/to/PEGASUS/INSTALL</profile>
 </site>

 </sitecatalog>

Remote Cluster using CREAMCE
CREAM [https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription] is a webservices based job sub-
mission front end for remote compute clusters. It can be viewed as a replaced for Globus GRAM and is mainly popular
in Europe. It widely used in the Italian Grid.

In order to submit a workflow to compute site using the CREAMCE front end, the user needs to specify the following
for the site in their site catalog

1. pegasus profile style with value set to cream

2. grid gatewaydefined for the site with contact attribute set to CREAMCE frontend and scheduler attribute to
remote scheduler.

https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription
https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription

Execution Environments

103

3. a remote queue can be optionally specified using globus profile queue with value set to queue-name

An example site catalog entry for a creamce site looks as follow in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="creamce" arch="x86" os="LINUX">
 <grid type="cream" contact="https://ce01-lcg.cr.cnaf.infn.it:8443/ce-cream/services/CREAM2"
 scheduler="LSF" jobtype="compute" />
 <grid type="cream" contact="https://ce01-lcg.cr.cnaf.infn.it:8443/ce-cream/services/CREAM2"
 scheduler="LSF" jobtype="auxillary" />

 <!-- Scratch directory on the cluster -->
 <directory type="shared-scratch" path="/home/virgo034">
 <file-server operation="all" url="gsiftp://ce01-lcg.cr.cnaf.infn.it/home/virgo034"/>
 </directory>

 <!-- cream is the style to use for CREAMCE submits -->

 <profile namespace="pegasus" key="style">cream</profile>

 <!-- the remote queue is picked up from globus profile -->
 <profile namespace="globus" key="queue">virgo</profile>

 <!-- Staring HTCondor 8.0 additional cream attributes
 can be passed by setting cream_attributes -->
 <profile namespace="condor" key="cream_attributes">key1=value1;key2=value2</profile>
 </site>

 </sitecatalog>

The pegasus distribution comes with creamce examples in the examples directory. They can be used as a starting point
to configure your setup.

Tip

Usually , the CREAMCE frontends accept VOMS generated user proxies using the command voms-
proxy-init . Steps on generating a VOMS proxy are listed in the CREAM User Guide here [https://
wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use] .

Local Cluster Using Glite
This section describes the various changes required in the site catalog for Pegasus to generate an executable workflow
that uses gLite blahp to directly submit to PBS on the local machine. This mode of submission should only be used
when the HTCondor on the submit host can directly talk to scheduler running on the cluster.

For the job submissions to work from HTCondor to underlying PBS correctly, you need to use the
pbs_local_attributes.sh file distributed with the Pegasus distribution in in the share/pegasus/htcondor/glite directory.
You need to copy this file into the bin directory of the glite installation as part of the HTCondor installation on the
submit node. The HTCondor glite installation can be determined by running the command HTCondor_config_val
GLITE_LOCATION. The Pegasus team currently only provides a local attributes file for PBS.

$ HTCondor_config_val GLITE_LOCATION
/usr/libexec/condor/glite

$ ls /usr/libexec/condor/glite/bin/pbs_local_submit_attributes.sh
-rwxrwxr-x 1 vahi isi-ar 1.8K May 29 17:34 /usr/libexec/condor/glite/bin/
pbs_local_submit_attributes.sh

It is recommended that the cluster that gLite talks to is designated as a separate compute site in the Pegasus site catalog.
To tag a site as a gLite site the following two profiles need to be specified for the site in the site catalog.

1. pegasus profile style with value set to glite.

https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use

Execution Environments

104

2. condor profile grid_resource with value set to pbs|sge

Additonally, if you are planning to run workflows on the cluster in the shared filesystem environment , you need to set

1. pegasus profile change.dir with value set to true.

An example site catalog entry for a glite site looks as follows in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86" os="LINUX">
 <directory type="shared-scratch" path="/lfs/shared-scratch/glite-sharedfs-example/work">
 <file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-example/
work"/>
 </directory>
 <directory type="local-storage" path="/shared-scratch//glite-sharedfs-example/outputs">
 <file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-example/
outputs"/>
 </directory>
 </site>

 <site handle="local-pbs" arch="x86" os="LINUX">

 <!-- the following is a shared directory shared amongst all the nodes in the cluster -->
 <directory type="shared-scratch" path="/lfs/glite-sharedfs-example/local-pbs/shared-
scratch">
 <file-server operation="all" url="file:///lfs/glite-sharedfs-example/local-pbs/shared-
scratch"/>
 </directory>

 <profile namespace="env" key="PEGASUS_HOME">/lfs/software/pegasus/pegasus-4.2.0</profile>

 <profile namespace="pegasus" key="style" >glite</profile>

 <!-- change.dir needs to be set, if you are running workflows in shared filesystem setup -->
 <profile namespace="pegasus" key="change.dir">true</profile>

 <profile namespace="condor" key="grid_resource">pbs</profile>
 <profile namespace="condor" key="batch_queue">batch</profile>
 <profile namespace="globus" key="maxwalltime">30000</profile>
 </site>

</sitecatalog>

Tip

Starting 4.2.1 , in the examples directory you can find a glite shared filesystem example that you can use
to test out this configuration

Setting PBS specific parameters for the jobs
In order to pass resource requirements of the job to local PBS, Pegasus generates a +remote_cerequirements classad
in the job's HTCondor submit file. The remote CE requirements are constructed from the following profiles associated
with the job. The profiles for a job are derived from various sources

1. transformation catalog

2. site catalog

3. DAX

4. user properties

Execution Environments

105

The following globus profiles if associated with the job are picked up and translated to corresponding key in
+remote_cerequirements picked up by pbs_local_attributes.sh file that then is translated to appropriate PBS parameters

Table 7.1. Table mapping translation of profiles to corresponding PBS parameters

Globus Profile Key

(Set by User in Pega-
sus Configuration)

KEY in
+remote_cerequirements

classad

(Generated by Pegasus in
the Condor Submit File)

Corresponding PBS Para-
meter in qsub file

(Generated by
pbs_local_attributes.sh)

Description

queue value batch_queue key in
the submit file.

-q This specifies the queue on
which to run the job.

hostcount NODES nodes This specifies the number
of nodes that the job should
use.

xcount PROCS ppn This specifies the num-
ber of processors per node
(ppn=M) that the job should
use. PBS treats a proces-
sor core as a processor, so
a system with eight cores
per compute node can have
ppn=8 as its maximum ppn
request. If you want to ex-
plicitly use the Myrinet net-
work, this value should be
8:myri . For infiniband, it
will be 8:IB .

maxwalltime WALLTIME walltime The maximum runtime for
the job in minutes. should
be an integer value. Pegasus
converts it to hh:mm:ss for-
mat

totalmemory TOTAL_MEMORY mem The total memory that your
job requires. usually, better
to just specify the maxmem-
ory profile.

maxmemory PER_PROCESS_MEMORYpmem This specifies the maximum
amount of physical memo-
ry used by any process in
the job. For example, if the
job would run four process-
es and each would use up to
2 GB (gigabytes) of memo-
ry, then this value should be
set to 2gb. The correspond-
ing PBS directive would be
#PBS -l pmem=2gb.

Tip

The above key mappings are supported in Pegasus 4.4 or later.

The following HTCondor profiles if associated with the job are picked up and translated to corresponding glite key

1. priority -> PRIORITY

Execution Environments

106

All the env profiles are translated to MYENV

Table 7.2. Table mapping translation of Pegasus profiles to corresponding PBS parameters

Pegasus Profile Key KEY in
+remote_cerequirements

classad

Corresponding PBS Para-
meter in qsub file

Description

glite.arguments EXTRA_ARGUMENTS the value is passed through
and added to the qsub file
prefixed only by #PBS

This specifies the extra ar-
guments that must appear
in the local PBS generat-
ed script for a job, when
running workflows on a lo-
cal cluster with submissions
through Glite. This is use-
ful when you want to pass
through special options to
underlying LRMS such as
PBS e.g. you can set val-
ue -l walltime=01:23:45 -
l nodes=2 to specify your
job's resource requirements.

The remote_cerequirements expression is constructed on the basis of the profiles associated with job . An example
+remote_cerequirements classad expression in the submit file is listed below

+remote_cerequirements = JOBNAME=="preprocessj1" && PASSENV==1 && WALLTIME=="01:00:00" &&
 PRIORITY==20 && \
 EXTRA_ARGUMENTS=="-N testjob -l walltime=01:23:45 -l nodes=2" && \
 MYENV=="CONDOR_JOBID=$(cluster).$(process),PEGASUS_DAG_JOB_ID=preprocess_j1,PEGASUS_HOME=/
usr,PEGASUS_WF_UUID=aae14bc4-b2d1-4189-89ca-ccd99e30464f"

Note

The above translation only works if you use the pbs_local_attributes.sh file from the Pegasus distribution.
The values specified for glite.arguments overrides what are constructed on basis of globus profiles, when
the job is actually submitted.

Setting SGE specific parameters for the jobs

In order to pass resource requirements of the job to local SGE, Pegasus generates a +remote_cerequirements classad
in the job's HTCondor submit file. The remote CE requirements are constructed from the following profiles associated
with the job. The profiles for a job are derived from various sources

1. transformation catalog

2. site catalog

3. DAX

4. user properties

The following globus profiles if associated with the job are picked up and translated to corresponding key in
+remote_cerequirements picked up by pbs_local_attributes.sh file that then is translated to appropriate PBS parameters

Execution Environments

107

Table 7.3. Table mapping translation of profiles to corresponding SGE parameters

Globus Profile Key

(Set by User in Pega-
sus Configuration)

KEY in
+remote_cerequirements

classad

(Generated by Pegasus in
the Condor Submit File)

Corresponding SGE Pa-
rameter in qsub file

(Generated by
sge_local_submit_attributes.sh)

Description

queue value batch_queue key in
the submit file.

-q This specifies the queue on
which to run the job.

count CORES value passed to the parallel
environment defined to be
used . By default, our script
has parallel environment set
to -pe ompi

The number of processors
requried. How, the proces-
sors are distributed over
nodes is dependant on how
the parallel environment has
been configured in SGE.

maxwalltime WALLTIME h_rt The maximum runtime for
the job in minutes. should
be an integer value. Pegasus
converts it to hh:mm:ss for-
mat. From SGE documen-
tation: h_rt is hard runtime
hh::min::ss (i.e. 12:00:00) .
Requests a queue with a
hard runtime in excess of the
time specified.

maxmemory PER_PROCESS_MEMORYh_vmem This specifies the maximum
amount of physical memory
used by any process in the
job. From SGE documen-
tation: specify the amount
of memory required (e.g.
3G or 3500M) # (NOTE:
This is memory per proces-
sor slot. So if you ask for
2 processors total memory
will be 2 X hvmem_value) #
hard limit of the maximum
amount of virtual memory
available on every host as-
signed to the job.

Tip

The above key mappings are supported in Pegasus 4.5.1 or later.

The following HTCondor profiles if associated with the job are picked up and translated to corresponding glite key

1. priority -> PRIORITY

All the env profiles are translated to MYENV

Execution Environments

108

Table 7.4. Table mapping translation of Pegasus profiles to corresponding SGE parameters

Pegasus Profile Key KEY in
+remote_cerequirements

classad

Corresponding SGE Pa-
rameter in qsub file

Description

glite.arguments EXTRA_ARGUMENTS the value is passed through
and added to the qsub file
prefixed only by #?

This specifies the extra ar-
guments that must appear
in the local SGE generat-
ed script for a job, when
running workflows on a lo-
cal cluster with submissions
through Glite.

The remote_cerequirements expression is constructed on the basis of the profiles associated with job . An example
+remote_cerequirements classad expression in the submit file is listed below

+remote_cerequirements = JOBNAME=="preprocessj1" && PASSENV==1 && WALLTIME=="01:00:00" &&
 PRIORITY==20 && \
 EXTRA_ARGUMENTS=="-N testjob -l walltime=01:23:45 -l nodes=2" && \
 MYENV=="CONDOR_JOBID=$(cluster).$(process),PEGASUS_DAG_JOB_ID=preprocess_j1,PEGASUS_HOME=/
usr,PEGASUS_WF_UUID=aae14bc4-b2d1-4189-89ca-ccd99e30464f"

Note

The above translation only works if you use the sge_local_attributes.sh file from the Pegasus distribution.
The values specified for glite.arguments overrides what are constructed on basis of globus profiles, when
the job is actually submitted.

Specifying directory for the jobs
gLite blahp does not follow the remote_initialdir or initialdir classad directives. Hence, all the jobs that have this style
applied don't have a remote directory specified in the submit directory. Instead, Pegasus relies on kickstart to change
to the working directory when the job is launched on the remote node.

Remote Cluster using BOSCO and SSH submissions
BOSCO [http://bosco.opensciencegrid.org/about/] enables users to submit jobs to remote clusters using SSH. This
section describes how to specify a site catalog entry for a site to which jobs can be submitted over SSH. To tag a site
for SSH submission, the following profiles need to be specified for the site in the site catalog:

1. pegasus profile style with value set to ssh

2. Specify the service information as grid gateways. This should match what Bosco provided when the cluster was
set up.

An example site catalog entry for a BOSCO site looks as follows in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="USC_HPCC_Bosco" arch="x86_64" os="LINUX">

 <!-- Specify the service information as grid gateways. This should match what Bosco provided
 when the cluster
 was set up. -->
 <grid type="batch" contact="username@hpc-login2.usc.edu" scheduler="PBS" jobtype="compute"/>
 <grid type="batch" contact="username@hpc-login2.usc.edu" scheduler="PBS"
 jobtype="auxillary"/>

 <!-- Scratch directory on the cluster -->

http://bosco.opensciencegrid.org/about/
http://bosco.opensciencegrid.org/about/

Execution Environments

109

 <directory type="shared-scratch" path="/home/rcf-40/tmp">
 <file-server operation="all" url="scp://username@hpc-login2.usc.edu/home/rcf-40/tmp"/>
 </directory>

 <!-- SSH is the style to use for Bosco SSH submits -->
 <profile namespace="pegasus" key="style">ssh</profile>

 <!-- Bosco is using the grid universe, which means the globus
 namespace can be used to control the jobs -->
 <profile namespace="globus" key="queue">default</profile>
 <profile namespace="globus" key="maxwalltime">30</profile>

 </site>

</sitecatalog>

Note

It is recommended to have a submit node configured either as a BOSCO submit node or a vanilla HTCondor
node. You cannot have HTCondor configured both as a BOSCO install and a traditional HTCondor submit
node at the same time as BOSCO will override the traditional HTCondor pool in the user environment.

Starting 4.3 there is a bosco-shared-fs example in the examples directory of the distribution.

Campus Cluster
There are almost as many different configurations of campus clusters as there are campus clusters, and because of that
it can be hard to determine what the best way to run Pegasus workflows. Below is a ordered checklist with some ideas
we have collected from working with users in the past:

1. If the cluster scheduler is HTCondor, please see the HTCondor Pool section.

2. If the cluster is Globus GRAM enabled, see the Globus GRAM section. If you have have a lot of short jobs, also
read the Glidein section.

3. For clusters without GRAM, you might be able to do glideins. If outbound network connectivity is allowed, your
submit host can be anywhere. If the cluster is setup to not allow any network connections to the outside, you will
probably have to run the submit host inside the cluster as well.

If the cluster you are trying to use is not fitting any of the above scenarios, please post to the Pegasus users mailing
list [http://pegasus.isi.edu/support] and we will help you find a solution.

XSEDE
The Extreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] provides a set of
High Performance Computing (HPC) and High Throughput Computing (HTC) resources.

For the HPC resources, it is recommended to run using Globus GRAM or glideins. Most of these resources have
fast parallel file systesm, so running with sharedfs data staging is recommended. Below is example site catalog and
pegasusrc to run on SDSC Trestles [http://www.sdsc.edu/us/resources/trestles/]:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">

http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
https://www.xsede.org/
https://www.xsede.org/
http://www.sdsc.edu/us/resources/trestles/
http://www.sdsc.edu/us/resources/trestles/

Execution Environments

110

 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="Trestles" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="trestles.sdsc.edu:2119/jobmanager-fork" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt5" contact="trestles.sdsc.edu:2119/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <directory type="shared-scratch" path="/phase1/USERNAME">
 <file-server operation="all" url="gsiftp://trestles-dm1.sdsc.edu/phase1/USERNAME"/>
 </directory>
 </site>

</sitecatalog>

pegasusrc:

pegasus.catalog.replica=SimpleFile
pegasus.catalog.replica.file=rc

pegasus.catalog.site.file=sites.xml

pegasus.catalog.transformation=Text
pegasus.catalog.transformation.file=tc

pegasus.data.configuration = sharedfs

Pegasus might not be installed, or be of a different version
so stage the worker package
pegasus.transfer.worker.package = true

The HTC resources available on XSEDE are all HTCondor based, so standard HTCondor Pool setup will work fine.

If you need to run high throughput workloads on the HPC machines (for example, post processing after a large parallel
job), glideins can be useful as it is a more efficient method for small jobs on these systems.

Open Science Grid Using glideinWMS
glideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a glidein system widely used
on Open Science Grid. Running on top of glideinWMS is like running on a Condor Pool without a shared filesystem.

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/

111

Chapter 8. Example Workflows
These examples are included in the Pegasus distribution and can be found under share/pegasus/examples in
your Pegasus install (/usr/share/pegasus/examples for native packages)

Note

These examples are intended to be a starting point for when you want to create your own workflows and want
to see how other workflows are set up. The example workflows will probably not work in your environment
without modifications. Site and transformation catalogs contain site and user specifics such as paths to
scratch directories and installed software, and at least minor modificiations are required to get the workflows
to plan and run.

Grid Examples
These examples assumes you have access to a cluster with Globus installed. A pre-ws gatekeeper and gridftp server is
required. You also need Globus and Pegasus installed, both on the machine you are submitting from, and the cluster.

Black Diamond

Pegasus is shipped with 3 different Black Diamond examples for the grid. This is to highlight the available DAX APIs
which are Java, Perl and Python. The examples can be found under:

share/pegasus/examples/grid-blackdiamond-java/
share/pegasus/examples/grid-blackdiamond-perl/
share/pegasus/examples/grid-blackdiamond-python/

The workflow has 4 nodes, layed out in a diamond shape, with files being passed between them (f.*):

Example Workflows

112

The binary for the nodes is a simple "mock application" name keg ("canonical example for the grid") which reads
input files designated by arguments, writes them back onto output files, and produces on STDOUT a summary of
where and when it was run. Keg ships with Pegasus in the bin directory.

This example ships with a "submit" script which will build the replica catalog, the transformation catalog, and the
site catalog. When you create your own workflows, such a submit script is not needed if you want to maintain those
catalogs manually.

Note

The use of ./submit scripts in these examples are just to make it more easy to run the examples out of the
box. For a production site, the catalogs (transformation, replica, site) may or may not be static or generated
by other tooling.

To test the examples, edit the submit script and change the cluster config to the setup and install locations for your
cluster. Then run:

Example Workflows

113

$./submit

The workflow should now be submitted and in the output you should see a work dir location for the instance. With
that directory you can monitor the workflow with:

$ pegasus-status [workdir]

Once the workflow is done, you can make sure it was sucessful with:

$ pegasus-analyzer -d [workdir]

NASA/IPAC Montage
This example can be found under

share/pegasus/examples/grid-montage/

The NASA IPAC Montage (http://montage.ipac.caltech.edu/) workflow projects/montages a set of input images from
telescopes like Hubble and end up with images like http://montage.ipac.caltech.edu/images/m104.jpg . The test work-
flow is for a 1 by 1 degrees tile. It has about 45 input images which all have to be projected, background modeled
and adjusted to come out as one seamless image.

Just like the Black Diamond above, this example uses a ./submit script.

The Montage DAX is generated with a tool called mDAG shipped with Montage which generates the workflow.

Rosetta
This example can be found under

share/pegasus/examples/grid-rosetta/

Rosetta (http://www.rosettacommons.org/) is a high resolution protein prediction and design software. Highlights in
this example are:

• Using the Pegasus Java API to generate the DAX

• The DAX generator loops over the input PDBs and creates a job for each input

• The jobs all have a dependency on a flatfile database. For simplicity, each job depends on all the files in the database
directory.

• Job clustering is turned on to make each grid job run longer and better utilize the compute cluster

Just like the Black Diamond above, this example uses a ./submit script.

Condor Examples

Black Diamond - condorio
There are a set of Condor examples available, highlighting different data staging configurations.The most basic one
is condorio, and the example can be found under:

share/pegasus/examples/condor-blackdiamond-condorio/

This example is using the same abstract workflow as the Black Diamond grid example above, and can be executed
either on the submit machine (universe="local") or on a local Condor pool (universe="vanilla").

You can run this example with the ./submit script. Example:

$./submit

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/images/m104.jpg
http://www.rosettacommons.org/

Example Workflows

114

Local Shell Examples

Black Diamond
To aid in workflow development and debugging, Pegasus can now map a workflow to a local shell script. One advan-
tage is that you do not need a remote compute resource.

This example is using the same abstract workflow as the Black Diamond grid example above. The difference is that
a property is set in pegasusrc to force shell execution:

tell pegasus to generate shell version of
the workflow
pegasus.code.generator = Shell

You can run this example with the ./submit script.

Notifications Example
A new feature in Pegasus 3.1. is notifications. While the workflow is running, a monitoring tool is running side by
side to the workflow, and issues user defined notifications when certain events takes place, such as job completion or
failure. See notifications section for detailed information. A workflow example with notifications can be found under
examples/notifications. This workflow is based on the Black Diamond, with the changes being notifications added to
the DAX generator. For example, notifications are added at the workflow level:

Create a abstract dag
diamond = ADAG("diamond")
dax level notifications
diamond.invoke('all', os.getcwd() + "/my-notify.sh")

The DAX generator also contains job level notifications:

job level notifications - in this case for at_end events
frr.invoke('at_end', os.getcwd() + "/my-notify.sh")

These invoke lines specify that the my-notify.sh script will be invoked for events generated (all in the first case,
at_end in the second). The my-notify.sh script contains callouts sample notification tools shipped with Pegasus, one
for email and for Jabber/GTalk (commented out by default):

#!/bin/bash

Pegasus ships with a couple of basic notification tools. Below
we show how to notify via email and gtalk.

all notifications will be sent to email
change $USER to your full email addess
$PEGASUS_HOME/libexec/notification/email -t $USER

this sends notifications about failed jobs to gtalk.
note that you can also set which events to trigger on in your DAX.
set jabberid to your gmail address, and put in yout
password
uncomment to enable
if ["x$PEGASUS_STATUS" != "x" -a "$PEGASUS_STATUS" != "0"]; then
 $PEGASUS_HOME/libexec/notification/jabber --jabberid FIXME@gmail.com \
 --password FIXME \
 --host talk.google.com
fi

Workflow of Workflows

Galactic Plane
The Galactic Plane [http://en.wikipedia.org/wiki/Galactic_plane] workflow is a workflow of many Montage work-
flows. The output is a set of tiles which can be used in software which takes the tiles and produces a seamless image

http://en.wikipedia.org/wiki/Galactic_plane
http://en.wikipedia.org/wiki/Galactic_plane

Example Workflows

115

which can be scrolled and zoomed into. As this is more of a production workflow than an example one, it can be a
little bit harder to get running in your environment.

Highlights of the example are:

• The subworkflow DAXes are generated as jobs in the parent workflow - this is an example on how to make more
dynamic workflows. For example, if you need a job in your workflow to determine the number of jobs in the next
level, you can have the first job create a subworkflow with the right number of jobs.

• DAGMan job categories are used to limit the number of concurrant jobs in certain places. This is used to limit the
number of concurrant connections to the data find service, as well limit the number of concurrant subworkflows
to manage disk usage on the compute cluster.

• Job priorities are used to make sure we overlap staging and computation. Pegasus sets default priorities, which for
most jobs are fine, but the priority of the data find job is set explicitly to a higher priority.

• A specific output site is defined the the site catalog and specified with the --output option of subworkflows.

The DAX API has support for sub workflows:

 remote_tile_setup = Job(namespace="gp", name="remote_tile_setup", version="1.0")
 remote_tile_setup.addArguments("%05d" % (tile_id))
 remote_tile_setup.addProfile(Profile("dagman", "CATEGORY", "remote_tile_setup"))
 remote_tile_setup.uses(params, link=Link.INPUT, register=False)
 remote_tile_setup.uses(mdagtar, link=Link.OUTPUT, register=False, transfer=True)
 uberdax.addJob(remote_tile_setup)
...
 subwf = DAX("%05d.dax" % (tile_id), "ID%05d" % (tile_id))
 subwf.addArguments("-Dpegasus.schema.dax=%s/etc/dax-2.1.xsd" %(os.environ["PEGASUS_HOME"]),
 "-Dpegasus.catalog.replica.file=%s/rc.data" % (tile_work_dir),
 "-Dpegasus.catalog.site.file=%s/sites.xml" % (work_dir),
 "-Dpegasus.transfer.links=true",
 "--sites", cluster_name,
 "--cluster", "horizontal",
 "--basename", "tile-%05d" % (tile_id),
 "--force",
 "--output", output_name)
 subwf.addProfile(Profile("dagman", "CATEGORY", "subworkflow"))
 subwf.uses(subdax_file, link=Link.INPUT, register=False)
 uberdax.addDAX(subwf)

116

Chapter 9. Data Management
Replica Selection

Each job in the DAX maybe associated with input LFN’s denoting the files that are required for the job to run.
To determine the physical replica (PFN) for a LFN, Pegasus queries the Replica catalog to get all the PFN’s
(replicas) associated with a LFN. The Replica Catalog may return multiple PFN's for each of the LFN's queried. Hence,
Pegasus needs to select a single PFN amongst the various PFN's returned for each LFN. This process is known as
replica selection in Pegasus. Users can specify the replica selector to use in the properties file.

This document describes the various Replica Selection Strategies in Pegasus.

Configuration
The user properties determine what replica selector Pegasus Workflow Mapper uses. The property
pegasus.selector.replica is used to specify the replica selection strategy. Currently supported Replica Selection strate-
gies are

1. Default

2. Restricted

3. Regex

The values are case sensitive. For example the following property setting will throw a Factory Exception .

pegasus.selector.replica default

The correct way to specify is

pegasus.selector.replica Default

Supported Replica Selectors
The various Replica Selectors supported in Pegasus Workflow Mapper are explained below

Default

This is the default replica selector used in the Pegasus Workflow Mapper. If the property pegasus.selector.replica is
not defined in properties, then Pegasus uses this selector.

This selector looks at each PFN returned for a LFN and checks to see if

1. the PFN is a file URL (starting with file:///)

2. the PFN has a pool attribute matching to the site handle of the site where the compute job that requires the input
file is to be run.

If a PFN matching the conditions above exists then that is returned by the selector .

Else, a random PFN is selected amongst all the PFN’s that have a pool attribute matching to the site handle
of the site where a compute job is to be run.

Else, a random pfn is selected amongst all the PFN’s

To use this replica selector set the following property

pegasus.selector.replica Default

Restricted

This replica selector, allows the user to specify good sites and bad sites for staging in data to a particular compute site.
A good site for a compute site X, is a preferred site from which replicas should be staged to site X. If there are more
than one good sites having a particular replica, then a random site is selected amongst these preferred sites.

Data Management

117

A bad site for a compute site X, is a site from which replica’s should not be staged. The reason of not accessing
replica from a bad site can vary from the link being down, to the user not having permissions on that site’s data.

The good | bad sites are specified by the following properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is taken to mean all
sites. The value to these properties is a comma separated list of sites.

For example the following settings

pegasus.selector.replica.*.prefer.stagein.sites usc
pegasus.replica.uwm.prefer.stagein.sites isi,cit

means that prefer all replicas from site usc for staging in to any compute site. However, for uwm use a tighter constraint
and prefer only replicas from site isi or cit. The pool attribute associated with the PFN's tells the replica selector to
what site a replica/PFN is associated with.

The pegasus.replica.*.prefer.stagein.sites property takes precedence over pegasus.replica.*.ignore.stagein.sites prop-
erty i.e. if for a site X, a site Y is specified both in the ignored and the preferred set, then site Y is taken to mean as
only a preferred site for a site X.

To use this replica selector set the following property

pegasus.selector.replica Restricted

Regex

This replica selector allows the user allows the user to specific regex expressions that can be used to rank various
PFN’s returned from the Replica Catalog for a particular LFN. This replica selector selects the highest ranked
PFN i.e the replica with the lowest rank value.

The regular expressions are assigned different rank, that determine the order in which the expressions are employed.
The rank values for the regex can expressed in user properties using the property.

pegasus.selector.replica.regex.rank.[value] regex-expression

The [value] in the above property is an integer value that denotes the rank of an expression with a rank value of 1
being the highest rank.

For example, a user can specify the following regex expressions that will ask Pegasus to prefer file URL's over gsiftp
url's from example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://example\.isi\.edu.*

User can specify as many regex expressions as they want.

Since Pegasus is in Java , the regex expression support is what Java supports. It is pretty close to what is supported by
Perl. More details can be found at http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Before applying any regular expressions on the PFN’s for a particular LFN that has to be staged to a site X,
the file URL’s that don't match the site X are explicitly filtered out.

To use this replica selector set the following property

pegasus.selector.replica Regex

Local

This replica selector always prefers replicas from the local host (pool attribute set to local) and that start with a file:
URL scheme. It is useful, when users want to stagein files to a remote site from the submit host using the Condor
file transfer mechanism.

Data Management

118

To use this replica selector set the following property

pegasus.selector.replica Default

Data Transfers
As part of the Workflow Mapping Process, Pegasus does data management for the executable workflow . It queries
a Replica Catalog to discover the locations of the input datasets and adds data movement and registration nodes in
the workflow to

1. stage-in input data to the staging sites (a site associated with the compute job to be used for staging. In the shared
filesystem setup, staging site is the same as the execution sites where the jobs in the workflow are executed)

2. stage-out output data generated by the workflow to the final storage site.

3. stage-in intermediate data between compute sites if required.

4. data registration nodes to catalog the locations of the output data on the final storage site into the replica catalog.

The separate data movement jobs that are added to the executable workflow are responsible for staging data to a work-
flow specific directory accessible to the staging server on a staging site associated with the compute sites. Depending
on the data staging configuration, the staging site for a compute site is the compute site itself. In the default case,
the staging server is usually on the headnode of the compute site and has access to the shared filesystem between the
worker nodes and the head node. Pegasus adds a directory creation job in the executable workflow that creates the
workflow specific directory on the staging server.

In addition to data, Pegasus does transfer user executables to the compute sites if the executables are not installed on
the remote sites before hand. This chapter gives an overview of how transfers of data and executables is managed
in Pegasus.

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

Data Management

119

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the "site" attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

Figure 9.1. Shared File System Setup

The data flow is as follows in this case

Data Management

120

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 9.2. Non Shared Filesystem Setup

Data Management

121

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set p egasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

In this setup, Pegasus always stages the input files through the staging site i.e the stage-in job stages in data from the
input site to the staging site. The PegasusLite jobs that start up on the worker nodes, then pull the input data from the
staging site for each job. In some cases, it might be useful to setup the PegasusLite jobs to pull input data directly
from the input site without going through the staging server. This is based on the assumption that the worker nodes
can access the input site. Starting 4.3 release, users can enable this. However, you should be aware that the access to
the input site is no longer throttled (as in case of stage in jobs). If large number of compute jobs start at the same time
in a workflow, the input server will see a connection from each job.

Tip

Set pegasus.transfer.bypass.input.staging to trueto enable the bypass of staging of input files via the
staging server.

Condor Pool Without a Shared Filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Data Management

122

Figure 9.3. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executeson the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on thesubmit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set p egasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

In this setup, Pegasus always stages the input files through the submit host i.e the stage-in job stages in data from the
input site to the submit host (local site). The input data is then transferred to remote worker nodes from the submit
host using Condor file transfers. In the case, where the input data is locally accessible at the submit host i.e the input

Data Management

123

site and the submit host are the same, then it is possible to bypass the creation of separate stage in jobs that copy the
data to the workflow specific directory on the submit host. Instead, Condor file transfers can be setup to transfer the
input files directly from the locally accessible input locations (file URL's with "site" attribute set to local) specified
in the replica catalog. Starting 4.3 release, users can enable this.

Tip

Set pegasus.transfer.bypass.input.staging to trueto bypass the creation of separate stage in jobs.

Local versus Remote Transfers
As far as possible, Pegasus will ensure that the transfer jobs added to the executable workflow are executed on the
submit host. By default, Pegasus will schedule a transfer to be executed on the remote staging site only if there is
no way to execute it on the submit host. For e.g if the file server specified for the staging site/compute site is a file
server, then Pegasus will schedule all the stage in data movement jobs on the compute site to stage-in the input data
for the workflow. Another case would be if a user has symlinking turned on. In that case, the transfer jobs that symlink
against the input data on the compute site, will be executed remotely (on the compute site).

Users can specify the property pegasus.transfer.*.remote.sites to change the default behaviour of Pegasus and force
pegasus to run different types of transfer jobs for the sites specified on the remote site. The value of the property is a
comma separated list of compute sites for which you want the transfer jobs to run remotely.

The table below illustrates all the possible variations of the property.

Table 9.1. Property Variations for pegasus.transfer.*.remote.sites

Property Name Applies to

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

pegasus.transfer.stageout.remote.sites the stage out transfer jobs

pegasus.transfer.inter.remote.sites the inter site transfer jobs

pegasus.transfer.*.remote.sites all types of transfer jobs

The prefix for the transfer job name indicates whether the transfer job is to be executed locallly (on the submit host)
or remotely (on the compute site). For example stage_in_local_ in a transfer job name stage_in_local_isi_viz_0
indicates that the transfer job is a stage in transfer job that is executed locally and is used to transfer input data to
compute site isi_viz. The prefix naming scheme for the transfer jobs is [stage_in|stage_out|inter]_[local|remote]_ .

Controlling Transfer Parallelism
When it comes to data transfers, Pegasus ships with a default configuration which is trying to strike a balance between
performance and aggressiveness. We obviously want data transfers to be as quick as possibly, but we also do not
want our transfers to overwhelm data services and systems. The default configuration consists of a combination of
the maximum number of transfer jobs per level in the workflow, and how many threads such a pegasus-transfer job
can spawn.

Information on how to control the number of stagein and stageout jobs can be found in the Data Movement Nodes
section.

How to control the number of threads pegasus-transfer can use depends on if you want to control standard
transfer jobs, or PegasusLite. For the former, see the pegasus.transfer.threads property, and for the latter the
pegasus.transfer.lite.threads property.

Symlinking Against Input Data
If input data for a job already exists on a compute site, then it is possible for Pegasus to symlink against that data.
In this case, the remote stage in transfer jobs that Pegasus adds to the executable workflow will symlink instead of
doing a copy of the data.

Data Management

124

Pegasus determines whether a file is on the same site as the compute site, by inspecting the "site" attribute associated
with the URL in the Replica Catalog. If the "site" attribute of an input file location matches the compute site where
the job is scheduled, then that particular input file is a candidate for symlinking.

For Pegasus to symlink against existing input data on a compute site, following must be true

1. Property pegasus.transfer.links is set to true

2. The input file location in the Replica Catalog has the "site" attribute matching the compute site.

Tip

To confirm if a particular input file is symlinked instead of being copied, look for the destination URL for
that file in stage_in_remote*.in file. The destination URL will start with symlink:// .

In the symlinking case, Pegasus strips out URL prefix from a URL and replaces it with a file URL.

For example if a user has the following URL catalogued in the Replica Catalog for an input file f.input

f.input gsiftp://server.isi.edu/shared/storage/input/data/f.input site="isi"

and the compute job that requires this file executes on a compute site named isi , then if symlinking is turned on the
data stage in job (stage_in_remote_viz_0) will have the following source and destination specified for the file

#viz viz
file:///shared/storage/input/data/f.input symlink://shared-scratch/workflow-exec-dir/f.input

Addition of Separate Data Movement Nodes to Executable
Workflow

Pegasus relies on a Transfer Refiner that comes up with the strategy on how many data movement nodes are added
to the executable workflow. All the compute jobs scheduled to a site share the same workflow specific directory. The
transfer refiners ensure that only one copy of the input data is transferred to the workflow execution directory. This
is to prevent data clobbering . Data clobbering can occur when compute jobs of a workflow share some input files,
and have different stage in transfer jobs associated with them that are staging the shared files to the same destination
workflow execution directory.

Pegasus supports three different transfer refiners that dictate how the stagein and stageout jobs are added for the
workflow.The default Transfer Refiner used in Pegasus is the BalancedCluster Refiner that allows the user to specify
how many local|remote stagein|stageout jobs are created per execution site.

The behavior of the refiners (BalancedCluster and Cluster) are controlled by specifying certain pegasus profiles

1. either with the execution sites in the site catalog

2. OR globally in the properties file

Table 9.2. Pegasus Profile Keys For the Cluster Transfer Refiner

Profile Key Description

stagein.clusters This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per compute
site per workflow.

stagein.local.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.

stagein.remote.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it.

Data Management

125

Profile Key Description

stageout.clusters This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow.

stageout.local.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and are
responsible for staging data from a particular remote site.

stageout.remote.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on the
remote site and are responsible for staging data from it.

Tip

Which transfer refiner to use is controlled by property pegasus.transfer.refiner

BalancedCluster

This is a new transfer refiner that was introduced in Pegasus 4.4.0 and is the default one used in Pegasus. It does a
round robin distribution of the files amongst the stagein and stageout jobs per level of the workflow. The figure below
illustrates the behavior of this transfer refiner.

Figure 9.4. BalancedCluster Transfer Refiner : Input Data To Workflow Specific Directory
on Shared File System

Cluster

This transfer refiner is similar to BalancedCluster but differs in the way how distribution of files happen across stagein
and stageout jobs per level of the workflow. In this refiner, all the input files for a job get associated with a single
transfer job. As illustrated in the figure below each compute usually gets associated with one stagein transfer job. In
contrast, for the BalancedCluster a compute job maybe associated with multiple data stagein jobs.

Data Management

126

Figure 9.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared
File System

Basic

Pegasus also supports a basic Transfer Refiner that adds one stagein and stageout job per compute job of the workflow.
This is not recommended to be used for large workflows as the number of data transfer nodes in the worst case are
2n where n is the number of compute jobs in the workflow.

Executable Used for Transfer Jobs
Pegasus refers to a python script called pegasus-transfer as the executable in the transfer jobs to transfer the data.
pegasus-transfer is a python based wrapper around various transfer clients . pegasus-transfer looks at source and
destination url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the
PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

Currently, pegasus-transfer interfaces with the following transfer clients

Table 9.3. Transfer Clients interfaced to by pegasus-transfer

Transfer Client Used For

globus-url-copy staging files to and from a gridftp server.

lcg-copy staging files to and from a SRM server.

wget staging files from a HTTP server.

cp copying files from a POSIX filesystem .

ln symlinking against input files.

pegasus-s3 staging files to and from S3 bucket in the Amazon cloud

gsutil staging files to and from Google Storage buckets

Data Management

127

Transfer Client Used For

scp staging files using scp

iget staging files to and from a irods server.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of PEGASUS_HOME env profile
specified in the site catalog. To specify a different path to the pegasus-transfer client , users can add an entry into the
transformation catalog with fully qualified logical name as pegasus::pegasus-transfer

Staging of Executables
Users can get Pegasus to stage the user executables (executables that the jobs in the DAX refer to) as part of the transfer
jobs to the workflow specific execution directory on the compute site. The URL locations of the executables need to
be specified in the transformation catalog as the PFN and the type of executable needs to be set to STAGEABLE .

The location of a transformation can be specified either in

• DAX in the executables section. More details here .

• Transformation Catalog. More details here .

A particular transformation catalog entry of type STAGEABLE is compatible with a compute site only if all the
System Information attributes associated with the entry match with the System Information attributes for the compute
site in the Site Catalog. The following attributes make up the System Information attributes

1. arch

2. os

3. osrelease

4. osversion

Transformation Mappers

Pegasus has a notion of transformation mappers that determines what type of executables are picked up when a job
is executed on a remote compute site. For transfer of executables, Pegasus constructs a soft state map that resides
on top of the transformation catalog, that helps in determining the locations from where an executable can be staged
to the remote site.

Users can specify the following property to pick up a specific transformation mapper

pegasus.catalog.transformation.mapper

Currently, the following transformation mappers are supported.

Table 9.4. Transformation Mappers Supported in Pegasus

Transformation Mapper Description

Installed This mapper only relies on transformation catalog entries
that are of type INSTALLED to construct the soft state
map. This results in Pegasus never doing any transfer of
executables as part of the workflow. It always prefers the
installed executables at the remote sites

Staged This mapper only relies on matching transformation cata-
log entries that are of type STAGEABLE to construct the
soft state map. This results in the executable workflow re-
ferring only to the staged executables, irrespective of the
fact that the executables are already installed at the remote
end

Data Management

128

Transformation Mapper Description

All This mapper relies on all matching transformation catalog
entries of type STAGEABLE or INSTALLED for a par-
ticular transformation as valid sources for the transfer of
executables. This the most general mode, and results in
the constructing the map as a result of the cartesian prod-
uct of the matches.

Submit This mapper only on matching transformation catalog en-
tries that are of type STAGEABLE and reside at the sub-
mit host (site local), are used while constructing the soft
state map. This is especially helpful, when the user wants
to use the latest compute code for his computations on the
grid and that relies on his submit host.

Staging of Pegasus Worker Package
Pegasus can optionally stage the pegasus worker package as part of the executable workflow to remote workflow
specific execution directory. The pegasus worker package contains the pegasus auxillary executables that are required
on the remote site. If the worker package is not staged as part of the executable workflow, then Pegasus relies on
the installed version of the worker package on the remote site. To determine the location of the installed version of
the worker package on a remote site, Pegasus looks for an environment profile PEGASUS_HOME for the site in the
Site Catalog.

Users can set the following property to true to turn on worker package staging

pegasus.transfer.worker.package true

By default, when worker package staging is turned on pegasus pulls the compatible worker package from the Pegasus
Website. To specify a different worker package location, users can specify the transformation pegasus::worker in
the transformation catalog with

• type set to STAGEABLE

• System Information attributes of the transformation catalog entry match the System Information attributes of the
compute site.

• the PFN specified should be a remote URL that can be pulled to the compute site.

Worker Package Staging in Non Shared Filesystem setup

Worker package staging is automatically set to true , when workflows are setup to run in a non shared filesystem setup
i.e. pegasus.data.configuration is set to nonsharedfs or condorio . In these configurations, a stage_worker job is
created that brings in the worker package to the submit directory of the workflow. For each job, the worker package
is then transferred with the job using Condor File Transfers (transfer_input_files) . This transfer always happens
unless, PEGASUS_HOME is specified in the site catalog for the site on which the job is scheduled to run.

Users can explicitly set the following property to false, to turn off worker package staging by the Planner. This is
applicable , when running in the cloud and virtual machines / worker nodes already have the pegasus worker tools
installed.

pegasus.transfer.worker.package false

Staging of Job Checkpoint Files
Pegasus has support for transferring job checkpoint files back to the staging site, when a job exceeds it's advertised
running time. In order to use this feature, you need to

1. Associate a job checkpoint file (that the job creates) with the job in the DAX. A checkpoint file is specified by
setting the link attribute to checkpoint for the uses tag.

Data Management

129

2. Associate a Pegasus profile key named checkpoint.time is the time in minutes after which a job is sent the TERM
signal by pegasus-kickstart, telling it to create the checkpoint file.

3. Associate a Pegasus profile key named maxwalltime with the job that specifies the max runtime in minutes before
the job will be killed by the local resource manager (such as PBS) deployed on the site. Usually, this value should
be associated with the execution site in the site catalog.

Pegasus planner uses the above mentioned profile keys to setup pegasus-kickstart such that the job is sent a
TERM signal when the checkpoint time of job is reached. A KILL signal is sent at (checkpoint.time + (maxwall-
time-checkpoint.time)/2) minutes. This ensures that there is enough time for pegasus-lite to transfer the checkpoint
file before the job is killed by the underlying scheduler.

Using Amazon S3 as a Staging Site

Pegasus can be configured to use Amazon S3 as a staging site. In this mode, Pegasus transfers workflow inputs from
the input site to S3. When a job runs, the inputs for that job are fetched from S3 to the worker node, the job is executed,
then the output files are transferred from the worker node back to S3. When the jobs are complete, Pegasus transfers
the output data from S3 to the output site.

In order to use S3, it is necessary to create a config file for the S3 transfer client, pegasus-s3. See the man page for
details on how to create the config file. You also need to specify S3 as a staging site.

Next, you need to modify your site catalog to tell the location of your s3cfg file. See the section on credential staging.

The following site catalog shows how to specify the location of the s3cfg file on the local site and how to specify
an Amazon S3 staging site:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage"/>
 </shared>
 </storage>
 </head-fs>
 <profile namespace="env" key="S3CFG">/home/username/.s3cfg</profile>
 </site>
 <site handle="s3" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <!-- wf-scratch is the name of the S3 bucket that will be used -->
 <file-server protocol="s3" url="s3://user@amazon" mount-point="/wf-scratch"/>
 <internal-mount-point mount-point="/wf-scratch"/>
 </shared>
 </scratch>
 </head-fs>
 </site>
 <site handle="condorpool" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch/>
 <storage/>
 </head-fs>
 <profile namespace="pegasus" key="style">condor</profile>
 <profile namespace="condor" key="universe">vanilla</profile>
 <profile namespace="condor" key="requirements">(Target.Arch == "X86_64")</profile>
 </site>
</sitecatalog>

Data Management

130

iRODS data access
iRODS can be used as a input data location, a storage site for intermediate data during workflow execution, or a
location for final output data. Pegasus uses a URL notation to identify iRODS files. Example:

irods://some-host.org/path/to/file.txt

The path to the file is relative to the internal iRODS location. In the example above, the path used to refer to the
file in iRODS is path/to/file.txt (no leading /).

See the section on credential staging for information on how to set up an irodsEnv file to be used by Pegasus.

GridFTP over SSH (sshftp)
Instead of using X.509 based security, newer version of Globus GridFTP can be configured to set up transfers over
SSH. See the Globus Documentation [http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-con-
fig-security-sshftp] for details on installing and setting up this feature.

Pegasus requires the ability to specify which SSH key to be used at runtime, and thus a small modification is neces-
sary to the default Globus configuration. On the hosts where Pegasus initiates transfers (which depends on the data
configuration of the workflow), please replace gridftp-ssh, usually located under /usr/share/globus/gridftp-ssh, with:

#!/bin/bash

url_string=$1
remote_host=$2
port=$3
user=$4

port_str=""
if ["X" = "X$port"]; then
 port_str=""
else
 port_str=" -p $port "
fi

if ["X" != "X$user"]; then
 remote_host="$user@$remote_host"
fi

remote_default1=.globus/sshftp
remote_default2=/etc/grid-security/sshftp
remote_fail="echo -e 500 Server is not configured for SSHFTP connections.\\\r\\\n"
remote_program=$GLOBUS_REMOTE_SSHFTP
if ["X" = "X$remote_program"]; then
 remote_program="((test -f $remote_default1 && $remote_default1) || (test -f $remote_default2
 && $remote_default2) || $remote_fail)"
fi

if ["X" != "X$GLOBUS_SSHFTP_PRINT_ON_CONNECT"]; then
 echo "Connecting to $1 ..." >/dev/tty
fi

for pegasus-transfer
extra_opts=" -o StrictHostKeyChecking=no"
if ["x$SSH_PRIVATE_KEY" != "x"]; then
 extra_opts="$extra_opts -i $SSH_PRIVATE_KEY"
fi

exec /usr/bin/ssh $extra_opts $port_str $remote_host $remote_program

Once configured, you should be able to use URLs such as sshftp://username@host/foo/bar.txt in your workflows.

Credentials Management
Pegasus tries to do data staging from localhost by default, but some data scenarios makes some remote jobs do data
staging. An example of such a case is when running in nonsharedfs mode. Depending on the transfer protocols used,
the job may have to carry credentials to enable these data transfers. To specify where which credential to use and where

http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp

Data Management

131

Pegasus can find it, use environment variable profiles in your site catalog. The supported credential types are X.509
grid proxies, Amazon AWS S3 keys, Google Cloud Platform OAuth token (.boto file), iRods password and SSH keys.

Credentials are usually associated per site in the site catalog. Users can associate the credentials either as a Pegasus
profile or an environment profile with the site.

1. A pegasus profile with the value pointing to the path to the credential on the local site or the submit host. If a pegasus
credential profile associated with the site, then Pegasus automatically transfers it along with the remote jobs.

2. A env profile with the value pointing to the path to the credential on the remote site. If an env profile is specified,
then no credential is transferred along with the job. Instead the job's environment is set to ensure that the job picks
up the path to the credential on the remote site.

Tip

Specifying credentials as Pegasus profiles was introduced in 4.4.0 release.

In case of data transfer jobs, it is possible to associate different credentials for a single file transfer (one for the source
server and the other for the destination server) . For example, when leveraging GridFTP transfers between two sides
that accept different grid credentials such as XSEDE Stampede site and NCSA Bluewaters. In that case, Pegasus picks
up the associated credentials from the site catalog entries for the source and the destination sites associated with the
transfer.

X.509 Grid Proxies
If the grid proxy is required by transfer jobs, and the proxy is in the standard location, Pegasus will pick the proxy up
automatically. For non-standard proxy locations, you can use the X509_USER_PROXY environment variable. Site
catalog example:

<profile namespace="pegasus" key="X509_USER_PROXY" >/some/location/x509up</profile>

Amazon AWS S3
If a workflow is using s3 URLs, Pegasus has to be told where to find the .s3cfg file. This format of the file is described
in the pegaus-s3 command line client's man page. For the file to be picked up by the workflow, set the S3CFG profile
to the location of the file. Site catalog example:

<profile namespace="pegasus" pegasus="S3CFG" >/home/user/.s3cfg</profile>

Google Storage
If a workflow is using gs:// URLs, Pegasus needs access to a Google Storage service account. First generate the
credential by following the instructions at:

https://cloud.google.com/storage/docs/authentication#service_accounts

Download the credential in PKCS12 format, and then use "gsutil config -e" to generate a .boto file. For example:

$ gsutil config -e
This command will create a boto config file at /home/username/.boto
containing your credentials, based on your responses to the following
questions.
What is your service account email address? some-identifier@developer.gserviceaccount.com
What is the full path to your private key file? /home/username/my-cred.p12
What is the password for your service key file [if you haven't set one
explicitly, leave this line blank]?

Please navigate your browser to https://cloud.google.com/console#/project,
then find the project you will use, and copy the Project ID string from the
second column. Older projects do not have Project ID strings. For such projects,
click the project and then copy the Project Number listed under that project.

What is your project-id? your-project-id

https://cloud.google.com/storage/docs/authentication#service_accounts

Data Management

132

Boto config file "/home/username/.boto" created. If you need to use a
proxy to access the Internet please see the instructions in that file.

Pegasus has to be told where to find both the .boto file as well as the PKCS12 file. For the files to be picked up by the
workflow, set the BOTO_CONFIG and GOOGLE_PKCS12 profiles for the storage site. Site catalog example:

<profile namespace="pegasus" key="BOTO_CONFIG" >/home/user/.boto</profile>
<profile namespace="pegasus" key="GOOGLE_PKCS12" >/home/user/.google-service-account.p12</profile>

iRods Password
If a workflow is using iRods URLs, Pegasus has to be given an irodsEnv file. It is a standard file, with the addtion
of an password attribute. Example when using iRods 3.X:

iRODS personal configuration file.
#
iRODS server host name:
irodsHost 'some.host.edu'
iRODS server port number:
irodsPort 1259

Account name:
irodsUserName 'someuser'
Zone:
irodsZone 'somezone'

this is used with Pegasus
irodsPassword 'somesecretpassword'

iRods 4.0 switched to a JSON based configuration file. Pegasus can handle either config file. JSON Example:

{
 "irods_host": "some.host.edu",
 "irods_port": 1247,
 "irods_user_name": "someuser",
 "irods_zone_name": "somezone",
 "irodsPassword" : "somesecretpassword"
}

The location of the file can be given to the workflow using the irodsEnvFile environment profile. Site catalog
example:

<profile namespace="pegasus" key="irodsEnvFile" >/home/user/.irods/.irodsEnv</profile>

SSH Keys
New in Pegasus 4.0 is the support for data staging with scp using ssh public/private key authentication. In this mode,
Pegasus transports a private key with the jobs. The storage machines will have to have the public part of the key listed
in ~/.ssh/authorized_keys.

Warning

SSH keys should be handled in a secure manner. In order to keep your personal ssh keys secure, It is rec-
ommended that a special set of keys are created for use with the workflow. Note that Pegasus will not pick
up ssh keys automatically. The user will have to specify which key to use with SSH_PRIVATE_KEY.

The location of the ssh private key can be specified with the SSH_PRIVATE_KEY environment profile. Site catalog
example:

<profile namespace="pegasus" key="SSH_PRIVATE_KEY" >/home/user/wf/wfsshkey</profile>

Output Mappers
Starting 4.3 release, Pegasus has support for output mappers, that allow users fine grained control over how the output
files on the output site are laid out. By default, Pegasus stages output products to the storage directory specified in

Data Management

133

the site catalog for the output site. Output mappers allow users finer grained control over where the output files are
placed on the output site.

To configure the output mapper, you need to specify the following property

pegasus.dir.storage.mapper <name of the mapper to use>

The following mappers are supported currently

1. Flat : By default, Pegasus will place the output files in the storage directory specified in the site catalog for the
output site.

2. Fixed : This mapper allows users to specify an externally accesible url to the storage directory in their properties
file. To use this mapper, the following property needs to be set.

• pegasus.dir.storage.mapper.fixed.url an externally accessible URL to the storage directory on the output site e.g.
gsiftp://outputs.isi.edu/shared/outputs

Note: For hierarchal workflows, the above property needs to be set separately for each dax job, if you want the sub
workflow outputs to goto a different directory.

3. Hashed : This mapper results in the creation of a deep directory structure on the output site, while populating the
results. The base directory on the remote end is determined from the site catalog. Depending on the number of
files being staged to the remote site a Hashed File Structure is created that ensures that only 256 files reside in one
directory. To create this directory structure on the storage site, Pegasus relies on the directory creation feature of
the underlying file servers such as theGrid FTP server, which appeared in globus 4.0.x

4. Replica: This mapper determines the path for an output file on the output site by querying an output replica catalog.
The output site is one that is passed on the command line. The output replica catalog can be configured by specifying
the following properties.

• pegasus.dir.storage.mapper.replica Regex|File

• pegasus.dir.storage.mapper.replica.file the RC file at the backend to use

Please note that the output replica catalog (even though the formats are the same) is logically different from the
input replica catalog, where you specify the locations for the input files. You cannot specify the locations for the
output files to be used by the mapper in the DAX. The format for the File based replica catalog is described here,
while for the Regex it is here.

Data Cleanup
When executing large workflows, users often may run out of diskspace on the remote clusters / staging site. Pegasus
provides a couple of ways of enabling automated data cleanup on the staging site (i.e the scratch space used by
the workflows). This is achieved by adding data cleanup jobs to the executable workflow that the Pegasus Mapper
generates. These cleanup jobs are responsible for removing files and directories during the workflow execution. To
enable data cleanup you can pass the --cleanup option to pegasus-plan . The value passed decides the cleanup strategy
implemented

1. none disables cleanup altogether. The planner does not add any cleanup jobs in the executable workflow what-
soever.

2. leaf the planner adds a leaf cleanup node per staging site that removes the directory created by the create dir job
in the workflow

3. inplace the mapper adds cleanup nodes per level of the workflow in addition to leaf cleanup nodes. The nodes
remove files no longer required during execution. For example, an added cleanup node will remove input files for
a particular compute job after the job has finished successfully. This is the default value.

Note

For large workflows with lots of files, the inplace strategy may take a long time as the algorithm works at
a per file level to figure out when it is safe to remove a file.

Data Management

134

Behaviour of the cleanup strategies implemented in the Pegasus Mapper can be controlled by properties described
here .

Data Cleanup in Hierarchal Workflows
By default, for hierarchal workflows the inplace cleanup is always turned off. This is because the cleanup algorithm
(InPlace) does not work across the sub workflows. For example, if you have two DAX jobs in your top level workflow
and the child DAX job refers to a file generated during the execution of the parent DAX job, the InPlace cleanup
algorithm when applied to the parent dax job will result in the file being deleted, when the sub workflow corresponding
to parent DAX job is executed. This would result in failure of sub workflow corresponding to the child DAX job, as
the file deleted is required to present during it's execution.

In case there are no data dependencies across the dax jobs, then yes you can enable the InPlace algorithm for the sub
dax’es . To do this you can set the property

• pegasus.file.cleanup.scope deferred

This will result in cleanup option to be picked up from the arguments for the DAX job in the top level DAX .

Executables used for Directory Creation and Cleanup Jobs
Starting 4.0, Pegasus has changed the way how the scratch directories are created on the staging site. The planner
now prefers to schedule the directory creation and cleanup jobs locally. The jobs refer to python based tools, that call
out to protocol specific clients to determine what client is picked up. For protocols, where specific remote cleanup
and directory creation clients don't exist (for example gridftp), the python tools rely on the corresponding transfer
tool to create a directory by initiating a transfer of an empty file. The python clients used to create directories and
remove files are called

• pegasus-create-dir

• pegasus-cleanup

Both these clients inspect the URL's to to determine what underlying client to pick up.

Table 9.5. Clients interfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server

srm-mkdir to create directories against a SRM server.

mkdir to create a directory on the local filesystem

pegasus-s3 to create a S3 bucket in the Amazon cloud

gsutil to create a Google Storage bucket

scp staging files using scp

imkdir to create a directory against an IRODS server

Table 9.6. Clients interfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove a file against a gridftp/ftp server. In this case a
zero byte file is created

srm-rm to remove files against a SRM server.

rm to remove a file on the local filesystem

pegasus-s3 to remove a file from the s3 bucket.

gsutil to remove an object from a Google Storage bucket

Data Management

135

Client Used For

scp to remove a file against a scp server. In this case a zero
byte file is created.

irm to remove a file against an IRODS server

The only case, where the create dir and cleanup jobs are scheduled to run remotely is when for the staging site, a
file server is specified.

136

Chapter 10. Optimizing Workflows for
Efficiency and Scalability

By default, Pegasus generates workflows which targets the most common usecases and execution environments. For
more specialized environments or workflows, the following sections can provide hints on how to optimize your work-
flow to scale better, and run more efficient. Below are some common issues and solutions.

Optimizing Short Jobs / Scheduling Delays
Issue: Even though HTCondor is a high throughput system, there are overheads when scheduling short jobs. Common
overheads include scheduling, data transfers, state notifications, and task book keeping. These overheads can be very
noticeable for short jobs, but not noticeable at all for longer jobs as the ration between the computation and the
overhead is higher.

Solution: If you have many short tasks to run, the solution to minimize the overheads is to use task clustering. This
instructs Pegasus to take a set of tasks, selected horizontally, by labels, or by runtime, and create jobs containing that
whole set of tasks. The result is more efficient jobs, for wich the overheads are less noticeable.

Job Clustering
A large number of workflows executed through the Pegasus Workflow Management System, are composed of several
jobs that run for only a few seconds or so. The overhead of running any job on the grid is usually 60 seconds or more.
Hence, it makes sense to cluster small independent jobs into a larger job. This is done while mapping an abstract
workflow to an executable workflow. Site specific or transformation specific criteria are taken into consideration while
clustering smaller jobs into a larger job in the executable workflow. The user is allowed to control the granularity of
this clustering on a per transformation per site basis.

Overview

The abstract workflow is mapped onto the various sites by the Site Selector. This semi executable workflow is then
passed to the clustering module. The clustering of the workflow can be either be

• level based horizontal clustering - where you can denote how many jobs get clustered into a single clustered job
per level, or how many clustered jobs should be created per level of the workflow

• level based runtime clustering - similar to horizontal clustering , but while creating the clusters per level take into
account the job runtimes.

• label based (label clustering)

The clustering module clusters the jobs into larger/clustered jobs, that can then be executed on the remote sites. The
execution can either be sequential on a single node or on multiple nodes using MPI. To specify which clustering
technique to use the user has to pass the --cluster option to pegasus-plan .

Generating Clustered Executable Workflow

The clustering of a workflow is activated by passing the --cluster|-C option to pegasus-plan. The clustering granu-
larity of a particular logical transformation on a particular site is dependant upon the clustering techniques being used.
The executable that is used for running the clustered job on a particular site is determined as explained in section 7.

#Running pegasus-plan to generate clustered workflows

$ pegasus-plan --dax example.dax --dir ./dags -p siteX --output local
 --cluster [comma separated list of clustering techniques] -verbose

Optimizing Workflows for
Efficiency and Scalability

137

Valid clustering techniques are horizontal and label.

The naming convention of submit files of the clustered jobs is merge_NAME_IDX.sub . The NAME is derived from
the logical transformation name. The IDX is an integer number between 1 and the total number of jobs in a cluster.
Each of the submit files has a corresponding input file, following the naming convention merge_NAME_IDX.in . The
input file contains the respective execution targets and the arguments for each of the jobs that make up the clustered job.

Horizontal Clustering

In case of horizontal clustering, each job in the workflow is associated with a level. The levels of the workflow are
determined by doing a modified Breadth First Traversal of the workflow starting from the root nodes. The level
associated with a node, is the furthest distance of it from the root node instead of it being the shortest distance as in
normal BFS. For each level the jobs are grouped by the site on which they have been scheduled by the Site Selector.
Only jobs of same type (txnamespace, txname, txversion) can be clustered into a larger job. To use horizontal clustering
the user needs to set the --cluster option of pegasus-plan to horizontal .

Controlling Clustering Granularity

The number of jobs that have to be clustered into a single large job, is determined by the value of two parameters
associated with the smaller jobs. Both these parameters are specified by the use of a PEGASUS namespace profile
keys. The keys can be specified at any of the placeholders for the profiles (abstract transformation in the DAX, site
in the site catalog, transformation in the transformation catalog). The normal overloading semantics apply i.e. profile
in transformation catalog overrides the one in the site catalog and that in turn overrides the one in the DAX. The two
parameters are described below.

• clusters.size factor

The clusters.size factor denotes how many jobs need to be merged into a single clustered job. It is specified via the
use of a PEGASUS namespace profile key “clusters.size”. for e.g. if at a particular level, say 4 jobs
referring to logical transformation B have been scheduled to a siteX. The clusters.size factor associated with job B
for siteX is say 3. This will result in 2 clustered jobs, one composed of 3 jobs and another of 2 jobs. The clusters.size
factor can be specified in the transformation catalog as follows

multiple line text-based transformation catalog: 2014-09-30T16:05:01.731-07:00
tr B {
 site siteX {
 profile pegasus "clusters.size" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr C {
 site siteX {
 profile pegasus "clusters.size" "2"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

Optimizing Workflows for
Efficiency and Scalability

138

Figure 10.1. Clustering by clusters.size

• clusters.num factor

The clusters.num factor denotes how many clustered jobs does the user want to see per level per site. It is specified
via the use of a PEGASUS namespace profile key “clusters.num”. for e.g. if at a particular level,
say 4 jobs referring to logical transformation B have been scheduled to a siteX. The “clusters.num”
factor associated with job B for siteX is say 3. This will result in 3 clustered jobs, one composed of 2 jobs and others
of a single job each. The clusters.num factor in the transformation catalog can be specified as follows

multiple line text-based transformation catalog: 2014-09-30T16:06:23.397-07:00
tr B {
 site siteX {
 profile pegasus "clusters.num" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr C {
 site siteX {
 profile pegasus "clusters.num" "2"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }

Optimizing Workflows for
Efficiency and Scalability

139

}

In the case, where both the factors are associated with the job, the clusters.num value supersedes the clusters.size
value.

multiple line text-based transformation catalog: 2014-09-30T16:08:01.537-07:00
tr B {
 site siteX {
 profile pegasus "clusters.num" "3"
 profile pegasus "clusters.size" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered on the basis
of “clusters.num” value. Hence, if there are 4 jobs referring to logical transformation B scheduled
to siteX, then 3 clustered jobs will be created.

Figure 10.2. Clustering by clusters.num

Runtime Clustering

Workflows often consist of jobs of same type, but have varying run times. Two or more instances of the same job,
with varying inputs can differ significantly in their runtimes. A simple way to think about this is running the same
program on two distinct input sets, where one input is smaller (1 MB) as compared to the other which is 10 GB in

Optimizing Workflows for
Efficiency and Scalability

140

size. In such a case the two jobs will having significantly differing run times. When such jobs are clustered using
horizontal clustering, the benefits of job clustering may be lost if all smaller jobs get clustered together, while the
larger jobs are clustered together. In such scenarios it would be beneficial to be able to cluster jobs together such that
all clustered jobs have similar runtimes.

In case of runtime clustering, jobs in the workflow are associated with a level. The levels of the workflow are deter-
mined in the same manner as in horizontal clustering. For each level the jobs are grouped by the site on which they
have been scheduled by the Site Selector. Only jobs of same type (txnamespace, txname, txversion) can be clustered
into a larger job. To use runtime clustering the user needs to set the --cluster option of pegasus-plan to horizontal,
and set the Pegasus property pegasus.clusterer.preference to Runtime.

Runtime clustering supports two modes of operation.

1. Clusters jobs together such that the clustered job's runtime does not exceed a user specified maxruntime.

Basic Algorithm of grouping jobs into clusters is as follows

// cluster.maxruntime - Is the maximum runtime for which the clustered job should run.
// j.runtime - Is the runtime of the job j.
1. Create a set of jobs of the same type (txnamespace, txname, txversion), and that run on the
 same site.
2. Sort the jobs in decreasing order of their runtime.
3. For each job j, repeat
 a. If j.runtime > cluster.maxruntime then
 ignore j.
 // Sum of runtime of jobs already in the bin + j.runtime <= cluster.maxruntime
 b. If j can be added to any existing bin (clustered job) then
 Add j to bin
 Else
 Add a new bin
 Add job j to newly added bin

The runtime of a job, and the maximum runtime for which a clustered jobs should run is determined by the value
of two parameters associated with the jobs.

• runtime

expected runtime for a job

• clusters.maxruntime

maxruntime for the clustered job i.e. Group as many jobs as possible into a cluster, as long as the clustered jobs'
runtime does not exceed clusters.maxruntime.

2. Clusters all the into a fixed number of clusters (clusters.num), such that the runtimes of the clustered jobs are similar.

Basic Algorithm of grouping jobs into clusters is as follows

// cluster.num - Is the number of clustered jobs to create.
// j.runtime - Is the runtime of the job j.
1. Create a set of jobs of the same type (txnamespace, txname, txversion), and that run on the
 same site.
2. Sort the jobs in decreasing order of their runtime.
3. Create a heap containing clusters.num number of clustered jobs.
4. For each job j, repeat
 a. Get cluster job cj, having the shortest runtime
 b. Add job j to clustered job cj

The runtime of a job, and the number of clustered jobs to create is determined by the value of two parameters
associated with the jobs.

• runtime

expected runtime for a job

• clusters.num

clusters.num factor denotes how many clustered jobs does the user want to see per level per site

Optimizing Workflows for
Efficiency and Scalability

141

Note

Users should either specify clusters.maxruntime or clusters.num. If both of them are specified, then
clusters.num profile will be ignored by the clustering engine.

All of these parameters are specified by the use of a PEGASUS namespace profile keys. The keys can be specified at
any of the placeholders for the profiles (abstract transformation in the DAX, site in the site catalog, transformation in
the transformation catalog). The normal overloading semantics apply i.e. profile in transformation catalog overrides
the one in the site catalog and that in turn overrides the one in the DAX. The two parameters are described below.

multiple line text-based transformation catalog: 2014-09-30T16:09:40.610-07:00
#Cluster all jobs of type B at siteX, into 2 clusters such that the 2 clusters have similar runtimes
tr B {
 site siteX {
 profile pegasus "clusters.num" "2"
 profile pegasus "runtime" "100"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

#Cluster all jobs of type C at siteX, such that the duration of the clustered job does not exceed
 300.
tr C {
 site siteX {
 profile pegasus "clusters.maxruntime" "300"
 profile pegasus "runtime" "100"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

Optimizing Workflows for
Efficiency and Scalability

142

Figure 10.3. Clustering by runtime

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered such that all
clustered jobs will run approximately for the same duration specified by the clusters.maxruntime property. In the
above case we assume all jobs referring to transformation B run for 100 seconds. For jobs with significantly differing
runtime, the runtime property will be associated with the jobs in the DAX.

In addition to the above two profiles, we need to inform pegasus-plan to use runtime clustering. This is done by setting
the following property .

 pegasus.clusterer.preference Runtime

Label Clustering

In label based clustering, the user labels the workflow. All jobs having the same label value are clustered into a single
clustered job. This allows the user to create clusters or use a clustering technique that is specific to his workflows. If
there is no label associated with the job, the job is not clustered and is executed as is

Optimizing Workflows for
Efficiency and Scalability

143

Figure 10.4. Label-based clustering

Since, the jobs in a cluster in this case are not independent, it is important the jobs are executed in the correct order.
This is done by doing a topological sort on the jobs in each cluster. To use label based clustering the user needs to
set the --cluster option of pegasus-plan to label.

Labelling the Workflow

The labels for the jobs in the workflow are specified by associated pegasus profile keys with the jobs during the DAX
generation process. The user can choose which profile key to use for labeling the workflow. By default, it is assumed
that the user is using the PEGASUS profile key label to associate the labels. To use another key, in the pegasus
namespace the user needs to set the following property

• pegasus.clusterer.label.key

For example if the user sets pegasus.clusterer.label.key to user_label then the job description in the DAX looks
as follows

<adag >
...
 <job id="ID000004" namespace="app" name="analyze" version="1.0" level="1" >
 <argument>-a bottom -T60 -i <filename file="user.f.c1"/> -o <filename file="user.f.d"/></
argument>
 <profile namespace="pegasus" key="user_label">p1</profile>
 <uses file="user.f.c1" link="input" register="true" transfer="true"/>
 <uses file="user.f.c2" link="input" register="true" transfer="true"/>
 <uses file="user.f.d" link="output" register="true" transfer="true"/>
 </job>

Optimizing Workflows for
Efficiency and Scalability

144

...
</adag>

• The above states that the pegasus profiles with key as user_label are to be used for designating clusters.

• Each job with the same value for pegasus profile key user_label appears in the same cluster.

Recursive Clustering

In some cases, a user may want to use a combination of clustering techniques. For e.g. a user may want some jobs in
the workflow to be horizontally clustered and some to be label clustered. This can be achieved by specifying a comma
separated list of clustering techniques to the --cluster option of pegasus-plan. In this case the clustering techniques
are applied one after the other on the workflow in the order specified on the command line.

For example

$ pegasus-plan --dax example.dax --dir ./dags --cluster label,horizontal -s siteX --output local --
verbose

Optimizing Workflows for
Efficiency and Scalability

145

Figure 10.5. Recursive clustering

Execution of the Clustered Job

The execution of the clustered job on the remote site, involves the execution of the smaller constituent jobs either

• sequentially on a single node of the remote site

The clustered job is executed using pegasus-cluster, a wrapper tool written in C that is distributed as part of the
PEGASUS. It takes in the jobs passed to it, and ends up executing them sequentially on a single node. To use
pegasus-cluster for executing any clustered job on a siteX, there needs to be an entry in the transformation catalog
for an executable with the logical name seqexec and namespace as pegasus.

Optimizing Workflows for
Efficiency and Scalability

146

#site transformation pfn type architecture profiles

siteX pegasus::seqexec /usr/pegasus/bin/pegasus-cluster INSTALLED INTEL32::LINUX
 NULL

If the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile
PEGASUS_HOME specified in the site catalog for the remote site.

• On multiple nodes of the remote site using MPI based task management tool called Pegasus MPI Cluster
(PMC)

The clustered job is executed using pegasus-mpi-cluster, a wrapper MPI program written in C that is distributed
as part of the PEGASUS. A PMC job consists of a single master process (this process is rank 0 in MPI parlance)
and several worker processes. These processes follow the standard master-worker architecture. The master process
manages the workflow and assigns workflow tasks to workers for execution. The workers execute the tasks and
return the results to the master. Communication between the master and the workers is accomplished using a sim-
ple text-based protocol implemented using MPI_Send and MPI_Recv. PMC relies on a shared filesystem on the
remote site to manage the individual tasks stdout and stderr and stage it back to the submit host as part of it's own
stdout/stderr.

The input format for PMC is a DAG based format similar to Condor DAGMan's. PMC follows the dependencies
specified in the DAG to release the jobs in the right order and executes parallel jobs via the workers when possible.
The input file for PMC is automatically generated by the Pegasus Planner when generating the executable workflow.
PMC allows for a finer grained control on how each task is executed. This can be enabled by associating the
following pegasus profiles with the jobs in the DAX

Table 10.1. Table : Pegasus Profiles that can be associated with jobs in the DAX for PMC

Key Description

pmc_request_memory This key is used to set the -m option for pegasus-mpi-
cluster. It specifies the amount of memory in MB that a
job requires. This profile is usually set in the DAX for
each job.

pmc_request_cpus This key is used to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profile is usually set in the DAX for each job.

pmc_priority This key is used to set the -p option for pegasus-mpi-
cluster. It specifies the priority for a job . This profile is
usually set in the DAX for each job. Negative values are
allowed for priorities.

pmc_task_arguments The key is used to pass any extra arguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for the task in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Refer to the pegasus-mpi-cluster man page in the command line tools chapter to know more about PMC and how
it schedules individual tasks.

It is recommended to have a pegasus::mpiexec entry in the transformation catalog to specify the path to PMC on
the remote and specify the relevant globus profiles such as xcount, host_xcount and maxwalltime to control size
of the MPI job.

multiple line text-based transformation catalog: 2014-09-30T16:11:11.947-07:00
tr pegasus::mpiexec {
 site siteX {
 profile globus "host_xcount" "1"
 profile globus "xcount" "32"
 pfn "/usr/pegasus/bin/pegasus-mpi-cluster"
 arch "x86"

Optimizing Workflows for
Efficiency and Scalability

147

 os "LINUX"
 type "INSTALLED"
 }
}

the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile
PEGASUS_HOME specified in the site catalog for the remote site.

Tip

Users are encouraged to use label based clustering in conjunction with PMC

Specification of Method of Execution for Clustered Jobs

The method execution of the clustered job(whether to launch via mpiexec or seqexec) can be specified

1. globally in the properties file

The user can set a property in the properties file that results in all the clustered jobs of the workflow being executed
by the same type of executable.

#PEGASUS PROPERTIES FILE
pegasus.clusterer.job.aggregator seqexec|mpiexec

In the above example, all the clustered jobs on the remote sites are going to be launched via the property value, as
long as the property value is not overridden in the site catalog.

2. associating profile key job.aggregator with the site in the site catalog

<site handle="siteX" gridlaunch = "/shared/PEGASUS/bin/kickstart">
 <profile namespace="env" key="GLOBUS_LOCATION" >/home/shared/globus</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH">/home/shared/globus/lib</profile>
 <profile namespace="pegasus" key="job.aggregator" >seqexec</profile>
 <lrc url="rls://siteX.edu" />
 <gridftp url="gsiftp://siteX.edu/" storage="/home/shared/work" major="2" minor="4"
 patch="0" />
 <jobmanager universe="transfer" url="siteX.edu/jobmanager-fork" major="2" minor="4"
 patch="0" />
 <jobmanager universe="vanilla" url="siteX.edu/jobmanager-condor" major="2" minor="4"
 patch="0" />
 <workdirectory >/home/shared/storage</workdirectory>
 </site>

In the above example, all the clustered jobs on a siteX are going to be executed via seqexec, as long as the value
is not overridden in the transformation catalog.

3. associating profile key job.aggregator with the transformation that is being clustered, in the transformation
catalog

multiple line text-based transformation catalog: 2014-09-30T16:11:52.230-07:00
tr B {
 site siteX {
 profile pegasus "clusters.size" "3"
 profile pegasus "job.aggregator" "mpiexec"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

In the above example, all the clustered jobs that consist of transformation B on siteX will be executed via mpiexec.

Note

The clustering of jobs on a site only happens only if

• there exists an entry in the transformation catalog for the clustering executable that has been determined
by the above 3 rules

Optimizing Workflows for
Efficiency and Scalability

148

• the number of jobs being clustered on the site are more than 1

Outstanding Issues

1. Label Clustering

More rigorous checks are required to ensure that the labeling scheme applied by the user is valid.

How to Scale Large Workflows
Issue: When planning and running large workflows, there are some scalability issues to be aware of. During the
planning stage, Pegasus traverses the graphs multiple times, and some of the graph transforms can be slow depending
on if the graph is large in the number of tasks, the number of files, or the number of dependencies. Once planned,
large workflows can also see scalability limits when interacting with the operating system. A common problem is the
number of files in a single directory, such as thousands or millons input or output files.

Solution: The most common solution to these problems is to use hierarchial workflows, which works really well if
your workflow can be logically partitioned into smaller workflows. A hierarchial workflow still runs like a single
workflow, with the difference being that some jobs in the workflow are actally sub-workflows.

For workflows with a large number of files, you can control the number of files in a single directory by reorganizing
the files into a deep directory structure.

Hierarchical Workflows

Introduction
The Abstract Workflow in addition to containing compute jobs, can also contain jobs that refer to other workflows.
This is useful for running large workflows or ensembles of workflows.

Users can embed two types of workflow jobs in the DAX

1. daxjob - refers to a sub workflow represented as a DAX. During the planning of a workflow, the DAX jobs are
mapped to condor dagman jobs that have pegasus plan invocation on the dax (referred to in the DAX job) as
the prescript.

Figure 10.6. Planning of a DAX Job

2. dagjob - refers to a sub workflow represented as a DAG. During the planning of a workflow, the DAG jobs are
mapped to condor dagman and refer to the DAG file mentioned in the DAG job.

Optimizing Workflows for
Efficiency and Scalability

149

Figure 10.7. Planning of a DAG Job

Specifying a DAX Job in the DAX
Specifying a DAXJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dax vs job) and the attributes specified. DAXJob XML specification is described
in detail in the chapter on DAX API . An example DAX Job in a DAX is shown below

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 -vvvvv --force -s dax_site </argument>
 </dax>

DAX File Locations

The name attribute in the dax element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX .

Note

Currently, only file url's on the local site (submit host) can be specified as DAX file locations.

Arguments for a DAX Job

Users can specify specific arguments to the DAX Jobs. The arguments specified for the DAX Jobs are passed to the
pegasus-plan invocation in the prescript for the corresponding condor dagman job in the executable workflow.

The following options for pegasus-plan are inherited from the pegasus-plan invocation of the parent workflow. If an
option is specified in the arguments section for the DAX Job then that overrides what is inherited.

Table 10.2. Options inherited from parent workflow

Option Name Description

--sites list of execution sites.

It is highly recommended that users dont specify directory related options in the arguments section for the DAX Jobs.
Pegasus assigns values to these options for the sub workflows automatically.

1. --relative-dir

Optimizing Workflows for
Efficiency and Scalability

150

2. --dir

3. --relative-submit-dir

Profiles for DAX Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above maxjobs is set to 10 for the sub workflow.

Execution of the PRE script and Condor DAGMan instance

The pegasus plan that is invoked as part of the prescript to the condor dagman job is executed on the submit host. The
log from the output of pegasus plan is redirected to a file (ending with suffix pre.log) in the submit directory of the
workflow that contains the DAX Job. The path to pegasus-plan is automatically determined.

The DAX Job maps to a Condor DAGMan job. The path to condor dagman binary is determined according to the
following rules -

1. entry in the transformation catalog for condor::dagman for site local, else

2. pick up the value of CONDOR_HOME from the environment if specified and set path to condor dagman as
$CONDOR_HOME/bin/condor_dagman , else

3. pick up the value of CONDOR_LOCATION from the environment if specified and set path to condor dagman as
$CONDOR_LOCATION/bin/condor_dagman , else

4. pick up the path to condor dagman from what is defined in the user's PATH

Tip

It is recommended that user dagman.maxpre in their properties file to control the maximum number of
pegasus plan instances launched by each running dagman instance.

Specifying a DAG Job in the DAX
Specifying a DAGJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dag vs job) and the attributes specified. For DAGJob XML details,see the API
Reference chapter . An example DAG Job in a DAX is shown below

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 </dag>

DAG File Locations

The name attribute in the dag element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX.

Note

Currently, only file url's on the local site (submit host) can be specified as DAG file locations.

Profiles for DAG Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above, maxjobs is set to 10 for the sub workflow.

Optimizing Workflows for
Efficiency and Scalability

151

The dagman profile DIR allows users to specify the directory in which they want the condor dagman instance to
execute. In the example above black.dag is set to be executed in directory /dag-dir/test . The /dag-dir/test should be
created beforehand.

File Dependencies Across DAX Jobs

In hierarchal workflows , if a sub workflow generates some output files required by another sub workflow then there
should be an edge connecting the two dax jobs. Pegasus will ensure that the prescript for the child sub-workflow,
has the path to the cache file generated during the planning of the parent sub workflow. The cache file in the submit
directory for a workflow is a textual replica catalog that lists the locations of all the output files created in the remote
workflow execution directory when the workflow executes.

This automatic passing of the cache file to a child sub-workflow ensures that the datasets from the same workflow
run are used. However, the passing the locations in a cache file also ensures that Pegasus will prefer them over all
other locations in the Replica Catalog. If you need the Replica Selection to consider locations in the Replica Catalog
also, then set the following property.

pegasus.catalog.replica.cache.asrc true

The above is useful in the case, where you are staging out the output files to a storage site, and you want the child
sub workflow to stage these files from the storage output site instead of the workflow execution directory where the
files were originally created.

Recursion in Hierarchal Workflows

It is possible for a user to add a dax jobs to a dax that already contain dax jobs in them. Pegasus does not place a
limit on how many levels of recursion a user can have in their workflows. From Pegasus perspective recursion in
hierarchal workflows ends when a DAX with only compute jobs is encountered . However, the levels of recursion are
limited by the system resources consumed by the DAGMan processes that are running (each level of nesting produces
another DAGMan process) .

The figure below illustrates an example with recursion 2 levels deep.

Optimizing Workflows for
Efficiency and Scalability

152

Figure 10.8. Recursion in Hierarchal Workflows

The execution time-line of the various jobs in the above figure is illustrated below.

Optimizing Workflows for
Efficiency and Scalability

153

Figure 10.9. Execution Time-line for Hierarchal Workflows

Example

The Galactic Plane workflow is a Hierarchical workflow of many Montage workflows. For details, see Workflow
of Workflows.

Optimizing Data Transfers
Issue: When it comes to data transfers, Pegasus ships with a default configuration which is trying to strike a balance
between performance and aggressiveness. We obviously want data transfers to be as quick as possibly, but we also
do not want our transfers to overwhelm data services and systems.

Solution: The default configuration consists of a combination of the maximum number of transfer jobs per level in
the workflow, and how many threads such a pegasus-transfer job can spawn.

Information on how to control the number of stagein and stageout jobs can be found in the Data Movement Nodes
section.

How to control the number of threads pegasus-transfer can use depends on if you want to control standard
transfer jobs, or PegasusLite. For the former, see the pegasus.transfer.threads property, and for the latter the
pegasus.transfer.lite.threads property.

Optimizing Workflows for
Efficiency and Scalability

154

Job Throttling
Issue: For large workflows you may want to control the number of jobs released by DAGMan in local condor queue,
or number of remote jobs submitted.

Solution: HTCondor DAGMan has knobs that can be tuned at a per workflow level to control it's behavior. These
knobs control how it interacts with the local HTCondor Schedd to which it submits jobs that are ready to run in a
particular DAG. These knobs are exposed as DAGMan profiles (maxidle, maxjobs, maxpre and maxpost) that you
can set in your properties files.

Table 10.3. Useful dagman Commands that can be specified in the properties file.

Property Key Description

Property Key: dagman.maxpre
Profile Key: MAXPRE
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of PRE scripts within the DAG
that may be running at one time

Property Key: dagman.maxpost
Profile Key: MAXPOST
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of POST scripts within the
DAG that may be running at one time

Property Key: dagman.maxjobs
Profile Key: MAXJOBS
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

Property Key: dagman.maxidle
Profile Key: MAXIDLE
Scope : Properties
Since : 2.0
Type : String

Sets the maximum number of idle jobs allowed before
HTCondor DAGMan stops submitting more jobs. Once
idle jobs start to run, HTCondor DAGMan will resume
submitting jobs. If the option is omitted, the number of
idle jobs is unlimited.

Property Key: dagman.[CATEGORY-NAME].maxjobs
Profile Key: [CATEGORY-NAME].MAXJOBS
Scope : Properties
Since : 2.0
Type : String

is the value of maxjobs for a particular category. Users can
associate different categories to the jobs at a per job basis.
However, the value of a dagman knob for a category can
only be specified at a per workflow basis in the properties.

Property Key: dagman.post.scope
Profile Key: POST.SCOPE
Scope : Properties
Since : 2.0
Type : String

scope for the postscripts.

1. If set to all , means each job in the workflow will have
a postscript associated with it.

2. If set to none , means no job has postscript associated
with it. None mode should be used if you are running
vanilla / standard/ local universe jobs, as in those cas-
es Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job is the replica registration job.

Within a single workflow, you can also control the number of jobs submitted per type (or category) of
jobs. To associate categories, you needs to associate dagman profile key named category with the jobs and
specify the property dagman.[CATEGORY-NAME].* in the properties file. More information about HTCondor
DAGMan categories can be found in the HTCondor Documentation [http://research.cs.wisc.edu/htcondor/manu-
al/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000].

http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000

Optimizing Workflows for
Efficiency and Scalability

155

HTCondor also exposes useful configuration parameters that can be specified in it's configuration file
(condor_config_val -conf will list the condor configuration files), to control job submission across workflows. Some
of the useful parameters that you may want to tune are

Table 10.4. Useful HTCondor Job Throttling Configuration Parameters

HTCondor Configuration Parameter Description

Parameter Name: START_LOCAL_UNIVERSE
Sample Value : TotalLocalJobsRunning < 20

Most of the pegauss added auxillary jobs (createdir,
cleanup, registration and data cleanup) run in the local
universe on the submit host. If you have a lot of workflows
running, HTCondor may try to start too many local uni-
verse jobs, that may bring down your submit host. This
global parameter is used to configure condor to not launch
too many local universe jobs.

Parameter Name: GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE
Sample Value : Integer

For grid jobs of type gt2, limits the number of globus-
job-manager processes that the condor_gridmanager lets
run at a time on the remote head node. Allowing too
many globus-job-managers to run causes severe load on
the head note, possibly making it non-functional. Usually
the default value in htcondor (as of version 8.3.5) is 10.

This parameter is useful when you are doing remote job
submissions using HTCondor-G.

Parameter Name: GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE
Sample Value : Integer

An integer value that limits the number of jobs that a
condor_gridmanager daemon will submit to a resource. A
comma-separated list of pairs that follows this integer lim-
it will specify limits for specific remote resources. Each
pair is a host name and the job limit for that host. Consider
the example

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE =
 200, foo.edu, 50,
 bar.com, 100.

In this example, all resources have a job limit of 200,
except foo.edu, which has a limit of 50, and bar.com,
which has a limit of 100. Limits specific to grid types
can be set by appending the name of the grid type
to the configuration variable name, as the example
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_CREAM
= 300 In this example, the job limit for all CREAM re-
sources is 300. Defaults to 1000 (as of version 8.3.5).

This parameter is useful when you are doing remote job
submissions using HTCondor-G.

Job Throttling Across Workflows
Issue: DAGMan throttling knobs are per workflow, and don't work across workflows. Is there any way to control
different types of jobs run at a time across workflows?

Solution: While not possible in all cases, it is possible to throttle different types of jobs across workflows if you
configure the jobs to run in vanilla universe by leverage HTCondor concurrency limits [http://research.cs.wisc.edu/
htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000]. Most of the Pegasus generated
jobs (data transfer jobs and auxillary jobs such as create dir, cleanup and registration) execute in local universe where
concurrency limits don't work. To use this you need to do the following

1. Get the local universe jobs to run locally in vanilla universe. You can do this by associating condor profiles universe
and requirements in the site catalog for local site or individually in the transformation catalog for each pegasus
executable. Here is an example local site catalog entry.

http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000

Optimizing Workflows for
Efficiency and Scalability

156

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/shared-scratch/local">
 <file-server operation="all" url="file:///shared-scratch/local"/>
 </directory>
 <directory type="local-storage" path="/storage/local">
 <file-server operation="all" url="file:///storage/local"/>
 </directory>

 <!-- keys to make jobs scheduled to local site run on local site in vanilla universe -->
 <profile namespace="condor" key="universe">vanilla</profile>
 <profile namespace="condor" key="requirements">(Machine=="submit.example.com")</profile>
 </site>

Replace the Machine value in requirements with the hostname of your submit host.

2. Copy condor_config.pegasus file from share/pegasus/htcondor directory to your condor config.d directory.

Starting Pegasus 4.5.1 release, the follow values for concurrency limits is associated with different types of jobs
Pegasus creates.

Table 10.5. Pegasus Job Types To Condor Concurrency Limits

Pegasus Job Type HTCondor Concurrency Limit Compatible with dis-
tributed condor_config.pegasus

Data Stagein Job pegasus_transfer.stagein

Data Stageout Job pegasus_transfer.stageout

Inter Site Data Transfer Job pegasus_transfer.inter

Worker Pacakge Staging Job pegasus_transfer.worker

Create Directory Job pegasus_auxillary.createdir

Data Cleanup Job pegasus_auxillary.cleanup

Replica Registration Job pegasus_auxillary.registration

Set XBit Job pegasus_auxillary.chmod

User Compute Job pegasus_compute

Note

It is not recommended to set limit for compute jobs unless you know what you are doing.

157

Chapter 11. Pegasus Service
Service Administration

Service Configuration
Create a file called service.py in $HOME/.pegasus/ OR modify the lib/pegasus/python/Pegasus/service/defaults.py
file. The servuce can be configured using the properties described below.

Table 11.1. Pegasus Service Configuration Options

Property Default Value Description

SERVER_HOST 127.0.0.1 SERVER_HOST specifies the host-
name/network interface on which the
service listens for requests.

SERVER_PORT 5000 SERVER_PORT specifies the port
number on which the service listens
for requests.

CERTIFICATE None SSL certificate file used to encrypt
sessions. If no certificate, key files are
provided the service will generate and
use self-signed certificates.

PRIVATE_KEY None SSL key file used to encrypt connec-
tions. If no certificate, key files are
provided the service will generate and
use self-signed certificates.

AUTHENTICATION PAMAuthentication By default the service uses PAM au-
thentication i.e. When prompted for a
username and password users can use
the credentials that they use to login to
the machine. Users can specify NoAu-
thentication to disable username/pass-
word prompt.

ADMIN_USERS None ADMIN_USERS can be used to
specify which users have the abil-
ity to access other users workflow
info. If ADMIN_USERS is None,
False, or '' then users can only ac-
cess their own workflow informa-
tion. If ADMIN_USERS is '*' then all
users are admin users and can access
everyones workflow information. If
ADMIN_USERS = {'u1', .., 'un'} OR
['u1', .., 'un'] then only users u1, .., un
can access other users workflow infor-
mation.

PROCESS_SWITCHING True File created by running Pegasus
workflows have permissions as per
user configuration. So one user
migt not be able to view work-
flow information of other users.
Setting PROCESS_SWITCHING to
True makes the service change the
process UID to the UID of the user

Pegasus Service

158

Property Default Value Description

whose information is being request-
ed. pegasus-service must be started as
root for PROCESS_SWITCHING to
work. PROCESS_SWITCHING can
be set to False.

USERNAME '' The username which pegasus-em
client uses to connect to the pega-
sus-em server.

PASSWORD '' The password which pegasus-em
client uses to connect to the pega-
sus-em server.

All clients that connect to the web API will require the USERNAME and PASSWORD settings in the configuration
file.

Running the Service
Pegasus Service can be started using the pegasus-service command as follows

$ pegasus-service

By default, the server will start on https://localhost:5000 [http://localhost:5000]. You can set the host and port in the
configuration file OR pass it as a command line switch to pegasus-service as follows.

$ pegasus-service --hostname <SERVER_HOSTNAME> --port <SERVER_PORT>

Dashboard
The dashboard is automatically started when pegasus-service command is executed.

Running Pegasus Service under Apache HTTPD
Prerequisites Apache HTTPD, mod_ssl, and mod_wsgi to be installed.

To run pegasus-service under Apache HTTPD

1. Copy file share/pegasus/service/pegasus-service.wsgi to some other directory. We will refer to this directory as
<WSGI_FILE_DIR>.

Configure pegasus service by setting the AUTHENTICATION, PROCESS_SWITCHING, and/or
ADMIN_USERS properties in the <WSGI_FILE_DIR>/pegasus-service.wsgi file as desired.

2. Copy file share/pegasus/service/pegasus-service-httpd.conf to your Apache conf directory.

a. Replace PEGASUS_PYTHON_EXTERNALS with absolute path to pegasus python externals directory. Exe-
cute pegasus-config --python-externals to get this path

b. Replace HOSTNAME with the hostname on which the server should listen for requests.

c. Replace DOCUMENT_ROOT with <WSGI_FILE_DIR>

d. Replace USER_NAME with the username as which the WSGIDaemonProcess should start

e. Replace GROUP_NAME with the groupname as which the WSGIDaemonProcess should start

f. Replace PATH_TO_PEGASUS_SERVICE_WSGI_FILE with <WSGI_FILE_DIR>/pegasus-service.wsgi

g. Replace PATH_TO_SSL_CERT with absolute location of your SSL certificate file

h. Replace PATH_TO_SSL_KEY with absolute location of your SSL private key file

http://localhost:5000
http://localhost:5000

Pegasus Service

159

For additional mod_wsgi configuration refer to https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives

Ensemble Manager
The ensemble manager is a service that manages collections of workflows called ensembles. The ensemble manager
is useful when you have a set of workflows you need to run over a long period of time. It can throttle the number
of concurrent planning and running workflows, and plan and run workflows in priority order. A typical use-case is a
user with 100 workflows to run, who needs no more than one to be planned at a time, and needs no more than two
to be running concurrently.

The ensemble manager also allows workflows to be submitted and monitored programmatically through its RESTful
interface, which makes it an ideal platform for integrating workflows into larger applications such as science gateways
and portals.

To start the ensemble manager server, run:

$ pegasus-em server

Once the ensemble manager is running, you can create an ensemble with:

$ pegasus-em create myruns

where "myruns" is the name of the ensemble.

Then you can submit a workflow to the ensemble by running:

$ pegasus-em submit myruns.run1 ./plan.sh run1.dax

Where the name of the ensemble is "myruns", the name of the workflow is "run1", and "./plan.sh run1.dax" is the
command for planning the workflow from the current working directory. The planning command should either be a
direct invocation of pegasus-plan, or a shell script that calls pegasus-plan. If a shell script is used, then it should not
redirect the output of pegasus-plan, because the ensemble manager reads the output to determine whether pegasus-plan
succeeded and what is the submit directory of the workflow.

To check the status of your ensembles run:

$ pegasus-em ensembles

To check the status of your workflows run:

$ pegasus-em workflows myruns

To check the status of a specific workflow, run:

$ pegasus-em status myruns.run1

To help with debugging, the ensemble manager has an analyze command that emits diagnostic information about a
workflow, including the output of pegasus-analyzer, if possible. To analyze a workflow, run:

$ pegasus-em analyze myruns.run1

Ensembles can be paused to prevent workflows from being planned and executed. Workflows in a paused ensemble
will continue to run, but no new workflows will be planned or executed. To pause an ensemble, run:

$ pegasus-em pause myruns

Paused ensembles can be reactivated by running:

$ pegasus-em activate myruns

A workflow might fail during planning. In that case, run the analyze command to examine the planner output, make
the necessary corrections to the workflow configuration, and replan the workflow by running:

$ pegasus-em replan myruns.run1

A workflow might also fail during execution. In that case, run the analyze command to identify the issue, correct the
problem, and rerun the workflow by running:

https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives

Pegasus Service

160

$ pegasus-em rerun myruns.run1

Workflows in an ensemble can have different priorities. These priorities are used to determine the order in which
workflows in the ensemble will be planned and executed. Priorities are specified using the '-p' option of the submit
command. They can also be modified after a workflow has been submitted by running:

$ pegasus-em priority myruns.run1 -p 10

where 10 is the desired priority. Higher values have higher priority, the default is 0, and negative values are allowed.

Each ensemble has a pair of throttles that limit the number of workflows that are concurrently planning and execut-
ing. These throttles are called max_planning and max_running. Max planning limits the number of workflows in the
ensemble that can be planned concurrently. Max running limits the number of workflows in the ensemble that can be
running concurrently. These throttles are useful to limit the impact of planning on the memory usage of the submit
host, and the load on the submit host and remote site caused by concurrently running workflows. The throttles can be
specified with the '-R' and '-P' options of the create command. They can also be updated using the config command:

$ pegasus-em config myruns.run1 -P 1 -R 5

161

Chapter 12. Configuration
Pegasus has configuration options to configure

1. the behaviour of an individual job via profiles

2. the behavior of the whole system via properties

For job level configuration (such as what environment a job is set with), the Pegasus Workflow Mapper uses the
concept of profiles. Profiles encapsulate configurations for various aspects of dealing with the Grid infrastructure.
They provide an abstract yet uniform interface to specify configuration options for various layers from planner/map-
per behavior to remote environment settings. At various stages during the mapping process, profiles may be added
associated with the job. The system supports five diffferent namespaces, with each namespace refers to a different
aspect of a job's runtime settings. A profile's representation in the executable workflow (e.g. the Condor submit files)
depends on its namespace. Pegasus supports the following Namespaces for profiles:

• env permits remote environment variables to be set.

• globus sets Globus RSL parameters.

• condor sets Condor configuration parameters for the submit file.

• dagman introduces Condor DAGMan configuration parameters.

• pegasus configures the behaviour of various planner/mapper components.

• hints allows to override site selection behavior of the planner. Can be specified only in the DAX.

Properties are primarily used to configure the behavior of the Pegasus WMS system at a global level. The properties
file is actually a java properties file and follows the same conventions as that to specify the properties.

This chapter describes various types of profiles and properties, levels of priorities for intersecting profiles, and how
to specify profiles in different contexts.

Differences between Profiles and Properties
The main difference between properties and profiles is that profiles eventually get associated at a per job level in the
workflow. On the other hand, properties are a way of configuring and controlling the behavior of the whole system.
While all profiles can be specified in the properties file, not all properties can be used as profiles. This section lists
out the properties supported by Pegasus and if any can be used as a profile, it is clearly indicated.

Profiles

Profile Structure Heading
All profiles are triples comprised of a namespace, a name or key, and a value. The namespace is a simple identifier.
The key has only meaning within its namespace, and it's yet another identifier. There are no constraints on the contents
of a value

Profiles may be represented with different syntaxes in different context. However, each syntax will describe the un-
derlying triple.

Sources for Profiles
Profiles may enter the job-processing stream at various stages. Depending on the requirements and scope a profile is
to apply, profiles can be associated at

• as user property settings.

Configuration

162

• dax level

• in the site catalog

• in the transformation catalog

Unfortunately, a different syntax applies to each level and context. This section shows the different profile sources
and syntaxes. However, at the foundation of each profile lies the triple of namespace, key and value.

User Profiles in Properties

Users can specify all profiles in the properties files where the property name is [namespace].key and value of the
property is the value of the profile.

Namespace can be env|condor|globus|dagman|pegasus

Any profile specified as a property applies to the whole workflow i.e (all jobs in the workflow) unless overridden at
the DAX level , Site Catalog , Transformation Catalog Level.

Some profiles that they can be set in the properties file are listed below

env.JAVA_HOME "/software/bin/java"

condor.periodic_release 5
condor.periodic_remove my_own_expression
condor.stream_error true
condor.stream_output fa

globus.maxwalltime 1000
globus.maxtime 900
globus.maxcputime 10
globus.project test_project
globus.queue main_queue

dagman.post.arguments --test arguments
dagman.retry 4
dagman.post simple_exitcode
dagman.post.path.simple_exitcode /bin/exitcode/exitcode.sh
dagman.post.scope all
dagman.maxpre 12
dagman.priority 13

dagman.bigjobs.maxjobs 1

pegasus.clusters.size 5

pegasus.stagein.clusters 3

Profiles in DAX

The user can associate profiles with logical transformations in DAX. Environment settings required by a job's appli-
cation, or a maximum estimate on the run-time are examples for profiles at this stage.

<job id="ID000001" namespace="asdf" name="preprocess" version="1.0"
 level="3" dv-namespace="voeckler" dv-name="top" dv-version="1.0">
 <argument>-a top -T10 -i <filename file="voeckler.f.a"/>
 -o <filename file="voeckler.f.b1"/>
 <filename file="voeckler.f.b2"/></argument>
 <profile namespace="pegasus" key="walltime">2</profile>
 <profile namespace="pegasus" key="diskspace">1</profile>
 …
</job>

Profiles in Site Catalog

If it becomes necessary to limit the scope of a profile to a single site, these profiles should go into the site catalog.
A profile in the site catalog applies to all jobs and all application run at the site. Commonly, site catalog profiles set
environment settings like the LD_LIBRARY_PATH, or globus rsl parameters like queue and project names.

Configuration

163

Currently, there is no tool to manipulate the site catalog, e.g. by adding profiles. Modifying the site catalog requires
that you load it into your editor.

The XML version of the site catalog uses the following syntax:

<profile namespace="namespace" key="key">value</profile>

<site handle="CCG" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="obelix.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>

 <directory type="shared-scratch" path="/shared-scratch">
 <file-server operation="all" url="gsiftp://headnode.isi.edu/shared-scratch"/>
 </directory>
 <directory type="local-storage" path="/local-storage">
 <file-server operation="all" url="gsiftp://headnode.isi.edu/local-storage"/>
 </directory>
 <profile namespace="pegasus" key="clusters.num">1</profile>
 <profile namespace="env" key="PEGASUS_HOME">/usr</profile>
</site>

Profiles in Transformation Catalog

Some profiles require a narrower scope than the site catalog offers. Some profiles only apply to certain applications
on certain sites, or change with each application and site. Transformation-specific and CPU-specific environment
variables, or job clustering profiles are good candidates. Such profiles are best specified in the transformation catalog.

Profiles associate with a physical transformation and site in the transformation catalog. The Database version of the
transformation catalog also permits the convenience of connecting a transformation with a profile.

The Pegasus tc-client tool is a convenient helper to associate profiles with transformation catalog entries. As benefit,
the user does not have to worry about formats of profiles in the various transformation catalog instances.

tc-client -a -P -E -p /home/shared/executables/analyze -t INSTALLED -r isi_condor -e
 env::GLOBUS_LOCATION=”/home/shared/globus”

The above example adds an environment variable GLOBUS_LOCATION to the application /home/shared/executa-
bles/analyze on site isi_condor. The transformation catalog guide has more details on the usage of the tc-client.

tr example::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 profile env "HELLo" "WORLD"
 profile condor "FOO" "bar"
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "INSTALLED"
 }

 site wind {
 profile env "CPATH" "/usr/cpath"
 profile condor "universe" "condor"
 pfn "file:///path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "STAGEABLE"
 }
}

Most of the users prefer to edit the transformation catalog file directly in the editor.

Configuration

164

Profiles Conflict Resolution
Irrespective of where the profiles are specified, eventually the profiles are associated with jobs. Multiple sources
may specify the same profile for the same job. For instance, DAX may specify an environment variable X. The site
catalog may also specify an environment variable X for the chosen site. The transformation catalog may specify an
environment variable X for the chosen site and application. When the job is concretized, these three conflicts need
to be resolved.

Pegasus defines a priority ordering of profiles. The higher priority takes precedence (overwrites) a profile of a lower
priority.

1. Transformation Catalog Profiles

2. Site Catalog Profiles

3. DAX Profiles

4. Profiles in Properties

Details of Profile Handling
The previous sections omitted some of the finer details for the sake of clarity. To understand some of the constraints
that Pegasus imposes, it is required to look at the way profiles affect jobs.

Details of env Profiles

Profiles in the env namespace are translated to a semicolon-separated list of key-value pairs. The list becomes the
argument for the Condor environment command in the job's submit file.

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)
environment=GLOBUS_LOCATION=/shared/globus;LD_LIBRARY_PATH=/shared/globus/lib;
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor
remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue
##
END OF SUBMIT FILE

Condor-G, in turn, will translate the environment command for any remote job into Globus RSL environment settings,
and append them to any existing RSL syntax it generates. To permit proper mixing, all environment setting should
solely use the env profiles, and none of the Condor nor Globus environment settings.

If kickstart starts a job, it may make use of environment variables in its executable and arguments setting.

Details of globus Profiles

Profiles in the globus Namespaces are translated into a list of paranthesis-enclosed equal-separated key-value pairs.
The list becomes the value for the Condor globusrsl setting in the job's submit file:

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)(queue=fast)(project=nvo)
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor

Configuration

165

remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue
##
END OF SUBMIT FILE

For this reason, Pegasus prohibits the use of the globusrsl key in the condor profile namespace.

The Env Profile Namespace
The env namespace allows users to specify environment variables of remote jobs. Globus transports the environment
variables, and ensure that they are set before the job starts.

The key used in conjunction with an env profile denotes the name of the environment variable. The value of the profile
becomes the value of the remote environment variable.

Grid jobs usually only set a minimum of environment variables by virtue of Globus. You cannot compare the envi-
ronment variables visible from an interactive login with those visible to a grid job. Thus, it often becomes necessary
to set environment variables like LD_LIBRARY_PATH for remote jobs.

If you use any of the Pegasus worker package tools like transfer or the rc-client, it becomes necessary to set
PEGASUS_HOME and GLOBUS_LOCATION even for jobs that run locally

Table 12.1. Useful Environment Settings

Key Attributes Description

Property Key: env.PEGASUS_HOME
Profile Key: PEGASUS_HOME
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

Property Key: env.GLOBUS_LOCATION
Profile Key: GLOBUS_LOCATION
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

Property Key: env.LD_LIBRARY_PATH
Profile Key: LD_LIBRARY_PATH
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Point this to $GLOBUS_LOCATION/lib, except you
cannot use the dollar variable. You must use the full path.
Applies to both, local and remote jobs that use Globus
components and should be usually set in the site catalog
for the sites

Even though Condor and Globus both permit environment variable settings through their profiles, all remote environ-
ment variables must be set through the means of env profiles.

The Globus Profile Namespace
The globus profile namespace encapsulates Globus resource specification language (RSL) instructions. The RSL con-
figures settings and behavior of the remote scheduling system. Some systems require queue name to schedule jobs, a
project name for accounting purposes, or a run-time estimate to schedule jobs. The Globus RSL addresses all these
issues.

A key in the globus namespace denotes the command name of an RSL instruction. The profile value becomes the
RSL value. Even though Globus RSL is typically shown using parentheses around the instruction, the out pair of
parentheses is not necessary in globus profile specifications

Table 2 shows some commonly used RSL instructions. For an authoritative list of all possible RSL instructions refer
to the Globus RSL specification.

Configuration

166

Table 12.2. Useful Globus RSL Instructions

Property Key Description

Property Key: globus.count
Profile Key: count
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the number of times an executable is started.

Property Key: globus.jobtype
Profile Key: jobtype
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

specifies how the job manager should start the remote job.
While Pegasus defaults to single, use mpi when running
MPI jobs.

Property Key: globus.maxcputime
Profile Key: maxcputime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the max CPU time in minutes for a single execution of a
job.

Property Key: globus.maxmemory
Profile Key: maxmemory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum memory in MB required for the job

Property Key: globus.maxtime
Profile Key: maxtime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum time or walltime in minutes for a single ex-
ecution of a job.

Property Key: globus.maxwalltime
Profile Key: maxwalltime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum walltime in minutes for a single execution
of a job.

Property Key: globus.minmemory
Profile Key: minmemory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the minumum amount of memory required for this job

Property Key: globus.project
Profile Key: project
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

associates an account with a job at the remote end.

Property Key: globus.queue
Profile Key: queue
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the remote queue in which the job should be run. Used
when remote scheduler is PBS that supports queues.

Pegasus prevents the user from specifying certain RSL instructions as globus profiles, because they are either auto-
matically generated or can be overridden through some different means. For instance, if you need to specify remote
environment settings, do not use the environment key in the globus profiles. Use one or more env profiles instead.

Table 12.3. RSL Instructions that are not permissible

Key Reason for Prohibition

Configuration

167

arguments you specify arguments in the arguments section for a job
in the DAX

directory the site catalog and properties determine which directory
a job will run in.

environment use multiple env profiles instead

executable the physical executable to be used is specified in the trans-
formation catalog and is also dependant on the gridstart
module being used. If you are launching jobs via kickstart
then the executable created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

stdin you specify in the DAX for the job

stdout you specify in the DAX for the job

stderr you specify in the DAX for the job

The Condor Profile Namespace

The Condor submit file controls every detail how and where a job is run. The condor profiles permit to add or overwrite
instructions in the Condor submit file.

The condor namespace directly sets commands in the Condor submit file for a job the profile applies to. Keys in
the condor profile namespace denote the name of the Condor command. The profile value becomes the command's
argument. All condor profiles are translated into key=value lines in the Condor submit file

Some of the common condor commands that a user may need to specify are listed below. For an authoritative list
refer to the online condor documentation. Note: Pegasus Workflow Planner/Mapper by default specify a lot of condor
commands in the submit files depending upon the job, and where it is being run.

Table 12.4. Useful Condor Commands

Property Key Description

Property Key: condor.universe
Profile Key: universe
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Pegasus defaults to either globus or scheduler universes.
Set to standard for compute jobs that require standard uni-
verse. Set to vanilla to run natively in a condor pool, or to
run on resources grabbed via condor glidein.

Property Key: condor.periodic_release
Profile Key: periodic_release
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the number of times job is released back to the queue
if it goes to HOLD, e.g. due to Globus errors. Pegasus
defaults to 3.

Property Key: condor.periodic_remove
Profile Key: periodic_remove
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the number of times a job is allowed to get into HOLD
state before being removed from the queue. Pegasus de-
faults to 3.

Property Key: condor.filesystemdomain
Profile Key: filesystemdomain
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Useful for Condor glide-ins to pin a job to a remote site.

Property Key: condor.stream_error
Profile Key: stream_error
Scope : TC, SC, DAX, Properties

boolean to turn on the streaming of the stderr of the remote
job back to submit host.

Configuration

168

Since : 2.0
Type : Boolean

Property Key: condor.stream_output
Profile Key: stream_output
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

boolean to turn on the streaming of the stdout of the re-
mote job back to submit host.

Property Key: condor.priority
Profile Key: priority
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

integer value to assign the priority of a job. Higher value
means higher priority. The priorities are only applied for
vanilla / standard/ local universe jobs. Determines the or-
der in which a users own jobs are executed.

Property Key: condor.request_cpus
Profile Key: request_cpus
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Number of CPU's a job requires.

Property Key: condor.request_memory
Profile Key: request_memory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Amount of memory a job requires.

Property Key: condor.request_disk
Profile Key: request_disk
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Amount of disk a job requires.

Other useful condor keys, that advanced users may find useful and can be set by profiles are

1. should_transfer_files

2. transfer_output

3. transfer_error

4. whentotransferoutput

5. requirements

6. rank

Pegasus prevents the user from specifying certain Condor commands in condor profiles, because they are automatically
generated or can be overridden through some different means. Table 5 shows prohibited Condor commands.

Table 12.5. Table 5: Condor commands prohibited in condor profiles

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
in the DAX

environment use multiple env profiles instead

executable the physical executable to be used is specified in the trans-
formation catalog and is also dependant on the gridstart
module being used. If you are launching jobs via kickstart
then the executable created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

Configuration

169

The Dagman Profile Namespace
DAGMan is Condor's workflow manager. While planners generate most of DAGMan's configuration, it is possible to
tweak certain job-related characteristics using dagman profiles. A dagman profile can be used to specify a DAGMan
pre- or post-script.

Pre- and post-scripts execute on the submit machine. Both inherit the environment settings from the submit host when
pegasus-submit-dag or pegasus-run is invoked.

By default, kickstart launches all jobs except standard universe and MPI jobs. Kickstart tracks the execution of the job,
and returns usage statistics for the job. A DAGMan post-script starts the Pegasus application exitcode to determine,
if the job succeeded. DAGMan receives the success indication as exit status from exitcode.

If you need to run your own post-script, you have to take over the job success parsing. The planner is set up to pass
the file name of the remote job's stdout, usually the output from kickstart, as sole argument to the post-script.

Table 6 shows the keys in the dagman profile domain that are understood by Pegasus and can be associated at a per
job basis.

Table 12.6. Useful dagman Commands that can be associated at a per job basis

Property Key Description

Property Key: dagman.pre
Profile Key: PRE
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the path to the pre-script. DAGMan executes the pre-
script before it runs the job.

Property Key: dagman.pre.arguments
Profile Key: PRE.ARGUMENTS
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

are command-line arguments for the pre-script, if any.

Property Key: dagman.post
Profile Key: POST
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the postscript type/mode that a user wants to associate
with a job.

1. pegasus-exitcode - pegasus will by default associate
this postscript with all jobs launched via kickstart, as
long the POST.SCOPE value is not set to NONE.

2. none -means that no postscript is generated for the
jobs. This is useful for MPI jobs that are not launched
via kickstart currently.

3. any legal identifier - Any other identifier of the form
([_A-Za-z][_A-Za-z0-9]*), than one of the 2 reserved
keywords above, signifies a user postscript. This al-
lows the user to specify their own postscript for the
jobs in the workflow. The path to the postscript can be
specified by the dagman profile POST.PATH.[value]
where [value] is this legal identifier specified. The user
postscript is passed the name of the .out file of the job
as the last argument on the command line.

For e.g. if the following dagman profiles were associ-
ated with a job X

a. POST with value user_script /bin/user_postscript

b. POST.PATH.user_script with value /path/to/user/
script

Configuration

170

c. POST.ARGUMENTS with value -verbose

then the following postscript will be associated with
the job X in the .dag file

/path/to/user/script -verbose X.out where X.out con-
tains the stdout of the job X

Property Key: dagman.post.path.[value of dagman.post]
Profile Key: post.path.[value of dagman.post]
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the path to the post script on the submit host.

Property Key: dagman.post.arguments
Profile Key: POST.ARGUMENTS
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

are the command line arguments for the post script, if any.

Property Key: dagman.retry
Profile Key: RETRY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer
Default : 1

is the number of times DAGMan retries the full job cycle
from pre-script through post-script, if failure was detect-
ed.

Property Key: dagman.category
Profile Key: CATEGORY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the DAGMan category the job belongs to.

Property Key: dagman.priority
Profile Key: PRIORITY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the priority to apply to a job. DAGMan uses this to select
what jobs to release when MAXJOBS is enforced for the
DAG.

Property Key: dagman.abort-dag-on
Profile Key: ABORT-DAG-ON
Scope : TC, DAX,
Since : 4.5
Type : String

The ABORT-DAG-ON key word provides a way to abort
the entire DAG if a given node returns a specific exit code
(AbortExitValue). The syntax for the value of the key is
AbortExitValue [RETURN DAGReturnValue] . When a
DAG aborts, by default it exits with the node return val-
ue that caused the abort. This can be changed by using
the optional RETURN key word along with specifying the
desired DAGReturnValue

Table 7 shows the keys in the dagman profile domain that are understood by Pegasus and can be used to apply to the
whole workflow. These are used to control DAGMan's behavior at the workflow level, and are recommended to be
specified in the properties file.

Table 12.7. Useful dagman Commands that can be specified in the properties file.

Property Key Description

Property Key: dagman.maxpre
Profile Key: MAXPRE
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of PRE scripts within the DAG
that may be running at one time

Property Key: dagman.maxpost
Profile Key: MAXPOST

sets the maximum number of POST scripts within the
DAG that may be running at one time

Configuration

171

Scope : Properties
Since : 2.0
Type : String

Property Key: dagman.maxjobs
Profile Key: MAXJOBS
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

Property Key: dagman.maxidle
Profile Key: MAXIDLE
Scope : Properties
Since : 2.0
Type : String

Sets the maximum number of idle jobs allowed before
HTCondor DAGMan stops submitting more jobs. Once
idle jobs start to run, HTCondor DAGMan will resume
submitting jobs. If the option is omitted, the number of
idle jobs is unlimited.

Property Key: dagman.[CATEGORY-NAME].maxjobs
Profile Key: [CATEGORY-NAME].MAXJOBS
Scope : Properties
Since : 2.0
Type : String

is the value of maxjobs for a particular category. Users can
associate different categories to the jobs at a per job basis.
However, the value of a dagman knob for a category can
only be specified at a per workflow basis in the properties.

Property Key: dagman.post.scope
Profile Key: POST.SCOPE
Scope : Properties
Since : 2.0
Type : String

scope for the postscripts.

1. If set to all , means each job in the workflow will have
a postscript associated with it.

2. If set to none , means no job has postscript associated
with it. None mode should be used if you are running
vanilla / standard/ local universe jobs, as in those cas-
es Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job is the replica registration job.

The Pegasus Profile Namespace
The pegasus profiles allow users to configure extra options to the Pegasus Workflow Planner that can be applied
selectively to a job or a group of jobs. Site selectors may use a sub-set of pegasus profiles for their decision-making.

Table 8 shows some of the useful configuration option Pegasus understands.

Table 12.8. Useful pegasus Profiles.

Property Key Description

Property Key: pegasus.clusters.num
Profile Key: clusters.num
Scope : TC, SC, DAX, Properties
Since : 3.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This option determines the total number of
clusters per level. Jobs are evenly spread across clusters.

Property Key: pegasus.clusters.size
Profile Key: clusters.size
Scope : TC, SC, DAX, Properties
Since : 3.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This profile determines the number of jobs in
each cluster. The number of clusters depends on the total
number of jobs on the level.

Property Key: pegasus.cores
Profile Key: cores
Scope : TC, SC, DAX, Properties
Since : 4.0

The number of cores, associated with the job. This is sole-
ly used for accounting purposes in the database while gen-
erating statistics. It corresponds to the multiplier_factor in
the job_instance table described here.

Configuration

172

Type : Integer

Property Key: pegasus.runtime
Profile Key: runtime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the expected runtime of
a job.

Property Key: clusters.maxruntime
Profile Key: pegasus.clusters.maxruntime
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the maximum runtime
of a job.

Property Key: pegasus.job.aggregator
Profile Key: job.aggregator
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

Indicates the clustering executable that is used to run the
clustered job on the remote site.

Property Key: pegasus.gridstart
Profile Key: gridstart
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Determines the executable for launching a job. This cov-
ers both tasks (jobs specifed by the user in the DAX) and
additional jobs added by Pegasus during the planning op-
ertation. Possible values are Kickstart | NoGridStart |
PegasusLite | Distribute at the moment.

Note

This profile should only be set by users if you
know what you are doing. Otherwise, let Pega-
sus do the right thing based on your configura-
tion.

Kickstart By default, all jobs executed are
launched using a lightweight C exe-
cutable called pegasus-kickstart. This
generates valuable runtime prove-
nance information for the job as it is
executed on a remote node. This infor-
mation serves as the basis for the mon-
itoring and debugging capabilities pro-
vided by Pegasus.

NoGridStart This explicity disables the wrapping of
the jobs with pegasus-kickstart. This
is internally used by the planner to
launch dax jobs directly. If this is set,
then the information populated in the
monitording database is on the basis of
what is recorded in the DAGMan out
file.

PegasusLite This value is automatically asso-
ciated by the Planner whenever
the job runs in either nonsharedfs
or condorio mode. The proper-
ty pegasus.data.configuration decides
whether a job is launched via Pega-
susLite or not. PegasusLite is a light-
weight Pegasus wrapper generated for
each job that allows a job to run in
a nonshared file system environment

Configuration

173

and is responsible for staging in the in-
put data and staging out the output da-
ta back to a remote staging site for the
job.

Distribute This wrapper is a HubZero specfiic
wrapper that allows compute jobs that
are scheduled for a local PBS cluster
to be run locally on the submit host.
The jobs are wrapped with a distribute
wrapper that is responsible for doing
the qsub and tracking of the status of
the jobs in the PBS cluster.

Property Key: pegasus.gridstart.path
Profile Key: gridstart.path
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : file path

Sets the path to the gridstart . This profile is best set in the
Site Catalog.

Property Key: pegasus.gridstart.arguments
Profile Key: gridstart.arguments
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Sets the arguments with which GridStart is used to launch
a job on the remote site.

Property Key: pegasus.stagein.clusters
Profile Key: stagein.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, which is the Default Refiner used in Pe-
gasus. This profile is best set in the Site Catalog or in the
Properties file

Property Key: pegasus.stagein.local.clusters
Profile Key: stagein.local.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.stagein.remote.clusters
Profile Key: stagein.remote.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it. This
profile is best set in the Site Catalog or in the Properties
file

Property Key: pegasus.stageout.clusters
Profile Key: stageout.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow. This is used to configure the Bundle
Transfer Refiner, , which is the Default Refiner used in
Pegasus.

Property Key: pegasus.stageout.local.clusters
Profile Key: stageout.local.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and are
responsible for staging data from a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.stageout.remote.clusters
Profile Key: stageout.remote.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on the
remote site and are responsible for staging data from it.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.group
Profile Key: group

Tags a job with an arbitrary group identifier. The group
site selector makes use of the tag.

Configuration

174

Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Property Key: pegasus.change.dir
Profile Key: change.dir
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

If true, tells kickstart to change into the remote working
directory. Kickstart itself is executed in whichever direc-
tory the remote scheduling system chose for the job.

Property Key: pegasus.create.dir
Profile Key: create.dir
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

If true, tells kickstart to create the the remote working di-
rectory before changing into the remote working directo-
ry. Kickstart itself is executed in whichever directory the
remote scheduling system chose for the job.

Property Key: pegasus.transfer.proxy
Profile Key: transfer.proxy
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

If true, tells Pegasus to explicitly transfer the proxy for
transfer jobs to the remote site. This is useful, when you
want to use a full proxy at the remote end, instead of the
limited proxy that is transferred by CondorG.

Property Key: pegasus.style
Profile Key: style
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Sets the condor submit file style. If set to globus, submit
file generated refers to CondorG job submissions. If set
to condor, submit file generated refers to direct Condor
submission to the local Condor pool. It applies for glidein,
where nodes from remote grid sites are glided into the lo-
cal condor pool. The default style that is applied is globus.

Property Key: pegasus.pmc_request_memory
Profile Key: pmc_request_memory
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -m option for pegasus-mpi-clus-
ter. It specifies the amount of memory in MB that a job re-
quires. This profile is usually set in the DAX for each job.

Property Key: pegasus.pmc_request_cpus
Profile Key: pmc_request_cpus
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profile is usually set in the DAX for each job.

Property Key: pegasus.pmc_priority
Profile Key: pmc_priority
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -p option for pegasus-mpi-clus-
ter. It specifies the priority for a job . This profile is usu-
ally set in the DAX for each job. Negative values are al-
lowed for priorities.

Property Key: pegasus.pmc_task_arguments
Profile Key: pmc_task_arguments
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : String

The key is used to pass any extra arguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for the task in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Property Key: pegasus.exitcode.failuremsg
Profile Key: exitcode.failuremsg
Scope : TC, SC, DAX, Properties
Since : 4.4
Type : String

The message string that pegasus-exitcode searches for in
the stdout and stderr of the job to flag failures.

Property Key: pegasus.exitcode.successmsg
Profile Key: exitcode.successmsg
Scope : TC, SC, DAX, Properties
Since : 4.4
Type : String

The message string that pegasus-exitcode searches for in
the stdout and stderr of the job to determine whether a
job logged it's success message or not. Note this value is
used to check for whether a job failed or not i.e if this pro-
file is specified, and pegasus-exitcode DOES NOT find

Configuration

175

the string in the job stdout or stderr, the job is flagged as
failed. The complete rules for determining failure are de-
scribed in the man page for pegasus-exitcode.

Property Key: pegasus.checkpoint.time
Profile Key: checkpoint_time
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : Integer

the expected time in minutes for a job after which it should
be sent a TERM signal to generate a job checkpoint file

Property Key: pegasus.maxwalltime
Profile Key: maxwalltime
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : Integer

the maximum walltime in minutes for a single execution
of a job.

Property Key: pegasus.glite.arguments
Profile Key: glite.arguments
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : String

specifies the extra arguments that must appear in the local
PBS generated script for a job, when running workflows
on a local cluster with submissions through Glite. This is
useful when you want to pass through special options to
underlying LRMS such as PBS e.g. you can set value -
l walltime=01:23:45 -l nodes=2 to specify your job's re-
source requirements.

The Hints Profile Namespace

The hints namespace allows users to override the behavior of the Workflow Mapper during site selection. This gives
you finer grained control over where a job executes and what executable it refers to. The hints namespace keys
(execution.site and pfn) can only be specified in the DAX. It is important to note that these particular keys once
specified in the DAX, cannot be overriden like other profiles.

Table 12.9. Useful Hints Profile Keys

Key Attributes Description

Property Key: N/A
Profile Key: execution.site
Scope : DAX
Since : 4.5
Type : String

the execution site where a job should be executed.

Property Key: N/A
Profile Key: pfn
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : String

the physical file name to the main executable that a job
refers to. Overrides any entries specified in the transfor-
mation catalog.

Property Key: hints.grid.jobtype
Profile Key: grid.jobtype
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : String

applicable when submitting to remote sites via GRAM.
The site catalog allows you to associate multiple job-
managers with a GRAM site, for different type of jobs
[compute, auxillary, transfer, register, cleanup] that Pe-
gasus generates in the executable workflow. This pro-
file is usually used to ensure that a compute job exe-
cutes on another job manager. For example, if in site cata-
log you have headnode.example.com/jobmanager-condor
for compute jobs, and headnode.example.com/jobmanag-
er-fork for auxillary jobs. Associating this profile and set-
ting value to auxillary for a compute job, will cause the
compute job to run on the fork jobmanager instead of the
condor jobmanager.

Configuration

176

Properties
Properties are primarily used to configure the behavior of the Pegasus Workflow Planner at a global level. The prop-
erties file is actually a java properties file and follows the same conventions as that to specify the properties.

Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

Local Directories Properties
This section describes the GNU directory structure conventions. GNU distinguishes between architecture independent
and thus sharable directories, and directories with data specific to a platform, and thus often local. It also distinguishes
between frequently modified data and rarely changing data. These two axis form a space of four distinct directories.

Table 12.10. Local Directories Related Properties

Key Attributes Description

Property Key: pegasus.home.datadir
Profile Key: N/A
Scope : Properties

The datadir directory contains broadly visible and possi-
bly exported configuration files that rarely change. This
directory is currently unused.

Configuration

177

Since : 2.0
Type : file path
Default : ${pegasus.home}/share

Property Key: pegasus.home.sysconfdir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/etc

The system configuration directory contains configura-
tion files that are specific to the machine or installation,
and that rarely change. This is the directory where the
XML schema definition copies are stored, and where the
base pool configuration file is stored.

Property Key: pegasus.home.sharedstatedir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/com

Frequently changing files that are broadly visible are
stored in the shared state directory. This is currently un-
used.

Property Key: pegasus.home.localstatedir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/var

Frequently changing files that are specific to a machine
and/or installation are stored in the local state directory.
This is currently unused

Property Key: pegasus.dir.submit.logs
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : (no default)

This property can be used to specify the directory where
the condor logs for the workflow should go to. By default,
starting 4.2.1 release, Pegasus will setup the log to be in
the workflow submit directory. This can create problems,
in case users submit directories are on NSF.

This is done to ensure that the logs are created in a local
directory even though the submit directory maybe on NFS

Site Directories Properties
The site directory properties modify the behavior of remotely run jobs. In rare occasions, it may also pertain to locally
run compute jobs.

Table 12.11. Site Directories Related Properties

Key Attributes Description

Property Key: pegasus.dir.useTimestamp
Profile Key: N/A
Scope : Properties
Since : 2.1
Type : Boolean
Default : false

While creating the submit directory, Pegasus employs a
run numbering scheme. Users can use this Boolean prop-
erty to use a timestamp based numbering scheme instead
of the runxxxx scheme.

Property Key: pegasus.dir.exec
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : (no default)

This property modifies the remote location work directory
in which all your jobs will run. If the path is relative then
it is appended to the work directory (associated with the
site), as specified in the site catalog. If the path is absolute
then it overrides the work directory specified in the site
catalog.

Property Key: pegasus.dir.storage.mapper
Profile Key: N/A
Scope : Properties
Since : 4.3
Type : Enumeration
Values : Flat|Fixed|Hashed|Replica
Default : Flat

This property modifies determines how the output files
are mapped on the output site storage location.

In order to preserve backward compatibility, setting the
boolean property pegasus.dir.storage.deep results in the
Hashed output mapper to be loaded, if no output mapper
property is specified.

Configuration

178

Flat By default, Pegasus will place the output
files in the storage directory specified in the
site catalog for the output site.

Fixed Using this mapper, users can specify an ex-
ternally accesible url to the storage directory
in their properties file. The following prop-
erty needs to be set.

pegasus.dir.storage.mapper.fixed.url
 an externally accessible URL to the
storage directory on the output site
e.g. gsiftp://outputs.isi.edu/shared/
outputs

Note: For hierarchal workflows, the above
property needs to be set separately for each
dax job, if you want the sub workflow out-
puts to goto a different directory.

Hashed This mapper results in the creation of a deep
directory structure on the output site, while
populating the results. The base directory on
the remote end is determined from the site
catalog. Depending on the number of files
being staged to the remote site a Hashed File
Structure is created that ensures that only
256 files reside in one directory. To create
this directory structure on the storage site,
Pegasus relies on the directory creation fea-
ture of the Grid FTP server, which appeared
in globus 4.0.x

Replica This mapper determines the path for an out-
put file on the output site by querying an
output replica catalog. The output site is
one that is passed on the command line.
The output replica catalog can be configured
by specifiing the properties with the pre-
fix pegasus.dir.storage.replica. By default, a
Regex File based backend is assumed unless
overridden. For example

pegasus.dir.storage.mapper.replica
 Regex|File
pegasus.dir.storage.mapper.replica.file
 the RC file at the backend to use
 if using a file based RC

Property Key: pegasus.dir.storage.deep
Profile Key: N/A
Scope : Properties
Since : 2.1
Type : Boolean
Default : false

This Boolean property results in the creation of a deep
directory structure on the output site, while populating
the results. The base directory on the remote end is deter-
mined from the site catalog.

To this base directory, the relative submit directory struc-
ture ($user/$vogroup/$label/runxxxx) is appended.

$storage = $base + $relative_submit_directory

This is the base directory that is passed to the storage map-
per.

Configuration

179

Note: To preserve backward compatibilty, setting this
property results in the Hashed mapper to be loaded unless
pegasus.dir.storage.mapper is explicitly specified. Before
4.3, this property resulted in HashedDirectory structure.

Property Key: pegasus.dir.create.strategy
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : Enumeration
Values : HourGlass|Tentacles|Minimal
Default : Minimal

If the

--randomdir

option is given to the Planner at runtime, the Pegasus plan-
ner adds nodes that create the random directories at the
remote pool sites, before any jobs are actually run. The
two modes determine the placement of these nodes and
their dependencies to the rest of the graph.

HourGlass It adds a make directory node at the top
level of the graph, and all these concat to
a single dummy job before branching out
to the root nodes of the original/ concrete
dag so far. So we introduce a classic X
shape at the top of the graph. Hence the
name HourGlass.

Tentacles This option places the jobs creating direc-
tories at the top of the graph. However
instead of constricting it to an hour glass
shape, this mode links the top node to all
the relevant nodes for which the create dir
job is necessary. It looks as if the node
spreads its tentacleas all around. This puts
more load on the DAGMan because of
the added dependencies but removes the
restriction of the plan progressing only
when all the create directory jobs have
progressed on the remote pools, as is the
case in the HourGlass model.

Minimal The strategy involves in walking the
graph in a BFS order, and updating a bit
set associated with each job based on the
BitSet of the parent jobs. The BitSet in-
dicates whether an edge exists from the
create dir job to an ancestor of the node.
For a node, the bit set is the union of all
the parents BitSets. The BFS traversal en-
sures that the bitsets are of a node are
only updated once the parents have been
processed.

Schema File Location Properties
This section defines the location of XML schema files that are used to parse the various XML document instances in
the PEGASUS. The schema backups in the installed file-system permit PEGASUS operations without being online.

Table 12.12. Schema File Location Properties

Key Attributes Description

Property Key: pegasus.schema.dax
Profile Key: N/A
Scope : Properties
Since : 2.0

This file is a copy of the XML schema that describes ab-
stract DAG files that are the result of the abstract planning
process, and input into any concrete planning. Providing
a copy of the schema enables the parser to use the local

Configuration

180

Type : file path
Default : ${pegasus.home.sysconfdir}/dax-3.4.xsd

copy instead of reaching out to the Internet, and obtaining
the latest version from the Pegasus website dynamically.

Property Key: pegasus.schema.sc
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home.sysconfdir}/sc-4.0.xsd

This file is a copy of the XML schema that describes the
xml description of the site catalog. Providing a copy of the
schema enables the parser to use the local copy instead of
reaching out to the internet, and obtaining the latest ver-
sion from the GriPhyN website dynamically.

Property Key: pegasus.schema.ivr
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home.sysconfdir}/iv-2.0.xsd

This file is a copy of the XML schema that describes in-
vocation record files that are the result of the a grid launch
in a remote or local site. Providing a copy of the schema
enables the parser to use the local copy instead of reaching
out to the Internet, and obtaining the latest version from
the Pegasus website dynamically.

Database Drivers For All Relational Catalogs

Table 12.13. Database Driver Properties

Property Key Description

Property Key: pegasus.catalog.*.db.driver
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Values : MySQL|PostGres|SQLite
Default : (no default)

The database driver class is dynamically loaded, as re-
quired by the schema. Currently, only MySQL 5.x, Post-
GreSQL 7.3 and SQlite are supported. Their respective
JDBC3 driver is provided as part and parcel of the PE-
GASUS.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.db.url
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Database URL
Default : (no default)

Each database has its own string to contact the data-
base on a given host, port, and database. Although
most driver URLs allow to pass arbitrary arguments,
please use the pegasus.catalog.[catalog-name].db.* keys
or pegasus.catalog.*.db.* to preload these arguments.

THE URL IS A MANDATORY PROPERTY FOR ANY
DBMS BACKEND.

Property Key: pegasus.catalog.*.db.user
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default :

In order to access a database, you must provide the name
of your account on the DBMS. This property is data-
base-independent. THIS IS A MANDATORY PROPER-
TY FOR MANY DBMS BACKENDS.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.db.password
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : (no default)

In order to access a database, you must provide an option-
al password of your account on the DBMS. This proper-
ty is database-independent. THIS IS A MANDATORY
PROPERTY, IF YOUR DBMS BACKEND ACCOUNT
REQUIRES A PASSWORD.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

Configuration

181

replica

Property Key: pegasus.catalog.*.db.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : (no default)

Each database has a multitude of options to control in fine
detail the further behaviour. You may want to check the
JDBC3 documentation of the JDBC driver for your data-
base for details. The keys will be passed as part of the
connect properties by stripping the "pegasus.catalog.[cat-
alog-name].db." prefix from them. The catalog-name can
be replaced by the following values provenance for Prove-
nance Catalog (PTC), replica for Replica Catalog (RC)

Postgres 7.3 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.PGHOST
pegasus.catalog.*.db.PGPORT
pegasus.catalog.*.db.charSet
pegasus.catalog.*.db.compatible

MySQL 5.0 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.databaseName
pegasus.catalog.*.db.serverName
pegasus.catalog.*.db.portNumber
pegasus.catalog.*.db.socketFactory
pegasus.catalog.*.db.strictUpdates
pegasus.catalog.*.db.ignoreNonTxTables
pegasus.catalog.*.db.secondsBeforeRetryMaster
pegasus.catalog.*.db.queriesBeforeRetryMaster
pegasus.catalog.*.db.allowLoadLocalInfile
pegasus.catalog.*.db.continueBatchOnError
pegasus.catalog.*.db.pedantic
pegasus.catalog.*.db.useStreamLengthsInPrepStmts
pegasus.catalog.*.db.useTimezone
pegasus.catalog.*.db.relaxAutoCommit
pegasus.catalog.*.db.paranoid
pegasus.catalog.*.db.autoReconnect
pegasus.catalog.*.db.capitalizeTypeNames
pegasus.catalog.*.db.ultraDevHack
pegasus.catalog.*.db.strictFloatingPoint
pegasus.catalog.*.db.useSSL
pegasus.catalog.*.db.useCompression
pegasus.catalog.*.db.socketTimeout
pegasus.catalog.*.db.maxReconnects
pegasus.catalog.*.db.initialTimeout
pegasus.catalog.*.db.maxRows
pegasus.catalog.*.db.useHostsInPrivileges
pegasus.catalog.*.db.interactiveClient
pegasus.catalog.*.db.useUnicode
pegasus.catalog.*.db.characterEncoding

MS SQL Server 2000 support the following properties
(keys are case-insensitive, e.g. both "user" and "User" are
valid):

pegasus.catalog.*.db.User
pegasus.catalog.*.db.Password
pegasus.catalog.*.db.DatabaseName
pegasus.catalog.*.db.ServerName
pegasus.catalog.*.db.HostProcess
pegasus.catalog.*.db.NetAddress
pegasus.catalog.*.db.PortNumber
pegasus.catalog.*.db.ProgramName
pegasus.catalog.*.db.SendStringParametersAsUnicode
pegasus.catalog.*.db.SelectMethod

Configuration

182

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.timeout
 Profile Key: N/A
 Scope : Properties
 Since : 4.5.1
 Type : Integer
 Default : (no default)

This property sets a busy handler that sleeps for a specified
amount of time (in seconds) when a table is locked. This
property has effect only in a sqlite database.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

master
workflow

Catalog Related Properties

Table 12.14. Replica Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : File

Pegasus queries a Replica Catalog to discover the physi-
cal filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Cata-
logs. This property specifies which type of Replica Cata-
log to use during the planning process.

JDBCRC In this mode, Pegasus queries a SQL
based replica catalog that is accessed via
JDBC. The sql schema's for this catalog
can be found at $PEGASUS_HOME/sql
directory. To use JDBCRC, the user addi-
tionally needs to set the following prop-
erties

1. pegasus.catalog.replica.db.driver =
mysql

2. pegasus.catalog.replica.db.url = jdbc
url to database e.g jdbc:mysql://data-
base-host.isi.edu/database-name

3. pegasus.catalog.replica.db.user =
database-user

4. pegasus.catalog.replica.db.password
= database-password

File In this mode, Pegasus queries a file based
replica catalog. It is neither transaction-
ally safe, nor advised to use for produc-
tion purposes in any way. Multiple con-
current instances will clobber each oth-
er!. The site attribute should be specified
whenever possible. The attribute key for
the site attribute is "site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-

Configuration

183

ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Regex In this mode, Pegasus queries a file based
replica catalog. It is neither transactional-
ly safe, nor advised to use for production
purposes in any way. Multiple concurrent
access to the File will end up clobbering
the contents of the file. The site attribute
should be specified whenever possible.
The attribute key for the site attribute is
"site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

In addition users can specifiy regular ex-
pression based LFN's. A regular expres-
sion based entry should be qualified with
an attribute named 'regex'. The attribute
regex when set to true identifies the cat-
alog entry as a regular expression based
entry. Regular expressions should follow
Java regular expression syntax.

For example, consider a replica catalog as
shown below.

Entry 1 refers to an entry which does
not use a resular expressions. This entry
would only match a file named 'f.a', and
nothing else. Entry 2 referes to an entry
which uses a regular expression. In this
entry f.a referes to files having name as
f[any-character]a i.e. faa, f.a, f0a, etc.

f.a file:///Vol/input/f.a
 site="local"
f.a file:///Vol/input/f.a
 site="local" regex="true"

Configuration

184

Regular expression based entries also
support substitutions. For example, con-
sider the regular expression based entry
shown below.

Entry 3 will match files with name
alpha.csv, alpha.txt, alpha.xml. In addi-
tion, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being
looked up is alpha.csv, the PFN for
the file would be generated as file:///
Volumes/data/input/csv/alpha.csv. Simi-
lary if the file being lookedup was
alpha.csv, the PFN for the file would
be generated as file:///Volumes/data/in-
put/xml/alpha.xml i.e. The section [0], [1]
will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1]
refers to a partial match in the input i.e.
csv, or txt, or xml. Users can utilize as
many sections as they wish.

alpha\.(csv|txt|xml) file:///
Vol/input/[1]/[0] site="local"
 regex="true"

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Directory In this mode, Pegasus does a directory
listing on an input directory to create the
LFN to PFN mappings. The directory list-
ing is performed recursively, resulting in
deep LFN mappings. For example, if an
input directory $input is specified with
the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the fol-
lowing LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D2/f.3
 site="local"

If you don't want the deep lfn's
to be created then, you can set
pegasus.catalog.replica.directory.flat.lfn
to true In that case, for the previous ex-
ample, Pegasus will create the following
LFN PFN mappings internally.

Configuration

185

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
f.3 file://$input/D2/f.3
 site="local"

pegasus-plan has --input-dir option that
can be used to specify an input directory.

Users can optionally specify additional
properties to configure the behvavior of
this implementation.

pegasus.catalog.replica.directory.site to
specify a site attribute other than local to
associate with the mappings.

pegasus.catalog.replica.directory.url.prefix
to associate a URL prefix for the PFN's
constructed. If not specified, the URL de-
faults to file://

MRC In this mode, Pegasus queries multiple
replica catalogs to discover the file loca-
tions on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be
configured via properties as follows.

The user associates a variable name re-
ferred to as [value] for each of the cata-
logs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For
each associated replica catalogs the user
specifies the following properties.

pegasus.catalog.replica.mrc.[value]
 specifies the type of \

 replica catalog.
pegasus.catalog.replica.mrc.
[value].key specifies a property
 name\

 key for a particular catalog

pegasus.catalog.replica.mrc.directory1
 Directory
pegasus.catalog.replica.mrc.directory1.url /
input/dir1
pegasus.catalog.replica.mrc.directory2
 Directory
pegasus.catalog.replica.mrc.directory2.url /
input/dir2

In the above example, directory1, direc-
tory2 are any valid identifier names and
url is the property key that needed to be
specified.

Property Key: pegasus.catalog.replica.chunk.size
Profile Key: N/A

The pegasus-rc-client takes in an input file containing the
mappings upon which to work. This property determines,

Configuration

186

Scope : Properties
Since : 2.0
Default : 1000

the number of lines that are read in at a time, and worked
upon at together. This allows the various operations like
insert, delete happen in bulk if the underlying replica im-
plementation supports it.

Property Key: pegasus.catalog.replica.cache.asrc
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : false

This Boolean property determines whether to treat the
cache file specified as a supplemental replica catalog
or not. User can specify on the command line to pega-
sus-plan a comma separated list of cache files using the --
cache option. By default, the LFN->PFN mappings con-
tained in the cache file are treated as cache, i.e if an entry
is found in a cache file the replica catalog is not queried.
This results in only the entry specified in the cache file to
be available for replica selection.
Setting this property to true, results in the cache files to
be treated as supplemental replica catalogs. This results in
the mappings found in the replica catalog (as specified by
pegasus.catalog.replica) to be merged with the ones found
in the cache files. Thus, mappings for a particular LFN
found in both the cache and the replica catalog are avail-
able for replica selection.

Property Key: pegasus.catalog.replica.dax.asrc
Profile Key : N/A
Scope : Properties
Since : 4.5.2
Default : false

This Boolean property determines whether to treat the lo-
cations of files recorded in the DAX as a supplemental
replica catalog or not. By default, the LFN->PFN map-
pings contained in the DAX file overrides any specified in
a replica catalog. This results in only the entry specified
in the DAX file to be available for replica selection.
Setting this property to true, results in the locations of files
recorded in the DAX files to be treated as a supplemental
replica catalog. This results in the mappings found in the
replica catalog (as specified by pegasus.catalog.replica) to
be merged with the ones found in the cache files. Thus,
mappings for a particular LFN found in both the DAX and
the replica catalog are available for replica selection.

Table 12.15. Site Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : XML

Pegasus supports two different types of site catalogs in
XML format conforming

• sc-3.0.xsd http://pegasus.isi.edu/schema/sc-3.0.xsd

• sc-4.0.xsd http://pegasus.isi.edu/schema/sc-4.0.xsd

Pegasus is able to auto-detect what schema a user site cat-
alog refers to. Hence, this property may no longer be set.

Property Key: pegasus.catalog.site.file
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/sites.xml

The path to the site catalog file, that describes the various
sites and their layouts to Pegasus.

Table 12.16. Transformation Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.transformation
Profile Key: N/A
Scope : Properties

The only recommended and supported version of Trans-
formation Catalog for Pegasus is Text. For the old File

Configuration

187

Since : 2.0
Default : Text

based formats, users should use pegasus-tc-converter to
convert File format to Text Format.

Text In this mode, a multiline file based format is un-
derstood. The file is read and cached in memory.
Any modifications, as adding or deleting, causes
an update of the memory and hence to the file un-
derneath. All queries are done against the mem-
ory representation.

The file sample.tc.text in the etc directory con-
tains an example

Here is a sample textual format for transfoma-
tion catalog containing one transformation on
two sites

tr example::keg:1.0 {
#specify profiles that apply for all the
 sites for the transformation
#in each site entry the profile can be
 overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

Property Key: pegasus.catalog.transformation
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/tc.text

The path to the transformation catalog file, that describes
the locations of the executables.

Replica Selection Properties

Table 12.17. Replica Selection Properties

Key Attributes Description

Property Key: pegasus.selector.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : Default
See Also : pegasus.selector.replica.*.ignore.stagein.sites
See Also : pegasus.selector.replica.*.prefer.stagein.sites

Each job in the DAX maybe associated with input LFN's
denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus
queries the replica catalog to get all the PFN's (replicas)
associated with a LFN. Pegasus then calls out to a replica
selector to select a replica amongst the various replicas
returned. This property determines the replica selector to
use for selecting the replicas.

Configuration

188

Default If a PFN that is a file URL (starting with
file:///) and has a "site" attribute match-
ing to the site handle of the site where
the compute is to be run is found, then
that is returned. Else,a random PFN is
selected amongst all the PFN's that have
a "site" attribute matching to the site
handle of the site where a compute job is
to be run. Else, a random pfn is selected
amongst all the PFN's.

Restricted This replica selector, allows the user
to specify good sites and bad sites for
staging in data to a particular compute
site. A good site for a compute site X,
is a preferred site from which replicas
should be staged to site X. If there are
more than one good sites having a par-
ticular replica, then a random site is se-
lected amongst these preferred sites.

A bad site for a compute site X, is
a site from which replica's should not
be staged. The reason of not accessing
replica from a bad site can vary from the
link being down, to the user not having
permissions on that site's data.

The good | bad sites are specified by the
properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name de-
notes the name of the compute site. A *
in the property key is taken to mean all
sites.

The
pegasus.replica.*.prefer.stagein.sites
property takes precedence over
pegasus.replica.*.ignore.stagein.sites
property i.e. if for a site X, a site Y
is specified both in the ignored and the
preferred set, then site Y is taken to
mean as only a preferred site for a site X.

Regex This replica selector allows the user al-
lows the user to specific regex expres-
sions that can be used to rank various
PFN's returned from the Replica Cata-
log for a particular LFN. This replica se-
lector selects the highest ranked PFN i.e
the replica with the lowest rank value.

The regular expressions are assigned
different rank, that determine the or-
der in which the expressions are em-
ployed. The rank values for the regex

Configuration

189

can expressed in user properties using
the property.

pegasus.selector.replica.regex.rank.
[value] regex-expression

The value is an integer value that de-
notes the rank of an expression with a
rank value of 1 being the highest rank.

Please note that before applying any
regular expressions on the PFN's, the
file URL's that dont match the preferred
site are explicitly filtered out.

Local This replica selector prefers replicas
from the local host and that start with
a file: URL scheme. It is useful, when
users want to stagin files to a remote site
from your submit host using the Condor
file transfer mechanism.

Property Key: pegasus.selector.replica.*.ignore.stagein.sites
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)
See Also : pegasus.selector.replica
See Also : pegasus.selector.replica.*.prefer.stagein.sites

A comma separated list of storage sites from which to nev-
er stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in
the property name is expanded.

The * in the property name means all compute sites unless
replaced by a site name.

For e.g setting
pegasus.selector.replica.*.ignore.stagein.sites to usc
means that ignore all replicas from site usc
for staging in to any compute site. Setting
pegasus.replica.isi.ignore.stagein.sites to usc means that
ignore all replicas from site usc for staging in data to site
isi.

Property Key: pegasus.selector.replica.*.prefer.stagein.sites
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)
See Also : pegasus.selector.replica
See Also : pegasus.selector.replica.*.ignore.stagein.sites

A comma separated list of preferred storage sites from
which to stage in data to a compute site. The property can
apply to all or a single compute site, depending on how
the * in the property name is expanded.

The * in the property name means all compute sites unless
replaced by a site name.

For e.g setting
pegasus.selector.replica.*.prefer.stagein.sites to usc
means that prefer all replicas from site usc
for staging in to any compute site. Setting
pegasus.replica.isi.prefer.stagein.sites to usc means that
prefer all replicas from site usc for staging in data to site
isi.

Property Key: pegasus.selector.replica.regex.rank.[value]
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Default : (no default)
See Also : pegasus.selector.replica

Specifies the regex expressions to be applied on the PFNs
returned for a particular LFN. Refer to

http://java.sun.com/javase/6/docs/api/java/util/
regex/Pattern.html

on information of how to construct a regex expression.

Configuration

190

The [value] in the property key is to be replaced by an int
value that designates the rank value for the regex expres-
sion to be applied in the Regex replica selector.

The example below indicates preference for file URL's
over URL's referring to gridftp server at example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://
example\.isi\.edu.*

Site Selection Properties

Table 12.18. Site Selection Properties

Key Attributes Description

Property Key: pegasus.selector.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : Random
See Also : pegasus.selector.site.path
See Also : pegasus.selector.site.timeout
See Also : pegasus.selector.site.keep.tmp
See Also : pegasus.selector.site.env.*

The site selection in Pegasus can be on basis of any of the
following strategies.

Random In this mode, the jobs will be ran-
domly distributed among the sites
that can execute them.

RoundRobin In this mode. the jobs will be as-
signed in a round robin manner
amongst the sites that can execute
them. Since each site cannot ex-
ecute everytype of job, the round
robin scheduling is done per lev-
el on a sorted list. The sorting is
on the basis of the number of jobs
a particular site has been assigned
in that level so far. If a job can-
not be run on the first site in the
queue (due to no matching entry
in the transformation catalog for
the transformation referred to by
the job), it goes to the next one
and so on. This implementation
defaults to classic round robin in
the case where all the jobs in the
workflow can run on all the sites.

NonJavaCallout In this mode, Pegasus will call-
out to an external site selector.In
this mode a temporary file is pre-
pared containing the job informa-
tion that is passed to the site selec-
tor as an argument while invok-
ing it. The path to the site selector
is specified by setting the proper-
ty pegasus.site.selector.path. The
environment variables that need
to be set to run the site selector can
be specified using the properties
with a pegasus.site.selector.env.
prefix. The temporary file con-
tains information about the job
that needs to be scheduled. It con-
tains key value pairs with each

Configuration

191

key value pair being on a new line
and separated by a =.

The following pairs are current-
ly generated for the site selector
temporary file that is generated in
the NonJavaCallout.

version is the ver-
sion of the
site selector
api,currently
2.0.

transformation is the ful-
ly-qualified
definition
identifier for
the transfor-
mation (TR)
namespace::name:version.

derivation is teh fully
qualified def-
inition identi-
fier for the de-
rivation (DV),
namespace::name:version.

job.level is the job's
depth in the
tree of the
workflow
DAG.

job.id is the job's ID,
as used in the
DAX file.

resource.id is a site han-
dle, followed
by whitespace,
followed by a
gridftp serv-
er. Typically,
each gridftp
server is enu-
merated once,
so you may
have multiple
occurances of
the same site.
There can be
multiple occur-
ances of this
key.

input.lfn is an input
LFN, optional-
ly followed by
a whitespace
and file size.
There can be

Configuration

192

multiple oc-
curances of
this key,one
for each input
LFN required
by the job.

wf.name label of the
dax, as found
in the DAX's
root element.
wf.index is
the DAX in-
dex, that is in-
cremented for
each partition
in case of de-
ferred plan-
ning.

wf.time is the mtime of
the workflow.

wf.manager is the name of
the workflow
manager being
used .e.g con-
dor

vo.name is the name of
the virtual or-
ganization that
is running this
workflow. It is
currently set to
NONE

vo.group unused at
present and is
set to NONE.

Group In this mode, a group of jobs will
be assigned to the same site that
can execute them. The use of the
PEGASUS profile key group in
the dax, associates a job with a
particular group. The jobs that do
not have the profile key associat-
ed with them, will be put in the
default group. The jobs in the de-
fault group are handed over to
the "Random" Site Selector for
scheduling.

Heft In this mode, a version of the
HEFT processor scheduling algo-
rithm is used to schedule jobs
in the workflow to multiple grid
sites. The implementation as-
sumes default data communica-
tion costs when jobs are not

Configuration

193

scheduled on to the same site. Lat-
er on this may be made more con-
figurable.

The runtime for the jobs is speci-
fied in the transformation catalog
by associating the pegasus profile
key runtime with the entries.

The number of processors in a
site is picked up from the at-
tribute idle-nodes associated with
the vanilla jobmanager of the site
in the site catalog.

Property Key: pegasus.selector.site.path
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

If one calls out to an external site selector using the Non-
JavaCallout mode, this refers to the path where the site se-
lector is installed. In case other strategies are used it does
not need to be set.

Property Key: pegasus.selector.site.env.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

The environment variables that need to be set while call-
out to the site selector. These are the variables that the user
would set if running the site selector on the command line.
The name of the environment variable is got by stripping
the keys of the prefix "pegasus.site.selector.env." prefix
from them. The value of the environment variable is the
value of the property.

e.g pegasus.site.selector.path.LD_LIBRARY_PATH /
globus/lib would lead to the site selector being called with
the LD_LIBRARY_PATH set to /globus/lib.

Property Key: pegasus.selector.site.timeout
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Default : 60
See Also : pegasus.selector.site

It sets the number of seconds Pegasus waits to hear back
from an external site selector using the NonJavaCallout
interface before timing out.

Property Key: pegasus.selector.site.keep.tmp
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Values : onerror|always|never
Default : onerror
See Also : pegasus.selector.site

It determines whether Pegasus deletes the temporary input
files that are generated in the temp directory or not. These
temporary input files are passed as input to the external
site selectors.

A temporary input file is created for each that needs to be
scheduled.

Data Staging Configuration Properties

Table 12.19. Data Configuration Properties

Key Attributes Description

Property Key: pegasus.data.configuration
Profile Key: data.configuration
Scope : Properties, Site Catalog
Since : 4.0.0
Values : sharedfs|nonsharedfs|condorio
Default : sharedfs
See Also : pegasus.transfer.bypass.input.staging

This property sets up Pegasus to run in different environ-
ments. For Pegasus 4.5.0 and above, users can set the pe-
gasus profile data.configuration with the sites in their site
catalog, to run multisite workflows with each site having
a different data configuration.

sharedfs If this is set, Pegasus will be setup to
execute jobs on the shared filesystem
on the execution site. This assumes,

Configuration

194

that the head node of a cluster and the
worker nodes share a filesystem. The
staging site in this case is the same
as the execution site. Pegasus adds a
create dir job to the executable work-
flow that creates a workflow specif-
ic directory on the shared filesystem .
The data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this
directory.The compute jobs in the ex-
ecutable workflow are launched in the
directory on the shared filesystem.

condorio If this is set, Pegasus will be setup to
run jobs in a pure condor pool, with the
nodes not sharing a filesystem. Data is
staged to the compute nodes from the
submit host using Condor File IO. The
planner is automatically setup to use
the submit host (site local) as the stag-
ing site. All the auxillary jobs added by
the planner to the executable workflow
(create dir, data stagein and stage-out,
cleanup) jobs refer to the workflow
specific directory on the local site. The
data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory. When the compute jobs start,
the input data for each job is shipped
from the workflow specific directory
on the submit host to compute/worker
node using Condor file IO. The output
data for each job is similarly shipped
back to the submit host from the com-
pute/worker node. This setup is par-
ticularly helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky.

pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

nonsharedfs If this is set, Pegasus will be setup to
execute jobs on an execution site with-
out relying on a shared filesystem be-
tween the head node and the work-
er nodes. You can specify staging site
(using --staging-site option to pega-
sus-plan) to indicate the site to use as
a central storage location for a work-
flow. The staging site is independant
of the execution sites on which a work-
flow executes. All the auxillary jobs
added by the planner to the executable
workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to

Configuration

195

the workflow specific directory on the
staging site. The data transfer jobs in
the executable workflow (stage_in_ ,
stage_inter_ , stage_out_) transfer
the data to this directory. When the
compute jobs start, the input data for
each job is shipped from the workflow
specific directory on the submit host
to compute/worker node using pega-
sus-transfer. The output data for each
job is similarly shipped back to the
submit host from the compute/work-
er node. The protocols supported are
at this time SRM, GridFTP, iRods,
S3. This setup is particularly help-
ful when running workflows on OSG
where most of the execution sites don't
have enough data storage. Only a few
sites have large amounts of data stor-
age exposed that can be used to place
data during a workflow run. This set-
up is also helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

Property Key: pegasus.transfer.bypass.input.staging
Profile Key: N/A
Scope : Properties
Since : 4.3.0
Type : Boolean
Default : false
See Also : pegasus.data.configuration

When executiing in a non shared filesystem setup i.e data
configuration set to nonsharedfs or condorio, Pegasus al-
ways stages the input files through the staging site i.e the
stage-in job stages in data from the input site to the stag-
ing site. The PegasusLite jobs that start up on the worker
nodes, then pull the input data from the staging site for
each job.

This property can be used to setup the PegasusLite jobs
to pull input data directly from the input site without go-
ing through the staging server. This is based on the as-
sumption that the worker nodes can access the input site.
If users set this to true, they should be aware that the ac-
cess to the input site is no longer throttled (as in case of
stage in jobs). If large number of compute jobs start at the
same time in a workflow, the input server will see a con-
nection from each job.

Transfer Configuration Properties

Table 12.20. Transfer Configuration Properties

Key Attributes Description

Property Key: pegasus.transfer.*.impl
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Values : Transfer|GUC

Each compute job usually has data products that are re-
quired to be staged in to the execution site, materialized
data products staged out to a final resting place, or staged
to another job running at a different site. This property

Configuration

196

Default : Transfer
See Also : pegasus.transfer.refiner

determines the underlying grid transfer tool that is used
to manage the transfers.

The * in the property name can be replaced to achieve
finer grained control to dictate what type of transfer jobs
need to be managed with which grid transfer tool.

Usually,the arguments with which the client is invoked
can be specified by

- the property pegasus.transfer.arguments
- associating the PEGASUS profile key
 transfer.arguments

The table below illustrates all the possible variations of
the property.

Property Name Applies to

pegasus.transfer.stagein.implthe stage in transfer jobs

pegasus.transfer.stageout.implthe stage out transfer jobs

pegasus.transfer.inter.impl the inter site transfer jobs

pegasus.transfer.setup.impl the setup transfer job

pegasus.transfer.*.impl apply to types of transfer
jobs

Note: Since version 2.2.0 the worker package is staged
automatically during staging of executables to the remote
site. This is achieved by adding a setup transfer job to the
workflow. The setup transfer job by default uses GUC to
stage the data. The implementation to use can be config-
ured by setting the property

pegasus.transfer.setup.impl

property. However, if you have pegasus.transfer.*.impl
set in your properties file, then you need to set
pegasus.transfer.setup.impl to GUC

The various grid transfer tools that can be used to manage
data transfers are explained below

Transfer This results in pegasus-transfer to be
used for transferring of files. It is a
python based wrapper around various
transfer clients like globus-url-copy, lcg-
copy, wget, cp, ln . pegasus-transfer looks
at source and destination url and fig-
ures out automatically which underly-
ing client to use. pegasus-transfer is dis-
tributed with the PEGASUS and can be
found at $PEGASUS_HOME/bin/pega-
sus-transfer.

For remote sites, Pegasus constructs the
default path to pegasus-transfer on the
basis of PEGASUS_HOME env profile
specified in the site catalog. To speci-
fy a different path to the pegasus-trans-

Configuration

197

fer client , users can add an entry into
the transformation catalog with fully qual-
ified logical name as pegasus::pegasus-
transfer

GUC This refers to the new guc client that
does multiple file transfers per invoca-
tion. The globus-url-copy client distrib-
uted with Globus 4.x is compatible with
this mode.

Property Key: pegasus.transfer.arguments
Profile Key: transfer.arguments
Scope : Properties
Since : 2.0.0
Type : String
Default : (no default)
See Also : pegasus.transfer.lite.arguments

This determines the extra arguments with which the trans-
fer implementation is invoked. The transfer executable
that is invoked is dependant upon the transfer mode that
has been selected. The property can be overloaded by as-
sociated the pegasus profile key transfer.arguments either
with the site in the site catalog or the corresponding trans-
fer executable in the transformation catalog.

Property Key: pegasus.transfer.threads
Profile Key: transfer.threads
Scope : Properties
Since : 4.4.0
Type : Integer
Default : 2

This property set the number of threads pegasus-transfer
uses to transfer the files. This property to applies to the
separate data transfer nodes that are added by Pegasus to
the executable workflow. The property can be overloaded
by associated the pegasus profile key transfer.threads ei-
ther with the site in the site catalog or the corresponding
transfer executable in the transformation catalog.

Property Key: pegasus.transfer.lite.arguments
Profile Key: transfer.lite.arguments
Scope : Properties
Since : 4.4.0
Type : String
Default : (no default)
See Also : pegasus.transfer.arguments

This determines the extra arguments with which the Pe-
gasusLite transfer implementation is invoked. The trans-
fer executable that is invoked is dependant upon the Pe-
gasusLite transfer implementation that has been selected.

Property Key: pegasus.transfer.worker.package
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : Boolean
Default : false
See Also : pegasus.data.configuration

By default, Pegasus relies on the worker package to
be installed in a directory accessible to the worker
nodes on the remote sites . Pegasus uses the value of
PEGASUS_HOME environment profile in the site cata-
log for the remote sites, to then construct paths to pegasus
auxillary executables like kickstart, pegasus-transfer, se-
qexec etc.

If the Pegasus worker package is not installed on the re-
mote sites users can set this property to true to get Pegasus
to deploy worker package on the nodes.

In the case of sharedfs setup, the worker package is de-
ployed on the shared scratch directory for the workflow ,
that is accessible to all the compute nodes of the remote
sites.

When running in nonsharefs environments, the worker
package is first brought to the submit directory and then
transferred to the worker node filesystem using Condor
file IO.

Property Key: pegasus.transfer.links
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : Boolean
Default : false

If this is set, and the transfer implementation is set to
Transfer i.e. using the transfer executable distributed with
the PEGASUS. On setting this property, if Pegasus while
fetching data from the Replica Catalog sees a "site" at-
tribute associated with the PFN that matches the execution
site on which the data has to be transferred to, Pegasus in-

Configuration

198

stead of the URL returned by the Replica Catalog replaces
it with a file based URL. This is based on the assumption
that the if the "site" attributes match, the filesystems are
visible to the remote execution directory where input data
resides. On seeing both the source and destination urls as
file based URLs the transfer executable spawns a job that
creates a symbolic link by calling ln -s on the remote site.

Property Key: pegasus.transfer.*.remote.sites
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : comma separated list of sites
Default : (no default)

By default Pegasus looks at the source and destination
URL's for to determine whether the associated transfer job
runs on the submit host or the head node of a remote site,
with preference set to run a transfer job to run on submit
host.

Pegasus will run transfer jobs on the remote sites

- if the file server for the compute site is a
 file server i.e url prefix file://
- symlink jobs need to be added that require
 the symlink transfer jobs to
be run remotely.

This property can be used to change the default behav-
iour of Pegasus and force pegasus to run different types
of transfer jobs for the sites specified on the remote site.

The table below illustrates all the possible variations of
the property.

Property Name Applies to

pegasus.transfer.stagein.remote.sitesthe stage in transfer jobs

pegasus.transfer.stageout.remote.sitesthe stage out transfer jobs

pegasus.transfer.inter.remote.sitesthe inter site transfer jobs

pegasus.transfer.*.remote.sitesapply to types of transfer
jobs

In addition * can be specified as a property value, to des-
ignate that it applies to all sites.

Property Key: pegasus.transfer.staging.delimiter
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : String
Default : :

Pegasus supports executable staging as part of the work-
flow. Currently staging of statically linked executables is
supported only. An executable is normally staged to the
work directory for the workflow/partition on the remote
site. The basename of the staged executable is derived
from the namespace,name and version of the transforma-
tion in the transformation catalog. This property sets the
delimiter that is used for the construction of the name of
the staged executable.

Property Key: pegasus.transfer.disable.chmod.sites
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : comma separated list of sites
Default : (no default)

During staging of executables to remote sites, chmod jobs
are added to the workflow. These jobs run on the remote
sites and do a chmod on the staged executable. For some
sites, this maynot be required. The permissions might be
preserved, or there maybe an automatic mechanism that
does it.

This property allows you to specify the list of sites, where
you do not want the chmod jobs to be executed. For those
sites, the chmod jobs are replaced by NoOP jobs. The

Configuration

199

NoOP jobs are executed by Condor, and instead will im-
mediately have a terminate event written to the job log file
and removed from the queue.

Property Key: pegasus.transfer.setup.source.base.url
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : URL
Default : (no default)

This property specifies the base URL to the directory con-
taining the Pegasus worker package builds. During Stag-
ing of Executable, the Pegasus Worker Package is also
staged to the remote site. The worker packages are by de-
fault pulled from the http server at pegasus.isi.edu. This
property can be used to override the location from where
the worker package are staged. This maybe required if the
remote computes sites don't allows files transfers from a
http server.

Monitoring Properties

Table 12.21. Monitoring Properties

Key Attributes Description

Property Key: pegasus.monitord.events
Profile Key: N/A
Scope : Properties
Since : 3.0.2
Type : String
Default : true
See Also : pegasus.catalog.workflow.url

This property determines whether pegasus-monitord gen-
erates log events. If log events are disabled using this
property, no bp file, or database will be created, even if
the pegasus.monitord.output property is specified.

Property Key: pegasus.catalog.workflow.url
Profile Key: N/A
Scope : Properties
Since : 4.5
Type : String
Default : SQlite database in submit
 directory.
See Also : pegasus.monitord.events

This property specifies the destination for generated
log events in pegasus-monitord. By default, events are
stored in a sqlite database in the workflow directory,
which will be created with the workflow's name, and a
".stampede.db" extension. Users can specify an alterna-
tive database by using a SQLAlchemy connection string.
Details are available at:

http://www.sqlalchemy.org/docs/05/reference/
dialects/index.html

It is important to note that users will need to have the ap-
propriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface li-
brary (for instance), it does not provide a MySQL driver
itself. The Pegasus distribution includes both SQLAlche-
my and the SQLite Python driver. As a final note, it is im-
portant to mention that unlike when using SQLite databas-
es, using SQLAlchemy with other database servers, e.g.
MySQL or Postgres , the target database needs to exist.
Users can also specify a file name using this property in
order to create a file with the log events.

Example values for the SQLAlchemy connection string
for various end points are listed below

SQL Alchemy End Point Example Value

Netlogger BP File file:///submit/dir/
myworkflow.bp

SQL Lite Database sqlite:///submit/dir/
myworkflow.db

Configuration

200

MySQL Database mysql://
user:password@host:port/
databasename

Property Key: pegasus.catalog.master.url
Profile Key: N/A
Scope : Properties
Since : 4.2
Type : String
Default : sqlite database in $HOME/.pegasus/workflow.db
See Also : pegasus.catalog.workflow.url

This property specifies the destination for the workflow
dashboard database. By default, the workflow dashboard
datbase defaults to a sqlite database named workflow.db
in the $HOME/.pegasus directory. This is database is
shared for all workflows run as a particular user. Users can
specify an alternative database by using a SQLAlchemy
connection string. Details are available at:

http://www.sqlalchemy.org/docs/05/reference/
dialects/index.html

It is important to note that users will need to have the ap-
propriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface li-
brary (for instance), it does not provide a MySQL driver
itself. The Pegasus distribution includes both SQLAlche-
my and the SQLite Python driver. As a final note, it is im-
portant to mention that unlike when using SQLite databas-
es, using SQLAlchemy with other database servers, e.g.
MySQL or Postgres , the target database needs to exist.
Users can also specify a file name using this property in
order to create a file with the log events.

Example values for the SQLAlchemy connection string
for various end points are listed below

SQL Alchemy End Point Example Value

SQL Lite Database sqlite:///shared/
myworkflow.db

MySQL Database mysql://
user:password@host:port/
databasename

Property Key: pegasus.monitord.output
Profile Key: N/A
Scope : Properties
Since : 3.0.2
Type : String
Default : SQlite database in submit
 directory.
See Also : pegasus.monitord.events

This property has been deprecated in favore of
pegasus.catalog.workflow.url that introduced in 4.5 re-
lease. Support for this property will be dropped in future
releases.

Property Key: pegasus.dashboard.output
Profile Key: N/A
Scope : Properties
Since : 4.2
Type : String
Default : sqlite database in $HOME/.pegasus/workflow.db
See Also : pegasus.monitord.output

This property has been deprecated in favore of
pegasus.catalog.master.url that introduced in 4.5 release.
Support for this property will be dropped in future releas-
es.

Property Key: pegasus.monitord.notifications
Profile Key: N/A
Scope : Properties
Since : 3.1.0

This property determines how many notification scripts
pegasus-monitord will call concurrently. Upon reaching
this limit, pegasus-monitord will wait for one notification
script to finish before issuing another one. This is a way to

Configuration

201

Type : Boolean
Default : true
See Also : pegasus.monitord.notifications.max
See Also : pegasus.monitord.notifications.timeout

keep the number of processes under control at the submit
host. Setting this property to 0 will disable notifications
completely.

Property Key: pegasus.monitord.notifications.max
Profile Key: N/A
Scope : Properties
Since : 3.1.0
Type : Integer
Default : 10
See Also : pegasus.monitord.notifications
See Also : pegasus.monitord.notifications.timeout

This property determines whether pegasus-monitord
processes notifications. When notifications are enabled,
pegasus-monitord will parse the .notify file generated by
pegasus-plan and will invoke notification scripts whenev-
er conditions matches one of the notifications.

Property Key: pegasus.monitord.notifications.timeout
Profile Key: N/A
Scope : Properties
Since : 3.1.0
Type : Integer
Default : true
See Also : pegasus.monitord.notifications.
See Also : pegasus.monitord.notifications.max

This property determines how long will pegasus-mon-
itord let notification scripts run before terminating
them. When this property is set to 0 (default), pega-
sus-monitord will not terminate any notification scripts,
letting them run indefinitely. If some notification
scripts missbehave, this has the potential problem of
starving pegasus-monitord's notification slots (see the
pegasus.monitord.notifications.max property), and block
further notifications. In addition, users should be aware
that pegasus-monitord will not exit until all notification
scripts are finished.

Property Key: pegasus.monitord.stdout.disable.parsing
Profile Key: N/A
Scope : Properties
Since : 3.1.1
Type : Boolean
Default : false

By default, pegasus-monitord parses the stdout/stderr sec-
tion of the kickstart to populate the applications captured
stdout and stderr in the job instance table for the stampede
schema. For large workflows, this may slow down moni-
tord especially if the application is generating a lot of out-
put to it's stdout and stderr. This property, can be used to
turn of the database population.

Job Clustering Properties

Table 12.22. Job Clustering Properties

Key Attributes Description

Property Key: pegasus.clusterer.job.aggregator
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Values : seqexec|mpiexec
Default : seqexec

A large number of workflows executed through the Virtu-
al Data System, are composed of several jobs that run for
only a few seconds or so. The overhead of running any job
on the grid is usually 60 seconds or more. Hence, it makes
sense to collapse small independent jobs into a larger job.
This property determines, the executable that will be used
for running the larger job on the remote site.

seqexec In this mode, the executable used to run
the merged job is "pegasus-cluster" that runs
each of the smaller jobs sequentially on the
same node. The executable "pegasus-clus-
ter" is a PEGASUS tool distributed in the
PEGASUS worker package, and can be usu-
ally found at {pegasus.home}/bin/seqexec.

mpiexec In this mode, the executable used to run the
merged job is "pegasus-mpi-cluster" (PMC)
that runs the smaller jobs via mpi on n nodes
where n is the nodecount associated with the
merged job. The executable "pegasus-mpi-

Configuration

202

cluster" is a PEGASUS tool distributed in the
PEGASUS distribution and is built only if
mpi compiler is available.

Property Key: pegasus.clusterer.job.aggregator.seqexec.log
Profile Key: N/A
Scope : Properties
Since : 2.3
Type : Boolean
Default : false
See Also : pegasus.clusterer.job.aggregator
See Also : pegasus.clusterer.job.aggregator.seqexec.log.global

The tool pegasus-cluster logs the progress of the jobs that
are being run by it in a progress file on the remote cluster
where it is executed.

This property sets the Boolean flag, that indicates whether
to turn on the logging or not.

Property Key: pegasus.clusterer.job.aggregator.seqexec.log
Profile Key: N/A
Scope : Properties
Since : 2.3
Type : Boolean
Default : false
See Also : pegasus.clusterer.job.aggregator
See Also : pegasus.clusterer.job.aggregator.seqexec.log.global

The tool pegasus-cluster logs the progress of the jobs that
are being run by it in a progress file on the remote cluster
where it is executed. The progress log is useful for you to
track the progress of your computations and remote grid
debugging. The progress log file can be shared by multi-
ple pegasus-cluster jobs that are running on a particular
cluster as part of the same workflow. Or it can be per job.

This property sets the Boolean flag, that indicates whether
to have a single global log for all the pegasus-cluster jobs
on a particular cluster or progress log per job.

Property Key: pegasus.clusterer.job.aggregator.seqexec.firstjobfail
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : Boolean
Default : true
See Also : pegasus.clusterer.job.aggregator

By default "pegasus-cluster" does not stop execution even
if one of the clustered jobs it is executing fails. This is
because "pegasus-cluster" tries to get as much work done
as possible.

This property sets the Boolean flag, that indicates whether
to make "pegasus-cluster" stop on the first job failure it
detects.

Property Key: pegasus.clusterer.label.key
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : label

While clustering jobs in the workflow into larger jobs,
you can optionally label your graph to control which jobs
are clustered and to which clustered job they belong.
This done using a label based clustering scheme and is
done by associating a profile/label key in the PEGASUS
namespace with the jobs in the DAX. Each job that has
the same value/label value for this profile key, is put in
the same clustered job.

This property allows you to specify the PEGASUS pro-
file key that you want to use for label based clustering.

Logging Properties

Table 12.23. Logging Properties

Key Attributes Description

Property Key: pegasus.log.manager
Profile Key: N/A
Scope : Properties
Since : 2.2.0
Type : String
Values : Default|Log4J
Default : Default
See Also :pegasus.log.manager.formatter

This property sets the logging implementation to use for
logging.

Default This implementation refers to the legacy Pe-
gasus logger, that logs directly to stdout and
stderr. It however, does have the concept of
levels similar to log4j or syslog.

Log4j This implementation, uses Log4j to log mes-
sages. The log4j properties can be specified

Configuration

203

in a properties file, the location of which is
specified by the property

pegasus.log.manager.log4j.conf

Property Key: pegasus.log.manager.formatter
Profile Key: N/A
Scope : Properties
Since : 2.2.0
Type : String
Values : Simple|Netlogger
Default : Simple
See Also :pegasus.log.manager

This property sets the formatter to use for formatting the
log messages while logging.

Simple This formats the messages in a sim-
ple format. The messages are logged
as is with minimal formatting. Below
are sample log messages in this format
while ranking a dax according to perfor-
mance.

event.pegasus.ranking dax.id se18-
gda.dax - STARTED
event.pegasus.parsing.dax dax.id
 se18-gda-nested.dax - STARTED
event.pegasus.parsing.dax dax.id
 se18-gda-nested.dax - FINISHED
job.id jobGDA
job.id jobGDA query.name
 getpredicted performace time
 10.00
event.pegasus.ranking dax.id se18-
gda.dax - FINISHED

Netlogger This formats the messages in the Net-
logger format , that is based on key val-
ue pairs. The netlogger format is use-
ful for loading the logs into a database
to do some meaningful analysis. Below
are sample log messages in this format
while ranking a dax according to perfor-
mance.

ts=2008-09-06T12:26:20.100502Z
 event=event.pegasus.ranking.start
 \
msgid=6bc49c1f-112e-4cdb-
af54-3e0afb5d593c \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
dax.id=se18-gda.dax prog=Pegasus
ts=2008-09-06T12:26:20.100750Z
 event=event.pegasus.parsing.dax.start
 \
msgid=fed3ebdf-68e6-4711-8224-
a16bb1ad2969 \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-
b11c-b49def0c5232\
dax.id=se18-gda-nested.dax
 prog=Pegasus
ts=2008-09-06T12:26:20.100894Z
 event=event.pegasus.parsing.dax.end
 \
msgid=a81e92ba-27df-451f-bb2b-
b60d232ed1ad \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-
b11c-b49def0c5232
ts=2008-09-06T12:26:20.100395Z
 event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-
ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
job.id="jobGDA"

Configuration

204

ts=2008-09-06T12:26:20.100395Z
 event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-
ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
job.id="jobGDA"
 query.name="getpredicted
 performace" time="10.00"
ts=2008-09-06T12:26:20.102003Z
 event=event.pegasus.ranking.end \
msgid=31f50f39-
efe2-47fc-9f4c-07121280cd64 \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5

Property Key: pegasus.log.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : no default

This property sets the path to the file where all the logging
for Pegasus can be redirected to. Both stdout and stderr
are logged to the file specified.

Property Key: pegasus.log.memory.usage
Profile Key: N/A
Scope : Properties
Since : 4.3.4
Type : Boolean
Default : false

This property if set to true, will result in the planner writ-
ing out JVM heap memory statistics at the end of the
planning process at the INFO level. This is useful, if
users want to fine tune their java memory settings by set-
ting JAVA_HEAPMAX and JAVA_HEAPMIN for large
workflows.

Property Key: pegasus.metrics.app
Profile Key: N/A
Scope : Properties
Since : 4.3.0
Type : String
Default : (no default)

This property namespace allows users to pass application
level metrics to the metrics server. The value of this prop-
erty is the name of the application.

Additional application specific attributes can be passed by
using the prefix pegasus.metrics.app

pegasus.metrics.app.[arribute-name]
 attribute-value

Note: the attribute cannot be named name. This
attribute is automatically assigned the value from
pegasus.metrics.app

Cleanup Properties

Table 12.24. Cleanup Properties

Key Attributes Description

Property Key: pegasus.file.cleanup.strategy
Profile Key: N/A
Scope : Properties
Since : 2.2-
Type : String
Default : InPlace

This property is used to select the strategy of how the the
cleanup nodes are added to the executable workflow.

InPlace This is the only mode available .

Property Key: pegasus.file.cleanup.impl
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : String
Default : Cleanup

This property is used to select the executable that is used
to create the working directory on the compute sites.

Cleanup The default executable that is used
to delete files is the "pegasus-cleanup"
executable shipped with Pegasus. It
is found at $PEGASUS_HOME/bin/pe-
gasus-cleanup in the pegasus distri-

Configuration

205

bution. An entry for transformation
pegasus::dirmanager needs to exist in
the Transformation Catalog or the
PEGASUS_HOME environment variable
should be specified in the site catalog for the
sites for this mode to work.

RM This mode results in the rm executable to be
used to delete files from remote directories.
The rm executable is standard on *nix sys-
tems and is usually found at /bin/rm location.

Property Key: pegasus.file.cleanup.clusters.num
Profile Key: N/A
Scope : Properties
Since : 4.2.0
Type : Integer
Default : 2

In case of the InPlace strategy for adding the cleanup
nodes to the workflow, this property specifies the maxi-
mum number of cleanup jobs that are added to the exe-
cutable workflow on each level.

Property Key: pegasus.file.cleanup.clusters.size
Profile Key: N/A
Scope : Properties
Since : 4.2.0
Type : Integer
Default : 2

In case of the InPlace strategy this property sets
the number of cleanup jobs that get clustered into a
bigger cleanup job. This parameter is only used if
pegasus.file.cleanup.clusters.num is not set.

Property Key: pegasus.file.cleanup.scope
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Type : Enumeration
Value : fullahead|deferred
Default : fullahead

By default in case of deferred planning InPlace file
cleanup is turned OFF. This is because the cleanup algo-
rithm does not work across partitions. This property can
be used to turn on the cleanup in case of deferred planning.

fullahead This is the default scope. The pegasus
cleanup algorithm does not work across
partitions in deferred planning. Hence the
cleanup is always turned OFF , when de-
ferred planning occurs and cleanup scope
is set to full ahead.

deferred If the scope is set to deferred, then Pega-
sus will not disable file cleanup in case
of deferred planning. This is useful for
scenarios where the partitions themselves
are independant (i.e. dont share files).
Even if the scope is set to deferred, users
can turn off cleanup by specifying --no-
cleanup option to pegasus-plan.

Miscellaneous Properties

Table 12.25. Miscellaneous Properties

Key Attributes Description

Property Key: pegasus.code.generator
Profile Key: N/A
Scope : Properties
Since : 3.0
Type : String
Values : Condor|Shell|PMC
Default : Condor
See Also : pegasus.log.manager.formatter

This property is used to load the appropriate Code Gener-
ator to use for writing out the executable workflow.

Condor This is the default code generator for Pegasus .
This generator generates the executable work-
flow as a Condor DAG file and associated job
submit files. The Condor DAG file is passed
as input to Condor DAGMan for job execu-
tion.

Configuration

206

Shell This Code Generator generates the executable
workflow as a shell script that can be executed
on the submit host. While using this code gen-
erator, all the jobs should be mapped to site
local i.e specify --sites local to pegasus-plan.

PMC This Code Generator generates the executable
workflow as a PMC task workflow. This is
useful to run on platforms where it not feasible
to run Condor such as the new XSEDE ma-
chines such as Blue Waters. In this mode, Pe-
gasus will generate the executable workflow
as a PMC task workflow and a sample PBS
submit script that submits this workflow.

Property Key: pegasus.register
Profile Key: N/A
Scope : Properties
Since : 4.1.-
Type : Boolean
Default : true

Pegasus creates registration jobs to register the output files
in the replica catalog. An output file is registered only if

1) a user has configured a replica catalog in the properties
2) the register flags for the output files in the DAX are set
to true

This property can be used to turn off the creation of the
registration jobs even though the files maybe marked to
be registered in the replica catalog.

Property Key: pegasus.data.reuse.scope
Profile Key: N/A
Scope : Properties
Since : 4.5.0
Type : Enumeration
Value : none|partial|full
Default : full

This property is used to control the behavior of the data
reuse algorithm in Pegasus

none This is same as disabling data reuse. It is
equivalent to passing the --force option to
pegasus-plan on the command line.

partial In this case, only certain jobs
(those that have pegasus profile key
enable_for_data_reuse set to true) are
checked for presence of output files in the
replica catalog. This gives users control over
what jobs are deleted as part of the data reuse
algorithm.

full This is the default behavior, where all the
jobs output files are looked up in the replica
catalog.

Property Key: pegasus.catalog.transformation.mapper
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Value : All|Installed|Staged|Submit
Default : All

Pegasus supports transfer of statically linked executables
as part of the executable workflow. At present, there is
only support for staging of executables referred to by the
compute jobs specified in the DAX file. Pegasus deter-
mines the source locations of the binaries from the trans-
formation catalog, where it searches for entries of type
STATIC_BINARY for a particular architecture type. The
PFN for these entries should refer to a globus-url-copy
valid and accessible remote URL. For transfer of executa-
bles, Pegasus constructs a soft state map that resides on
top of the transformation catalog, that helps in determin-
ing the locations from where an executable can be staged
to the remote site.

This property determines, how that map is created.

All In this mode, all sources with entries
of type STATIC_BINARY for a partic-

Configuration

207

ular transformation are considered valid
sources for the transfer of executables.
This the most general mode, and results
in the constructing the map as a result of
the cartesian product of the matches.

Installed In this mode, only entries that are of type
INSTALLED are used while constructing
the soft state map. This results in Pegasus
never doing any transfer of executables as
part of the workflow. It always prefers the
installed executables at the remote sites.

Staged In this mode, only entries that are of type
STATIC_BINARY are used while con-
structing the soft state map. This results
in the concrete workflow referring only
to the staged executables, irrespective of
the fact that the executables are already
installed at the remote end.

Submit In this mode, only entries that are of type
STATIC_BINARY and reside at the sub-
mit host ("site" local), are used while con-
structing the soft state map. This is espe-
cially helpful, when the user wants to use
the latest compute code for his computa-
tions on the grid and that relies on his sub-
mit host.

Property Key: pegasus.selector.transformation
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Value : Random|Installed|Staged|Submit
Default : Random

In case of transfer of executables, Pegasus could have var-
ious transformations to select from when it schedules to
run a particular compute job at a remote site. For e.g it can
have the choice of staging an executable from a particular
remote site, from the local (submit host) only, use the one
that is installed on the remote site only.

This property determines, how a transformation amongst
the various candidate transformations is selected, and
is applied after the property pegasus.tc has been ap-
plied. For e.g specifying pegasus.tc as Staged and then
pegasus.transformation.selector as INSTALLED does not
work, as by the time this property is applied, the soft state
map only has entries of type STAGED.

Random In this mode, a random matching can-
didate transformation is selected to be
staged to the remote execution site.

Installed In this mode, only entries that are of type
INSTALLED are selected. This means
that the concrete workflow only refers to
the transformations already pre installed
on the remote sites.

Staged In this mode, only entries that are of type
STATIC_BINARY are selected, ignoring
the ones that are installed at the remote
site.

Configuration

208

Submit In this mode, only entries that are of type
STATIC_BINARY and reside at the sub-
mit host ("site" local), are selected as
sources for staging the executables to the
remote execution sites.

Property Key: pegasus.parser.dax.preserver.linebreaks
Profile Key: N/A
Scope : Properties
Since : 2.2.0
Type : Boolean
Default : false

The DAX Parser normally does not preserve line breaks
while parsing the CDATA section that appears in the ar-
guments section of the job element in the DAX. On setting
this to true, the DAX Parser preserves any line line breaks
that appear in the CDATA section.

Property Key: pegasus.parser.dax.data.dependencies
Profile Key: N/A
Scope : Properties
Since : 4.4.0
Type : Boolean
Default : true

If this property is set to true, then the planner will auto-
matically add edges between jobs in the DAX on the basis
of exisitng data dependencies between jobs. For example,
if a JobA generates an output file that is listed as input
for JobB, then the planner will automatically add an edge
between JobA and JobB.

209

Chapter 13. Submit Directory Details
This chapter describes the submit directory content after Pegasus has planned a workflow. Pegasus takes in an abstract
workflow (DAX) and generates an executable workflow (DAG) in the submit directory.

This document also describes the various Replica Selection Strategies in Pegasus.

Layout
Each executable workflow is associated with a submit directory, and includes the following:

1. <daxlabel-daxindex>.dag

This is the Condor DAGMman dag file corresponding to the executable workflow generated by Pegasus. The dag
file describes the edges in the DAG and information about the jobs in the DAG. Pegasus generated .dag file usually
contains the following information for each job

a. The job submit file for each job in the DAG.

b. The post script that is to be invoked when a job completes. This is usually located at $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's.out file and determines the exitcode.

c. JOB RETRY - the number of times the job is to be retried in case of failure. In Pegasus, the job postscript exits
with a non zero exitcode if it determines a failure occurred.

2. <daxlabel-daxindex>.dag.dagman.out

When a DAG (.dag file) is executed by Condor DAGMan , the DAGMan writes out it's output to the <daxla-
bel-daxindex>.dag.dagman.out file . This file tells us the progress of the workflow, and can be used to determine
the status of the workflow. Most of pegasus tools mine the dagman.out or jobstate.log to determine the progress
of the workflows.

3. <daxlabel-daxindex>.static.bp

This file contains netlogger events that link jobs in the DAG with the jobs in the DAX. This file is parsed by
pegasus-monitord when a workflow starts and populated to the stampede backend.

4. <daxlabel-daxindex>.notify

This file contains all the notifications that need to be set for the workflow and the jobs in the executable workflow.
The format of notify file is described here

5. <daxlabel-daxindex>.replica.store

This is a file based replica catalog, that only lists file locations are mentioned in the DAX.

6. <daxlabel-daxindex>.dot

Pegasus creates a dot file for the executable workflow in addition to the .dag file. This can be used to visualize the
executable workflow using the dot program.

7. <job>.sub

Each job in the executable workflow is associated with it's own submit file. The submit file tells Condor how to
execute the job.

8. <job>.out.00n

The stdout of the executable referred in the job submit file. In Pegasus, most jobs are launched via kickstart. Hence,
this file contains the kickstart XML provenance record that captures runtime provenance on the remote node where
the job was executed. n varies from 1-N where N is the JOB RETRY value in the .dag file. The exitpost executable

Submit Directory Details

210

is invoked on the <job>.out file and it moves the <job>.out to <job>.out.00n so that the the job's .out files are
preserved across retries.

9. <job>.err.00n

The stderr of the executable referred in the job submit file. In case of Pegasus, mostly the jobs are launched via
kickstart. Hence, this file contains stderr of kickstart. This is usually empty unless there in an error in kickstart
e.g. kickstart segfaults , or kickstart location specified in the submit file is incorrect. The exitpost executable is
invoked on the <job>.out file and it moves the <job>.err to <job>.err.00n so that the the job's .out files are
preserved across retries.

10.jobstate.log

The jobstate.log file is written out by the pegasus-monitord daemon that is launched when a workflow is submit-
ted for execution by pegasus-run. The pegasus-monitord daemon parses the dagman.out file and writes out the
jobstate.log that is easier to parse. The jobstate.log captures the various states through which a job goes during the
workflow. There are other monitoring related files that are explained in the monitoring chapter.

11.braindump.txt

Contains information about pegasus version, dax file, dag file, dax label.

Condor DAGMan File
The Condor DAGMan file (.dag) is the input to Condor DAGMan (the workflow executor used by Pegasus) .

Pegasus generated .dag file usually contains the following information for each job:

1. The job submit file for each job in the DAG.

2. The post script that is to be invoked when a job completes. This is usually found in $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's .out file and determines the exitcode.

3. JOB RETRY - the number of times the job is to be retried in case of failure. In case of Pegasus, job postscript exits
with a non zero exitcode if it determines a failure occurred.

4. The pre script to be invoked before running a job. This is usually for the dax jobs in the DAX. The pre script is
pegasus-plan invocation for the subdax.

In the last section of the DAG file the relations between the jobs (that identify the underlying DAG structure) are
highlighted.

Sample Condor DAG File
###
PEGASUS WMS GENERATED DAG FILE
DAG blackdiamond
Index = 0, Count = 1
##

JOB create_dir_blackdiamond_0_isi_viz create_dir_blackdiamond_0_isi_viz.sub
SCRIPT POST create_dir_blackdiamond_0_isi_viz /pegasus/bin/pegasus-exitcode \
 /submit-dir/create_dir_blackdiamond_0_isi_viz.out
RETRY create_dir_blackdiamond_0_isi_viz 3

JOB create_dir_blackdiamond_0_local create_dir_blackdiamond_0_local.sub
SCRIPT POST create_dir_blackdiamond_0_local /pegasus/bin/pegasus-exitcode
 /submit-dir/create_dir_blackdiamond_0_local.out

JOB pegasus_concat_blackdiamond_0 pegasus_concat_blackdiamond_0.sub

JOB stage_in_local_isi_viz_0 stage_in_local_isi_viz_0.sub
SCRIPT POST stage_in_local_isi_viz_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/stage_in_local_isi_viz_0.out

JOB chmod_preprocess_ID000001_0 chmod_preprocess_ID000001_0.sub
SCRIPT POST chmod_preprocess_ID000001_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/chmod_preprocess_ID000001_0.out

Submit Directory Details

211

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /pegasus/bin/pegasus-exitcode \
 /submit-dir/preprocess_ID000001.out

JOB subdax_black_ID000002 subdax_black_ID000002.sub
SCRIPT PRE subdax_black_ID000002 /pegasus/bin/pegasus-plan \
 -Dpegasus.user.properties=/submit-dir/./dag_1/test_ID000002/
pegasus.3862379342822189446.properties\
 -Dpegasus.log.*=/submit-dir/subdax_black_ID000002.pre.log \
 -Dpegasus.dir.exec=app_domain/app -Dpegasus.dir.storage=duncan -Xmx1024 -Xms512\
 --dir /pegasus-features/dax-3.2/dags \
 --relative-dir user/pegasus/blackdiamond/run0005/user/pegasus/blackdiamond/run0005/./dag_1 \
 --relative-submit-dir user/pegasus/blackdiamond/run0005/./dag_1/test_ID000002\
 --basename black --sites dax_site \
 --output local --force --nocleanup \
 --verbose --verbose --verbose --verbose --verbose --verbose --verbose \
 --verbose --monitor --deferred --group pegasus --rescue 0 \
 --dax /submit-dir/./dag_1/test_ID000002/dax/blackdiamond_dax.xml

JOB stage_out_local_isi_viz_0_0 stage_out_local_isi_viz_0_0.sub
SCRIPT POST stage_out_local_isi_viz_0_0 /pegasus/bin/pegasus-exitcode /submit-dir/
stage_out_local_isi_viz_0_0.out

SUBDAG EXTERNAL subdag_black_ID000003 /Users/user/Pegasus/work/dax-3.2/black.dag DIR /duncan/test

JOB clean_up_stage_out_local_isi_viz_0_0 clean_up_stage_out_local_isi_viz_0_0.sub
SCRIPT POST clean_up_stage_out_local_isi_viz_0_0 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_stage_out_local_isi_viz_0_0.out

JOB clean_up_preprocess_ID000001 clean_up_preprocess_ID000001.sub
SCRIPT POST clean_up_preprocess_ID000001 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_preprocess_ID000001.out

PARENT create_dir_blackdiamond_0_isi_viz CHILD pegasus_concat_blackdiamond_0
PARENT create_dir_blackdiamond_0_local CHILD pegasus_concat_blackdiamond_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_stage_out_local_isi_viz_0_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_preprocess_ID000001
PARENT preprocess_ID000001 CHILD subdax_black_ID000002
PARENT preprocess_ID000001 CHILD stage_out_local_isi_viz_0_0
PARENT subdax_black_ID000002 CHILD subdag_black_ID000003
PARENT stage_in_local_isi_viz_0 CHILD chmod_preprocess_ID000001_0
PARENT stage_in_local_isi_viz_0 CHILD preprocess_ID000001
PARENT chmod_preprocess_ID000001_0 CHILD preprocess_ID000001
PARENT pegasus_concat_blackdiamond_0 CHILD stage_in_local_isi_viz_0
##
End of DAG
##

Kickstart XML Record
Kickstart is a light weight C executable that is shipped with the pegasus worker package. All jobs are launced via
Kickstart on the remote end, unless explicitly disabled at the time of running pegasus-plan.

Kickstart does not work with:

1. Condor Standard Universe Jobs

2. MPI Jobs

Pegasus automatically disables kickstart for the above jobs.

Kickstart captures useful runtime provenance information about the job launched by it on the remote note, and puts in
an XML record that it writes to its own stdout. The stdout appears in the workflow submit directory as <job>.out.00n .
The following information is captured by kickstart and logged:

1. The exitcode with which the job it launched exited.

2. The duration of the job

3. The start time for the job

4. The node on which the job ran

Submit Directory Details

212

5. The stdout and stderr of the job

6. The arguments with which it launched the job

7. The environment that was set for the job before it was launched.

8. The machine information about the node that the job ran on

Amongst the above information, the dagman.out file gives a coarser grained estimate of the job duration and start time.

Reading a Kickstart Output File
The kickstart file below has the following fields highlighted:

1. The host on which the job executed and the ipaddress of that host

2. The duration and start time of the job. The time here is in reference to the clock on the remote node where the
job is executed.

3. The exitcode with which the job executed

4. The arguments with which the job was launched.

5. The directory in which the job executed on the remote site

6. The stdout of the job

7. The stderr of the job

8. The environment of the job

<?xml version="1.0" encoding="ISO-8859-1"?>

<invocation xmlns="http://pegasus.isi.edu/schema/invocation" \
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \
 xsi:schemaLocation="http://pegasus.isi.edu/schema/invocation http://pegasus.isi.edu/schema/
iv-2.0.xsd" \
 version="2.0" start="2009-01-30T19:17:41.157-06:00" duration="0.321"
 transformation="pegasus::dirmanager"\
 derivation="pegasus::dirmanager:1.0" resource="cobalt" wf-label="scb" \
 wf-stamp="2009-01-30T17:12:55-08:00" hostaddr="141.142.30.219" hostname="co-
login.ncsa.uiuc.edu"\
 pid="27714" uid="29548" user="vahi" gid="13872" group="bvr" umask="0022">

<mainjob start="2009-01-30T19:17:41.426-06:00" duration="0.052" pid="27783">

<usage utime="0.036" stime="0.004" minflt="739" majflt="0" nswap="0" nsignals="0" nvcsw="36"
 nivcsw="3"/>

<status raw="0"><regular exitcode="0"/></status>

<statcall error="0">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/dirmanager">23212F7573722F62696E2F656E762070</
file>
<statinfo mode="0100755" size="8202" inode="85904615883" nlink="1" blksize="16384" \
 blocks="24" mtime="2008-09-22T18:52:37-05:00" atime="2009-01-30T14:54:18-06:00" \
 ctime="2009-01-13T19:09:47-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<argument-vector>
<arg nr="1">--create</arg>
<arg nr="2">--dir</arg>
<arg nr="3">/u/ac/vahi/globus-test/EXEC/vahi/pegasus/scb/run0001</arg>
</argument-vector>

</mainjob>

<cwd>/u/ac/vahi/globus-test/EXEC</cwd>

<usage utime="0.012" stime="0.208" minflt="4232" majflt="0" nswap="0" nsignals="0" nvcsw="15"
 nivcsw="74"/>
<machine page-size="16384" provider="LINUX">

Submit Directory Details

213

<stamp>2009-01-30T19:17:41.157-06:00</stamp>
<uname system="linux" nodename="co-login" release="2.6.16.54-0.2.5-default" machine="ia64">#1 SMP
 Mon Jan 21\
 13:29:51 UTC 2008</uname>
<ram total="148299268096" free="123371929600" shared="0" buffer="2801664"/>
<swap total="1179656486912" free="1179656486912"/>
<boot idle="1315786.920">2009-01-15T10:19:50.283-06:00</boot>
<cpu count="32" speed="1600" vendor=""></cpu>
<load min1="3.50" min5="3.50" min15="2.60"/>
<proc total="841" running="5" sleeping="828" stopped="5" vmsize="10025418752" rss="2524299264"/>
<task total="1125" running="6" sleeping="1114" stopped="5"/>
</machine>
<statcall error="0" id="stdin">
<!-- deferred flag: 0 -->
<file name="/dev/null"/>
<statinfo mode="020666" size="0" inode="68697" nlink="1" blksize="16384" blocks="0" \
 mtime="2007-05-04T05:54:02-05:00" atime="2007-05-04T05:54:02-05:00" \
 ctime="2009-01-15T10:21:54-06:00" uid="0" user="root" gid="0" group="root"/>
</statcall>

<statcall error="0" id="stdout">
<temporary name="/tmp/gs.out.s9rTJL" descriptor="3"/>
<statinfo mode="0100600" size="29" inode="203420686" nlink="1" blksize="16384" blocks="128" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
<data>mkdir finished successfully.
</data>
</statcall>
<statcall error="0" id="stderr">
<temporary name="/tmp/gs.err.kobn3S" descriptor="5"/>
<statinfo mode="0100600" size="0" inode="203420689" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<statcall error="0" id="gridstart">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/kickstart">7F454C46020101000000000000000000</
file>
<statinfo mode="0100755" size="255445" inode="85904615876" nlink="1" blksize="16384" blocks="504" \
 mtime="2009-01-30T18:06:28-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T18:06:28-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="logfile">
<descriptor number="1"/>
<statinfo mode="0100600" size="0" inode="53040253" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:39-06:00" atime="2009-01-30T19:17:39-06:00" \
ctime="2009-01-30T19:17:39-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="channel">
<fifo name="/tmp/gs.app.Ien1m0" descriptor="7" count="0" rsize="0" wsize="0"/>
<statinfo mode="010640" size="0" inode="203420696" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<environment>
<env key="GLOBUS_GRAM_JOB_CONTACT">https://co-login.ncsa.uiuc.edu:50001/27456/1233364659/</env>
<env key="GLOBUS_GRAM_MYJOB_CONTACT">URLx-nexus://co-login.ncsa.uiuc.edu:50002/</env>
<env key="GLOBUS_LOCATION">/usr/local/prews-gram-4.0.7-r1/</env>
....
</environment>

<resource>
<soft id="RLIMIT_CPU">unlimited</soft>
<hard id="RLIMIT_CPU">unlimited</hard>
<soft id="RLIMIT_FSIZE">unlimited</soft>
....
</resource>
</invocation>

Jobstate.Log File
The jobstate.log file logs the various states that a job goes through during workflow execution. It is created by the
pegasus-monitord daemon that is launched when a workflow is submitted to Condor DAGMan by pegasus-run.

Submit Directory Details

214

pegasus-monitord parses the dagman.out file and writes out the jobstate.log file, the format of which is more amenable
to parsing.

Note

The jobstate.log file is not created if a user uses condor_submit_dag to submit a workflow to Condor DAG-
Man.

The jobstate.log file can be created after a workflow has finished executing by running pegasus-monitord on
the .dagman.out file in the workflow submit directory.

Below is a snippet from the jobstate.log for a single job executed via condorg:

1239666049 create_dir_blackdiamond_0_isi_viz SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz EXECUTE 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GLOBUS_SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GRID_SUBMIT 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_TERMINATED 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_SUCCESS 0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_STARTED - isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_TERMINATED 3758.0 isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_SUCCESS - isi_viz - 1

Each entry in jobstate.log has the following:

1. The ISO timestamp for the time at which the particular event happened.

2. The name of the job.

3. The event recorded by DAGMan for the job.

4. The condor id of the job in the queue on the submit node.

5. The pegasus site to which the job is mapped.

6. The job time requirements from the submit file.

7. The job submit sequence for this workflow.

Table 13.1. Table 1: The job lifecycle when executed as part of the workflow

STATE/EVENT DESCRIPTION

SUBMIT job is submitted by condor schedd for execution.

EXECUTE condor schedd detects that a job has started execution.

GLOBUS_SUBMIT the job has been submitted to the remote resource. It's only
written for GRAM jobs (i.e. gt2 and gt4).

GRID_SUBMIT same as GLOBUS_SUBMIT event. The
ULOG_GRID_SUBMIT event is written for all grid uni-
verse jobs./

JOB_TERMINATED job terminated on the remote node.

JOB_SUCCESS job succeeded on the remote host, condor id will be zero
(successful exit code).

JOB_FAILURE job failed on the remote host, condor id will be the job's
exit code.

POST_SCRIPT_STARTED post script started by DAGMan on the submit host, usually
to parse the kickstart output

POST_SCRIPT_TERMINATED post script finished on the submit node.

POST_SCRIPT_SUCCESS | POST_SCRIPT_FAILURE post script succeeded or failed.

Submit Directory Details

215

There are other monitoring related files that are explained in the monitoring chapter.

Pegasus Workflow Job States and Delays
The various job states that a job goes through (as caputured in the dagman.out and jobstate.log file) during it's lifecycle
are illustrated below. The figure below highlights the various local and remote delays during job lifecycle.

Braindump File
The braindump file is created per workflow in the submit file and contains metadata about the workflow.

Table 13.2. Table 2: Information Captured in Braindump File

KEY DESCRIPTION

user the username of the user that ran pegasus-plan

grid_dn the Distinguished Name in the proxy

submit_hostname the hostname of the submit host

root_wf_uuid the workflow uuid of the root workflow

wf_uuid the workflow uuid of the current workflow i.e the one
whose submit directory the braindump file is.

dax the path to the dax file

dax_label the label attribute in the adag element of the dax

dax_index the index in the dax.

dax_version the version of the DAX schema that DAX referred to.

pegasus_wf_name the workflow name constructed by pegasus when plan-
ning

timestamp the timestamp when planning occured

basedir the base submit directory

submit_dir the full path for the submit directory

properties the full path to the properties file in the submit directory

Submit Directory Details

216

planner the planner used to construct the executable workflow. al-
ways pegasus

planner_version the versions of the planner

pegasus_build the build timestamp

planner_arguments the arguments with which the planner is invoked.

jsd the path to the jobstate file

rundir the rundir in the numbering scheme for the submit direc-
tories

pegasushome the root directory of the pegasus installation

vogroup the vo group to which the user belongs to. Defaults to pe-
gasus

condor_log the full path to condor common log in the submit directory

notify the notify file that contains any notifications that need to
be sent for the workflow.

dag the basename of the dag file created

type the type of executable workflow. Can be dag | shell

A Sample Braindump File is displayed below:

user vahi
grid_dn null
submit_hostname obelix
root_wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
dax /data/scratch/vahi/examples/synthetic-scec/Test.dax
dax_label Stampede-Test
dax_index 0
dax_version 3.3
pegasus_wf_name Stampede-Test-0
timestamp 20110726T153746-0700
basedir /data/scratch/vahi/examples/synthetic-scec/dags
submit_dir /data/scratch/vahi/examples/synthetic-scec/dags/vahi/pegasus/Stampede-Test/run0005
properties pegasus.6923599674234553065.properties
planner /data/scratch/vahi/software/install/pegasus/default/bin/pegasus-plan
planner_version 3.1.0cvs
pegasus_build 20110726221240Z
planner_arguments "--conf ./conf/properties --dax Test.dax --sites local --output local --dir dags
 --force --submit "
jsd jobstate.log
rundir run0005
pegasushome /data/scratch/vahi/software/install/pegasus/default
vogroup pegasus
condor_log Stampede-Test-0.log
notify Stampede-Test-0.notify
dag Stampede-Test-0.dag
type dag

Pegasus static.bp File
Pegasus creates a workflow.static.bp file that links jobs in the DAG with the jobs in the DAX. The contents of the file
are in netlogger format. The purpose of this file is to be able to link an invocation record of a task to the corresponding
job in the DAX

The workflow is replaced by the name of the workflow i.e. same prefix as the .dag file

In the file there are five types of events:

• task.info

This event is used to capture information about all the tasks in the DAX(abstract workflow)

• task.edge

Submit Directory Details

217

This event is used to capture information about the edges between the tasks in the DAX (abstract workflow)

• job.info

This event is used to capture information about the jobs in the DAG (executable workflow generated by Pegasus)

• job.edge

This event is used to capture information about edges between the jobs in the DAG (executable workflow).

• wf.map.task_job

This event is used to associate the tasks in the DAX with the corresponding jobs in the DAG.

218

Chapter 14. API Reference
DAX XML Schema

The DAX format is described by the XML schema instance document dax-3.3.xsd [http://pegasus.isi.edu/wms/docs/
schemas/dax-3.3/dax-3.3.xsd]. A local copy of the schema definition is provided in the “etc” directory. The documen-
tation of the XML schema and its elements can be found in dax-3.3.html [http://pegasus.isi.edu/wms/docs/schemas/
dax-3.3/dax-3.3.html] as well as locally in doc/schemas/dax-3.3/dax-3.3.html in your Pegasus distribu-
tion.

DAX XML Schema In Detail
The DAX file format has four major sections, with the second section divided into more sub-sections. The DAX
format works on the abstract or logical level, letting you focus on the shape of the workflows, what to do and what
to work upon.

1. Workflow-level Notifications

Very simple workflow-level notifications. These are defined in the Notification section.

2. Catalogs

The first section deals with included catalogs. While we do recommend to use external replica- and transformation
catalogs, it is possible to include some replicas and transformations into the DAX file itself. Any DAX-included
entry takes precedence over regular replica catalog (RC) and transformation catalog (TC) entries.

The first section (and any of its sub-sections) is completely optional.

a. The first sub-section deals with included replica descriptions.

b. The second sub-section deals with included transformation descriptions.

c. The third sub-section declares multi-item executables.

3. Job List

The jobs section defines the job- or task descriptions. For each task to conduct, a three-part logical name declares the
task and aides identifying it in the transformation catalog or one of the executable section above. During planning,
the logical name is translated into the physical executable location on the chosen target site. By declaring jobs
abstractly, physical layout consideration of the target sites do not matter. The job's id uniquley identifies the job
within this workflow.

The arguments declare what command-line arguments to pass to the job. If you are passing filenames, you should
refer to the logical filename using the file element in the argument list.

Important for properly planning the task is the list of files consumed by the task, its input files, and the files produced
by the task, its output files. Each file is described with a uses element inside the task.

Elements exist to link a logical file to any of the stdio file descriptors. The profile element is Pegasus's way to
abstract site-specific data.

Jobs are nodes in the workflow graph. Other nodes include unplanned workflows (DAX), which are planned and
then run when the node runs, and planned workflows (DAG), which are simply executed.

4. Control-flow Dependencies

The third section lists the dependencies between the tasks. The relationships are defined as child parent relation-
ships, and thus impacts the order in which tasks are run. No cyclic dependencies are permitted.

Dependencies are directed edges in the workflow graph.

http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html
http://pegasus.isi.edu/wms/docs/schemas/dax-3.3/dax-3.3.html

API Reference

219

XML Intro

If you have seen the DAX schema before, not a lot of new items in the root element. However, we did retire the (old)
attributes ending in Count.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2011-07-28T18:29:57Z -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.3.xsd"
 version="3.3"
 name="diamond"
 index="0"
 count="1">

The following attributes are supported for the root element adag.

Table 14.1.

attribute optional? type meaning

version required VersionPattern Version number of DAX in-
stance document. Must be
3.3.

name required string name of this DAX (or set of
DAXes).

count optional positiveInteger size of list of DAXes with
this name. Defaults to 1.

index optional nonNegativeInteger current index of DAX with
same name. Defaults to 0.

fileCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

jobCount removed positiveInteger Old 2.1 attribute, removed,
do not use.

childCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

The version attribute is restricted to the regular expression \d+(\.\d+(\.\d+)?)?.This expression represents
the VersionPattern type that is used in other places, too. It is a more restrictive expression than before, but allows us
to compute comparable version number using the following formula:

version1: a.b.c version2: d.e.f

n = a * 1,000,000 + b * 1,000 + c m = d * 1,000,000 + e * 1,000 + f

version1 > version2 if n > m

Workflow-level Notifications

(something to be said here.)

 <!-- part 1.1: invocations -->
 <invoke when="at_end">/bin/date -Ins >> my.log</invoke>

The above snippet will append the current time to a log file in the current directory. This is with regards to the monitord
instance acting on the notification.

The Catalogs Section

The initial section features three sub-sections:

1. a catalog of files used,

2. a catalog of transformations used, and

API Reference

220

3. compound transformation declarations.

The Replica Catalog Section

The file section acts as in in-file replica catalog (RC). Any files declared in this section take precedence over files in
external replica catalogs during planning.

 <!-- part 1.2: included replica catalog -->
 <file name="example.a" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE -->
 <profile namespace="stat" key="size">/* integer to be defined */</profile>
 <profile namespace="stat" key="md5sum">/* 32 char hex string */</profile>
 <profile namespace="stat" key="mtime">/* ISO-8601 timestamp */</profile>

 <!-- metadata is currently NOT SUPPORTED -->
 <metadata key="timestamp" type="int">/* ISO-8601 *or* 20100417134523:int */</metadata>
 <metadata key="origin" type="string">ocean</metadata>

 <!-- PFN to by-pass replica catalog -->
 <!-- The "site attribute is optional -->
 <pfn url="file:///tmp/example.a" site="local">
 <profile namespace="stat" key="owner">voeckler</profile>
 </pfn>
 <pfn url="file:///storage/funky.a" site="local"/>
 </file>

 <!-- a more typical example from the black diamond -->
 <file name="f.a">
 <pfn url="file:///Users/voeckler/f.a" site="local"/>
 </file>

The first file entry above is an example of a data file with two replicas. The file element requires a logical file name.
Each logical filename may have additional information associated with it, enumerated by profile elements. Each file
entry may have 0 or more metadata associated with it. Each piece of metadata has a key string and type attribute
describing the element's value.

Warning

The metadata element is not support as of this writing! Details may change in the future.

The file element can provide 0 or more pfn locations, taking precedence over the replica catalog. A file element that
does not name any pfn children-elements will still require look-ups in external replica catalogs. Each pfn element
names a concrete location of a file. Multiple locations constitute replicas of the same file, and are assumed to be
usable interchangably. The url attribute is mandatory, and typically would use a file schema URL. The site attribute
is optional, and defaults to value local if missing. A pfn element may have profile children-elements, which refer to
attributes of the physical file. The file-level profiles refer to attributes of the logical file.

Note

The stat profile namespace is ony an example, and details about stat are not yet implemented. The proper
namespaces pegasus, condor, dagman, env, hints, globus and selector enjoy full support.

The second file entry above shows a usage example from the black-diamond example workflow that you are more
likely to encouter or write.

The presence of an in-file replica catalog lets you declare a couple of interesting advanced features. The DAG and
DAX file declarations are just files for all practical purposes. For deferred planning, the location of the site catalog
(SC) can be captured in a file, too, that is passed to the job dealing with the deferred planning as logical filename.

 <file name="black.dax" >
 <!-- specify the location of the DAX file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond_dax.xml" site="local"/>
 </file>

 <file name="black.dag" >
 <!-- specify the location of the DAG file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond.dag" site="local"/>
 </file>

API Reference

221

 <file name="sites.xml" >
 <!-- specify the location of a site catalog to use for deferred planning -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/conf/sites.xml" site="local"/>
 </file>

The Transformation Catalog Section

The executable section acts as an in-file transformation catalog (TC). Any transformations declared in this section
take precedence over the external transformation catalog during planning.

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="example" name="mDiffFit" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE! -->
 <profile namespace="stat" key="size">5000</profile>
 <profile namespace="stat" key="md5sum">AB454DSSDA4646DS</profile>
 <profile namespace="stat" key="mtime">2010-11-22T10:05:55.470606000-0800</profile>

 <!-- metadata is currently NOT SUPPORTED! -->
 <metadata key="timestamp" type="int">/* see above */</metadata>
 <metadata key="origin" type="string">ocean</metadata>

 <!-- PFN to by-pass transformation catalog -->
 <!-- The "site" attribute is optional -->
 <pfn url="file:///tmp/mDiffFit" site="local"/>
 <pfn url="file:///tmp/storage/mDiffFit" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mDiff" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiff" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mFitplane" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiffFitplane" site="local">
 <profile namespace="stat" key="md5sum">0a9c38b919c7809cb645fc09011588a6</profile>
 </pfn>
 <invoke when="at_end">/path/to/my_send_email some args</invoke>
 </executable>

 <!-- a more likely example from the black diamond -->
 <executable namespace="diamond" name="preprocess" version="2.0"
 arch="x86_64"
 os="linux"
 osversion="2.6.18">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="local" />
 </executable>

Logical filenames pertaining to a single executables in the transformation catalog use the executable element. Any
executable element features the optional namespace attribute, a mandatory name attribute, and an optional version
attribute. The version attribute defaults to "1.0" when absent. An executable typically needs additional attributes to
describe it properly, like the architecture, OS release and other flags typically seen with transformations, or found in
the transformation catalog.

Table 14.2.

attribute optional? type meaning

name required string logical transformation name

namespace optional string namespace of logical trans-
formation, default to null
value.

version optional VersionPattern version of logical transfor-
mation, defaults to "1.0".

installed optional boolean whether to stage the file
(false), or not (true, default).

API Reference

222

attribute optional? type meaning

arch optional Architecture restricted set of tokens, see
schema definition file.

os optional OSType restricted set of tokens, see
schema definition file.

osversion optional VersionPattern kernel version as beginning
of `uname -r`.

glibc optional VersionPattern version of libc.

The rationale for giving these flags in the executable element header is that PFNs are just identical replicas or instances
of a given LFN. If you need a different 32/64 bit-ed-ness or OS release, the underlying PFN would be different, and
thus the LFN for it should be different, too.

Note
We are still discussing some details and implications of this decision.

The initial examples come with the same caveats as for the included replica catalog.

Warning
The metadata element is not support as of this writing! Details may change in the future.

Similar to the replica catalog, each executable element may have 0 or more profile elements abstracting away site-
specific details, zero or more metadata elements, and zero or more pfn elements. If there are no pfn elements, the
transformation must still be searched for in the external transformation catalog. As before, the pfn element may have
profile children-elements, referring to attributes of the physical filename itself.

Each executable element may also feature invoke elements. These enable notifications at the appropriate point when
every job that uses this executable reaches the point of notification. Please refer to the notification section for details
and caveats.

The last example above comes from the black diamond example workflow, and presents the kind and extend of
attributes you are most likely to see and use in your own workflows.

The Compound Transformation Section

The compound transformation section declares a transformation that comprises multiple plain transformation. You
can think of a compound transformation like a script interpreter and the script itself. In order to properly run the
application, you must start both, the script interpreter and the script passed to it. The compound transformation helps
Pegasus to properly deal with this case, especially when it needs to stage executables.

 <transformation namespace="example" version="1.0" name="mDiffFit" >
 <uses name="mDiffFit" />
 <uses name="mDiff" namespace="example" version="2.0" />
 <uses name="mFitPlane" />
 <uses name="mDiffFit.config" executable="false" />
 </transformation>

A transformation element declares a set of purely logical entities, executables and config (data) files, that are all
required together for the same job. Being purely logical entities, the lookup happens only when the transformation
element is referenced (or instantiated) by a job element later on.

The namespace and version attributes of the transformation element are optional, and provide the defaults for the inner
uses elements. They are also essential for matching the transformation with a job.

The transformation is made up of 1 or more uses element. Each uses has a boolean attribute executable, true by
default, or false to indicate a data file. The name is a mandatory attribute, refering to an LFN declared previously
in the File Catalog (executable is false), Executable Catalog (executable is true), or to be looked up as necessary
at instantiation time. The lookup catalog is determined by the executable attribute.

After uses elements, any number of invoke elements may occur to add a notification each whenever this transformation
is instantiated.

API Reference

223

The namespace and version attributes' default values inside uses elements are inherited from the transformation at-
tributes of the same name. There is no such inheritance for uses elements with executable attribute of false.

Graph Nodes

The nodes in the DAX comprise regular job nodes, already instantiated sub-workflows as dag nodes, and still to
be instantiated dax nodes. Each of the graph nodes can has a mandatory id attribute. The id attribute is currently a
restriction of type NodeIdentifierPattern type, which is a restriction of the xs:NMTOKEN type to letters, digits, hyphen
and underscore.

The level attribute is deprecated, as the planner will trust its own re-computation more than user input. Please do not
use nor produce any level attribute.

The node-label attribute is optional. It applies to the use-case when every transformation has the same name, but its
arguments determine what it really does. In the presence of a node-label value, a workflow grapher could use the label
value to show graph nodes to the user. It may also come in handy while debugging.

Any job-like graph node has the following set of children elements, as defined in the AbstractJobType declaration
in the schema definition:

• 0 or 1 argument element to declare the command-line of the job's invocation.

• 0 or more profile elements to abstract away site-specific or job-specific details.

• 0 or 1 stdin element to link a logical file the the job's standard input.

• 0 or 1 stdout element to link a logical file to the job's standard output.

• 0 or 1 stderr element to link a logical file to the job's standard error.

• 0 or more uses elements to declare consumed data files and produced data files.

• 0 or more invoke elements to solicit notifications whence a job reaches a certain state in its life-cycle.

Job Nodes

A job element has a number of attributes. In addition to the id and node-label described in (Graph Nodes)above,
the optional namespace, mandatory name and optional version identify the transformation, and provide the look-
up handle: first in the DAX's transformation elements, then in the executable elements, and finally in an external
transformation catalog.

 <!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>
 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" register="false" transfer="true" type="data" />
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, at_end, all -->
 <!-- PEGASUS_* env-vars: event, status, submit dir, wf/job id, stdout, stderr -->
 <invoke when="start">/path/to arg arg</invoke>
 <invoke when="on_success"><![CDATA[/path/to arg arg]]></invoke>
 <invoke when="at_end"><![CDATA[/path/to arg arg]]></invoke>
 </job>

The argument element contains the complete command-line that is needed to invoke the executable. The only variable
components are logical filenames, as included file elements.

The profile argument lets you encapsulate site-specific knowledge .

The stdin, stdout and stderr element permits you to connect a stdio file descriptor to a logical filename. Note that you
will still have to declare these files in the uses section below.

API Reference

224

The uses element enumerates all the files that the task consumes or produces. While it is not necessary nor required
to have all files appear on the command-line, it is imperative that you declare even hidden files that your task requires
in this section, so that the proper ancilliary staging- and clean-up tasks can be generated during planning.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set:

Table 14.3.

keyword job life-cycle state meaning

never never (default). Never notify of anything.
This is useful to temporarily disable
an existing notifications.

start submit create a notification when the job is
submitted.

on_error end after a job finishes with failure (exit-
code != 0).

on_success end after a job finishes with success (exit-
code == 0).

at_end end after a job finishes, regardless of exit-
code.

all always like start and at_end combined.

Warning

In clustered jobs, a notification can only be sent at the start or end of the clustered job, not for each member.

Each invoke is a simple local invocation of an executable or script with the specified arguments. The executable inside
the invoke body will see the following environment variables:

Table 14.4.

variable job life-cycle state meaning

PEGASUS_EVENT always The value of the when attribute

PEGASUS_STATUS end The exit status of the graph node. Only
available for end notifications.

PEGASUS_SUBMIT_DIR always In which directory to find the job (or
workflow).

PEGASUS_JOBID always The job (or workflow) identifier. This
is potentially more than merely the
value of the id attribute.

PEGASUS_STDOUT always The filename where stdout goes.
Empty and possibly non-existent at
submit time (though we still have the
filename). The kickstart record for job
nodes.

PEGASUS_STDERR always The filename where stderr goes. Emp-
ty and possibly non-existent at sub-
mit time (though we still have the file-
name).

Generators should use CDATA encapsulated values to the invoke element to minimize interference. Unfortunately,
CDATA cannot be nested, so if the user invocation contains a CDATA section, we suggest that they use careful XML-
entity escaped strings. The notifications section describes these in further detail.

API Reference

225

DAG Nodes

A workflow that has already been concretized, either by an earlier run of Pegasus, or otherwise constructed for DAG-
Man execution, can be included into the current workflow using the dag element.

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 <invoke> <!-- optional, should be possible --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data"/>
 </dag>

The id and node-label attributes were described previously. The name attribute refers to a file from the File Catalog
that provides the actual DAGMan DAG as data content. The dag element features optional profile elements. These
would most likely pertain to the dagman and env profile namespaces. It should be possible to have the optional
notify element in the same manner as for jobs.

A graph node that is a dag instead of a job would just use a different submit file generator to create a DAGMan
invocation. There can be an argument element to modify the command-line passed to DAGMan.

DAX Nodes

A still to be planned workflow incurs an invocation of the Pegasus planner as part of the workflow. This still abstract
sub-workflow uses the dax element.

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="env" key="foo">bar</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 --dir ./datafind -vvvvv --force -s dax_site </argument>
 <invoke> <!-- optional, may not be possible here --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data" />
 </dax>

In addition to the id and node-label attributes, See Graph Nodes. The name attribute refers to a file from the File
Catalog that provides the to be planned DAX as external file data content. The dax element features optional profile
elements. These would most likely pertain to the pegasus, dagman and env profile namespaces. It may be possible
to have the optional notify element in the same manner as for jobs.

A graph node that is a dax instead of a job would just use yet another submit file and pre-script generator to create a
DAGMan invocation. The argument string pertains to the command line of the to-be-generated DAGMan invocation.

Inner ADAG Nodes

While completeness would argue to have a recursive nesting of adag elements, such recursive nestings are currently
not supported, not even in the schema. If you need to nest workflows, please use the dax or dag element to achieve
the same goal.

The Dependency Section

This section describes the dependencies between the jobs.

 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" edge-label="edge1" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" edge-label="edge2" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" edge-label="edge3" />
 <parent ref="ID000003" edge-label="edge4" />
 </child>

Each child element contains one or more parent element. Either element refers to a job, dag or dax element id at-
tribute using the ref attribute. In this version, we relaxed the xs:IDREF constraint in favor of a restriction on the
xs:NMTOKEN type to permit a larger set of identifiers.

The parent element has an optional edge-label attribute.

API Reference

226

Warning

The edge-label attribute is currently unused.

Its goal is to annotate edges when drawing workflow graphs.

Closing

As any XML element, the root element needs to be closed.

</adag>

DAX XML Schema Example
The following code example shows the XML instance document representing the diamond workflow.

<?xml version="1.0" encoding="UTF-8"?>
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/dax-3.3.xsd"
 version="3.3" name="diamond" index="0" count="1">
 <!-- part 1.1: invocations -->
 <invoke when="on_error">/bin/mailx -s 'diamond failed' use@some.domain</invoke>

 <!-- part 1.2: included replica catalog -->
 <file name="f.a">
 <pfn url="file:///lfs/voeckler/src/svn/pegasus/trunk/examples/grid-blackdiamond-perl/f.a"
 site="local" />
 </file>

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="diamond" name="preprocess" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="analyze" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="findrange" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>

 <!-- part 2: definition of all jobs (at least one) -->
 <job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
 <argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /
></argument>
 <uses name="f.b2" link="output" register="false" transfer="true" />
 <uses name="f.b1" link="output" register="false" transfer="true" />
 <uses name="f.a" link="input" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000002">
 <argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
 <uses name="f.b1" link="input" register="false" transfer="true" />
 <uses name="f.c1" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000003">
 <argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
 <uses name="f.b2" link="input" register="false" transfer="true" />
 <uses name="f.c2" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="analyze" version="2.0" id="ID000004">
 <argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></
argument>
 <uses name="f.c2" link="input" register="false" transfer="true" />
 <uses name="f.d" link="output" register="false" transfer="true" />
 <uses name="f.c1" link="input" register="false" transfer="true" />

API Reference

227

 </job>

 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" />
 <parent ref="ID000003" />
 </child>
</adag>

The above workflow defines the black diamond from the abstract workflow section of the Introduction chapter. It will
require minimal configuration, because the catalog sections include all necessary declarations.

The file element defines the location of the required input file in terms of the local machine. Please note that

• The file element declares the required input file "f.a" in terms of the local machine. Please note that if you plan the
workflow for a remote site, the has to be some way for the file to be staged from the local site to the remote site.
While Pegasus will augment the workflow with such ancillary jobs, the site catalog as well as local and remote site
have to be set up properlyl. For a locally run workflow you don't need to do anything.

• The executable elements declare the same executable keg that is to be run for each the logical transformation in
terms of the remote site futuregrid. To declare it for a local site, you would have to adjust the site attribute's value
to local. This section also shows that the same executable may come in different guises as transformation.

• The job elements define the workflow's logical constituents, the way to invoke the keg command, where to put
filenames on the commandline, and what files are consumed or produced. In addition to the direction of files, further
attributes determine whether to register the file with a replica catalog and whether to transfer it to the output site in
case of a product. We are only interested in the final data product "f.d" in this workflow, and not any intermediary
files. Typically, you would also want to register the data products in the replica catalog, especially in larger scenarios.

• The child elements define the control flow between the jobs.

DAX Generator API
The DAX generating APIs support Java, Perl and Python. This section will show in each language the necessary code,
using Pegasus-provided libraries, to generate the diamond DAX example above. There may be minor differences in
details, e.g. to show-case certain features, but effectively all generate the same basic diamond.

The Java DAX Generator API
The Java DAX API provided with the Pegasus distribution allows easy creation of complex and huge workflows. This
API is used by several applications to generate their abstract DAX. SCEC, which is Southern California Earthquake
Center, uses this API in their CyberShake workflow generator to generate huge DAX containing 10’s of
thousands of tasks with 100’s of thousands of input and output files. The Java API [javadoc/index.html] is
well documented using Javadoc for ADAGs [javadoc/edu/isi/pegasus/planner/dax/ADAG.html] .

The steps involved in creating a DAX using the API are

1. Create a new ADAG object

2. Add any Workflow notification elements

3. Create File objects as necessary. You can augment the files with physical information, if you want to include them
into your DAX. Otherwise, the physical information is determined from the replica catalog.

4. (Optional) Create Executable objects, if you want to include your transformation catalog into your DAX. Otherwise,
the translation of a job/task into executable location happens with the transformation catalog.

5. Create a new Job object.

6. Add arguments, files, profiles, notifications and other information to the Job object

javadoc/index.html
javadoc/index.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html

API Reference

228

7. Add the job object to the ADAG object

8. Repeat step 4-6 as necessary.

9. Add all dependencies to the ADAG object.

10.Call the writeToFile() method on the ADAG object to render the XML DAX file.

An example Java code that generates the diamond dax show above is listed below. This same code can be found in the
Pegasus distribution in the examples/grid-blackdiamond-java directory as BlackDiamonDAX.java:

/**
 * Copyright 2007-2008 University Of Southern California
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import edu.isi.pegasus.planner.dax.*;

/**
 * An example class to highlight how to use the JAVA DAX API to generate a diamond
 * DAX.
 *
 */
public class Diamond {

 public ADAG generate(String site_handle, String pegasus_location) throws Exception {

 java.io.File cwdFile = new java.io.File (".");
 String cwd = cwdFile.getCanonicalPath();

 ADAG dax = new ADAG("blackdiamond");
 dax.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 File fa = new File("f.a");
 fa.addPhysicalFile("file://" + cwd + "/f.a", "local");
 dax.addFile(fa);

 File fb1 = new File("f.b1");
 File fb2 = new File("f.b2");
 File fc1 = new File("f.c1");
 File fc2 = new File("f.c2");
 File fd = new File("f.d");
 fd.setRegister(true);

 Executable preprocess = new Executable("pegasus", "preprocess", "4.0");
 preprocess.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 preprocess.setInstalled(true);
 preprocess.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 Executable findrange = new Executable("pegasus", "findrange", "4.0");
 findrange.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 findrange.setInstalled(true);
 findrange.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 Executable analyze = new Executable("pegasus", "analyze", "4.0");
 analyze.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 analyze.setInstalled(true);
 analyze.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 dax.addExecutable(preprocess).addExecutable(findrange).addExecutable(analyze);

API Reference

229

 // Add a preprocess job
 Job j1 = new Job("j1", "pegasus", "preprocess", "4.0");
 j1.addArgument("-a preprocess -T 60 -i ").addArgument(fa);
 j1.addArgument("-o ").addArgument(fb1);
 j1.addArgument(" ").addArgument(fb2);
 j1.uses(fa, File.LINK.INPUT);
 j1.uses(fb1, File.LINK.OUTPUT);
 j1.uses(fb2, File.LINK.OUTPUT);
 j1.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j1.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j1);

 // Add left Findrange job
 Job j2 = new Job("j2", "pegasus", "findrange", "4.0");
 j2.addArgument("-a findrange -T 60 -i ").addArgument(fb1);
 j2.addArgument("-o ").addArgument(fc1);
 j2.uses(fb1, File.LINK.INPUT);
 j2.uses(fc1, File.LINK.OUTPUT);
 j2.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j2.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j2);

 // Add right Findrange job
 Job j3 = new Job("j3", "pegasus", "findrange", "4.0");
 j3.addArgument("-a findrange -T 60 -i ").addArgument(fb2);
 j3.addArgument("-o ").addArgument(fc2);
 j3.uses(fb2, File.LINK.INPUT);
 j3.uses(fc2, File.LINK.OUTPUT);
 j3.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j3.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j3);

 // Add analyze job
 Job j4 = new Job("j4", "pegasus", "analyze", "4.0");
 j4.addArgument("-a analyze -T 60 -i ").addArgument(fc1);
 j4.addArgument(" ").addArgument(fc2);
 j4.addArgument("-o ").addArgument(fd);
 j4.uses(fc1, File.LINK.INPUT);
 j4.uses(fc2, File.LINK.INPUT);
 j4.uses(fd, File.LINK.OUTPUT);
 j4.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j4.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j4);

 dax.addDependency("j1", "j2");
 dax.addDependency("j1", "j3");
 dax.addDependency("j2", "j4");
 dax.addDependency("j3", "j4");
 return dax;
 }

 /**
 * Create an example DIAMOND DAX
 * @param args
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java GenerateDiamondDAX <pegasus_location> ");
 System.exit(1);
 }

 try {
 Diamond diamond = new Diamond();
 String pegasusHome = args[0];
 String site = "TestCluster";
 ADAG dag = diamond.generate(site, pegasusHome);
 dag.writeToSTDOUT();
 //generate(args[0], args[1]).writeToFile(args[2]);

API Reference

230

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
}

Of course, you will have to set up some catalogs and properties to run this example. The details are catpured in the
examples directory examples/grid-blackdiamond-java.

The Python DAX Generator API
Refer to the auto-generated python documentation [python/] explaining this API.

#!/usr/bin/env python

from Pegasus.DAX3 import *
import sys
import os

if len(sys.argv) != 2:
 print "Usage: %s PEGASUS_HOME" % (sys.argv[0])
 sys.exit(1)

Create a abstract dag
diamond = ADAG("diamond")

Add input file to the DAX-level replica catalog
a = File("f.a")
a.addPFN(PFN("file://" + os.getcwd() + "/f.a", "local"))
diamond.addFile(a)

Add executables to the DAX-level replica catalog
In this case the binary is keg, which is shipped with Pegasus, so we use
the remote PEGASUS_HOME to build the path.
e_preprocess = Executable(namespace="diamond", name="preprocess", version="4.0", os="linux",
 arch="x86_64")
e_preprocess.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_preprocess)

e_findrange = Executable(namespace="diamond", name="findrange", version="4.0", os="linux",
 arch="x86_64")
e_findrange.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_findrange)

e_analyze = Executable(namespace="diamond", name="analyze", version="4.0", os="linux",
 arch="x86_64")
e_analyze.addPFN(PFN("file://" + sys.argv[1] + "/bin/keg", "TestCluster"))
diamond.addExecutable(e_analyze)

Add a preprocess job
preprocess = Job(namespace="diamond", name="preprocess", version="4.0")
b1 = File("f.b1")
b2 = File("f.b2")
preprocess.addArguments("-a preprocess","-T60","-i",a,"-o",b1,b2)
preprocess.uses(a, link=Link.INPUT)
preprocess.uses(b1, link=Link.OUTPUT)
preprocess.uses(b2, link=Link.OUTPUT)
diamond.addJob(preprocess)

Add left Findrange job
frl = Job(namespace="diamond", name="findrange", version="4.0")
c1 = File("f.c1")
frl.addArguments("-a findrange","-T60","-i",b1,"-o",c1)
frl.uses(b1, link=Link.INPUT)
frl.uses(c1, link=Link.OUTPUT)
diamond.addJob(frl)

Add right Findrange job
frr = Job(namespace="diamond", name="findrange", version="4.0")
c2 = File("f.c2")
frr.addArguments("-a findrange","-T60","-i",b2,"-o",c2)
frr.uses(b2, link=Link.INPUT)

python/
python/

API Reference

231

frr.uses(c2, link=Link.OUTPUT)
diamond.addJob(frr)

Add Analyze job
analyze = Job(namespace="diamond", name="analyze", version="4.0")
d = File("f.d")
analyze.addArguments("-a analyze","-T60","-i",c1,c2,"-o",d)
analyze.uses(c1, link=Link.INPUT)
analyze.uses(c2, link=Link.INPUT)
analyze.uses(d, link=Link.OUTPUT, register=True)
diamond.addJob(analyze)

Add control-flow dependencies
diamond.depends(parent=preprocess, child=frl)
diamond.depends(parent=preprocess, child=frr)
diamond.depends(parent=frl, child=analyze)
diamond.depends(parent=frr, child=analyze)

Add notification for analyze job
analyze.invoke(When.ON_ERROR, '/home/user/bin/email -s "Analyze job failed" user@example.com')

Add notification for workflow
diamond.invoke(When.AT_END, '/home/user/bin/email -s "Workflow finished" user@example.com')
diamond.invoke(When.ON_SUCCESS, '/home/user/bin/publish_workflow_result')

Write the DAX to stdout
diamond.writeXML(sys.stdout)

The Perl DAX Generator
The Perl API example below can be found in file blackdiamond.pl in directory examples/grid-black-
diamond-perl. It requires that you set the environment variable PEGASUS_HOME to the installation directory of
Pegasus, and include into PERL5LIB the path to the directory lib/perl of the Pegasus installation. The actual code
is longer, and will not require these settings, only the example below does. The Perl API is documented using perl-
doc [http://pegasus.isi.edu/wms/docs/3.0/perl/]. For each of the modules you can invoke perldoc, if your PERL5LIB
variable is set.

The steps to generate a DAX from Perl are similar to the Java steps. However, since most methods to the classes are
deeply within the Perl class modules, the convenience module Perl::DAX::Factory makes most constructors
accessible without you needing to type your fingers raw:

1. Create a new ADAG object.

2. Create Job objects as necessary.

3. As example, the required input file "f.a" is declared as File object and linked to the ADAG object.

4. The first job arguments and files are filled into the job, and the job is added to the ADAG object.

5. Repeat step 4 for the remaining jobs.

6. Add dependencies for all jobs. You have the option of assigning label text to edges, though these are not used (yet).

7. To generate the DAX file, invoke the toXML() method on the ADAG object. The first argument is an opened file
handle or IO::Handle descriptor scalar to write to, the second the default indentation for the root element, and
the third the XML namespace to use for elements and attributes. The latter is typically unused unless you want to
include your output into another XML document.

#!/usr/bin/env perl
#
use 5.006;
use strict;
use IO::Handle;
use Cwd;
use File::Spec;
use File::Basename;
use Sys::Hostname;
use POSIX ();

BEGIN { $ENV{'PEGASUS_HOME'} ||= `pegasus-config --nocrlf --home` }
use lib File::Spec->catdir($ENV{'PEGASUS_HOME'}, 'lib', 'perl');

http://pegasus.isi.edu/wms/docs/3.0/perl/
http://pegasus.isi.edu/wms/docs/3.0/perl/
http://pegasus.isi.edu/wms/docs/3.0/perl/

API Reference

232

use Pegasus::DAX::Factory qw(:all);
use constant NS => 'diamond';

my $adag = newADAG(name => NS);
my $job1 = newJob(namespace => NS, name => 'preprocess', version => '2.0');
my $job2 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job3 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job4 = newJob(namespace => NS, name => 'analyze', version => '2.0');

create "f.a" locally
my $fn = "f.a";
open(F, ">$fn") || die "FATAL: Unable to open $fn: $!\n";
my @now = gmtime();
printf F "%04u-%02u-%02u %02u:%02u:%02uZ\n",
 $now[5]+1900, $now[4]+1, @now[3,2,1,0];
close F;

my $file = newFile(name => 'f.a');
$file->addPFN(newPFN(url => 'file://' . Cwd::abs_path($fn),
 site => 'local'));
$adag->addFile($file);

follow this path, if the PEGASUS_HOME was determined
if (exists $ENV{'PEGASUS_HOME'}) {
 my $keg = File::Spec->catfile($ENV{'PEGASUS_HOME'}, 'bin', 'keg');
 my @os = POSIX::uname();
 # $os[2] =~ s/^(\d+(\.\d+(\.\d+)?)?).*/$1/; ## create a proper osversion
 $os[4] =~ s/i.86/x86/;

 # add Executable instances to DAX-included TC. This will only work,
 # if we know how to access the keg executable. HOWEVER, for a grid
 # workflow, these entries are not used, and you need to
 # [1] install the work tools remotely
 # [2] create a TC with the proper entries
 if (-x $keg) {
 for my $j ($job1, $job2, $job4) {
 my $app = newExecutable(namespace => $j->namespace,
 name => $j->name,
 version => $j->version,
 installed => 'false',
 arch => $os[4],
 os => lc($^O));
 $app->addProfile('globus', 'maxtime', '2');
 $app->addProfile('dagman', 'RETRY', '3');
 $app->addPFN(newPFN(url => "file://$keg", site => 'local'));
 $adag->addExecutable($app);
 }
 }
}

my %hash = (link => LINK_OUT, register => 'false', transfer => 'true');
my $fna = newFilename(name => $file->name, link => LINK_IN);
my $fnb1 = newFilename(name => 'f.b1', %hash);
my $fnb2 = newFilename(name => 'f.b2', %hash);
$job1->addArgument('-a', $job1->name, '-T60', '-i', $fna,
 '-o', $fnb1, $fnb2);
$adag->addJob($job1);

my $fnc1 = newFilename(name => 'f.c1', %hash);
$fnb1->link(LINK_IN);
$job2->addArgument('-a', $job2->name, '-T60', '-i', $fnb1,
 '-o', $fnc1);
$adag->addJob($job2);

my $fnc2 = newFilename(name => 'f.c2', %hash);
$fnb2->link(LINK_IN);
$job3->addArgument('-a', $job3->name, '-T60', '-i', $fnb2,
 '-o', $fnc2);
$adag->addJob($job3);
a convenience function -- you can specify multiple dependents
$adag->addDependency($job1, $job2, $job3);

my $fnd = newFilename(name => 'f.d', %hash);
$fnc1->link(LINK_IN);
$fnc2->link(LINK_IN);
$job4->separator(''); # just to show the difference wrt default
$job4->addArgument('-a ', $job4->name, ' -T60 -i ', $fnc1, ' ', $fnc2,

API Reference

233

 ' -o ', $fnd);
$adag->addJob($job4);
this is a convenience function adding parents to a child.
it is clearer than overloading addDependency
$adag->addInverse($job4, $job2, $job3);

workflow level notification in case of failure
refer to Pegasus::DAX::Invoke for details
my $user = $ENV{USER} || $ENV{LOGNAME} || scalar getpwuid($>);
$adag->invoke(INVOKE_ON_ERROR,
 "/bin/mailx -s 'blackdiamond failed' $user");

my $xmlns = shift;
$adag->toXML(*STDOUT, '', $xmlns);

DAX Generator without a Pegasus DAX API
If you are using some other scripting or programming environment, you can directly write out the DAX format using
the provided schema using any language. For instance, LIGO, the Laser Interferometer Gravitational Wave Observa-
tory, generate their DAX files as XML using their own Python code, not using our provided API.

If you write your own XML, you must ensure that the generated XML is well formed and valid with respect to the
DAX schema. You can use the pegasus-dax-validator to verify the validity of your generated file. Typically, you
generate a smallish test file to, validate that your generator creates valid XML using the validator, and then ramp it up
to produce the full workflow(s) you want to run. At this point the pegasus-dax-validator is a very simple program
that will only take exactly one argument, the name of the file to check.The following snippet checks a black-diamond
file that uses an improper osversion attribute in its executable element:

$ pegasus-dax-validator blackdiamond.dax
ERROR: cvc-pattern-valid: Value '2.6.18-194.26.1.el5' is not facet-valid
 with respect to pattern '[0-9]+(\.[0-9]+(\.[0-9]+)?)?' for type 'VersionPattern'.
ERROR: cvc-attribute.3: The value '2.6.18-194.26.1.el5' of attribute 'osversion'
 on element 'executable' is not valid with respect to its type, 'VersionPattern'.

0 warnings, 2 errors, and 0 fatal errors detected.

We are working on improving this program, e.g. provide output with regards to the line number where the issue
occurred. However, it will return with a non-zero exit code whenever errors were detected.

234

Chapter 15. Command Line Tools

Command Line Tools

235

Name
pegasus-analyzer — debugs a workflow.

Synopsis
pegasus-analyzer [--help|-h] [--quiet|-q] [--strict|-s]
 [--monitord|-m|-t] [--verbose|-v]
 [--output-dir|-o output_dir]
 [--dag dag_filename] [--dir|-d|-i input_dir]
 [--print|-p print_options] [--type workflow_type]
 [--debug-job job][--debug-dir debug_dir]
 [--local-executable local user executable]
 [--conf|-c property_file] [--files]
 [--top-dir dir_name] [--recurse|-r]
 [workflow_directory]

Description
pegasus-analyzer is a command-line utility for parsing the jobstate.log file and reporting successful and failed jobs.
When executed without any options, it will query the SQLite or MySQL database and retrieve failed job information
for the particular workflow. When invoked with the --files option, it will retrieve information from several log files,
isolating jobs that did not complete successfully, and printing their stdout and stderr so that users can get detailed
information about their workflow runs.

Options
-h , --help Prints a usage summary with all the available command-line options.

-q , --quiet Only print the the output and error filenames instead of their contents.

-s , --strict Get jobs' output and error filenames from the job’s submit file.

-m , -t , --monitord Invoke pegasus-monitord before analyzing the jobstate.log file. Although pe-
gasus-analyzer can be executed during the workflow execution as well as
after the workflow has already completed execution, pegasus-monitord" is
always invoked with the --replay option. Since multiple instances of pega-
sus-monitord" should not be executed simultaneously in the same workflow
directory, the user should ensure that no other instances of pegasus-monitord
are running. If the run_directory is writable, pegasus-analyzer will create a
jobstate.log file there, rotating an older log, if it is found. If the run_directory
is not writable (e.g. when the user debugging the workflow is not the same user
that ran the workflow), pegasus-analyzer will exit and ask the user to provide
the --output-dir option, in order to provide an alternative location for pega-
sus-monitord log files.

-v , --verbose Sets the log level for pegasus-analyzer. If omitted, the default level will be set
to WARNING. When this option is given, the log level is changed to INFO. If
this option is repeated, the log level will be changed to DEBUG.

-o output_dir , --output-dir
output_dir

This option provides an alternative location for all monitoring log files for a
particular workflow. It is mainly used when an user does not have write privi-
leges to a workflow directory and needs to generate the log files needed by pe-
gasus-analyzer. If this option is used in conjunction with the --monitord op-
tion, it will invoke pegasus-monitord using output_dir to store all output files.
Because workflows can have sub-workflows, pegasus-monitord will create
its files prepending the workflow wf_uuid to each filename. This way, mul-
tiple workflow files can be stored in the same directory. pegasus-analyzer
has built-in logic to find the specific jobstate.log file by looking at the work-
flow braindump.txt file first and figuring out the corresponding wf_uuid. If
output_dir does not exist, it will be created.

Command Line Tools

236

--dag 'dag_filename In this option, dag_filename specifies the path to the DAG file to use. pega-
sus-analyzer will get the directory information from the dag_filename. This
option overrides the --dir option below.

-d input_dir , -i input_dir , --dir
input_dir

Makes pegasus-analyzer look for the jobstate.log file in the input_dir directo-
ry. If this option is omitted, pegasus-analyzer will look in the current directory.

-p print_options , --print
print_options

Tells pegasus-analyzer what extra information it should print for failed jobs.
print_options is a comma-delimited list of options, that include pre, invoca-
tion, and/or all, which activates all printing options. With the pre option, pega-
sus-analyzer will print the pre-script information for failed jobs. For the invo-
cation option, pegasus-analyzer will print the invocation command, so users
can manually run the failed job.

--debug-job job When given this option, pegasus-analyzer turns on its debug_mode, when it
can be used to debug a particular Pegasus Lite job. In this mode, pegasus-ana-
lyzer will create a shell script in the debug_dir (see below, for specifying it) and
copy all necessary files to this local directory and then execute the job locally.

--debug-dir debug_dir When in debug_mode, pegasus-analyzer will create a temporary debug direc-
tory. Users can give this option in order to specify a particular debug_dir di-
rectory to be used instead.

--local-executable local user exe-
cutable

When in debug job mode for Pegasus Lite jobs, pegasus-analyzer creates a shell
script to execute the Pegasus Lite job locally in a debug directory. The Pegasus
Lite script refers to remote user executable path. This option can be used to pass
the local path to the user executable on the submit host. If the path to the user
executable in the Pegasus Lite job is same as the local installation.

--type workflow_type In this options, users specify what workflow_type they want to debug. At this
moment, the only workflow_type available is condor and it is the default value
if this option is not specified.

-c property_file , --conf
property_file

This option is used to specify an alternative property file, which may contain the
path to the database to be used by pegasus-analyzer. If this option is not spec-
ified, the config file specified in the braindump.txt file will take precedence.

--files This option allows users to run pegasus-analyzer using the files in the work-
flow directory instead of the database as the source of information. pegasus-an-
alyzer will output the same information, this option only changes where the
data comes from.

--top-dir dir_name This option enables pegasus-analyzer to show information about sub-work-
flows when using the database mode. When debugging a top-level workflow
with failures in sub-workflows, the analyzer will automatically print the com-
mand users should use to debug a failed sub-workflow. This allows the analyzer
to find the database it needs to access.

-r , --recurse This option sets pegasus-analyzer to automatically recurse into sub workflows
in case of failure. By default, if a workflow has a sub workflow in it, and that sub
workflow fails , pegasus-analyzer reports that the sub workflow node failed,
and lists a command invocation that the user must execute to determine what
jobs in the sub workflow failed. If this option is set, then the analyzer automat-
ically issues the command invocation and in addition displays the failed jobs
in the sub workflow.

Environment Variables
pegasus-analyzer does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

Command Line Tools

237

Example
The simplest way to use pegasus-analyzer is to go to the run_directory and invoke the analyzer:

$ pegasus-analyzer .

which will cause pegasus-analyzer to print information about the workflow in the current directory.

pegasus-analyzer output contains a summary, followed by detailed information about each job that either failed, or
is in an unknown state. Here is the summary section of the output:

**************************Summary***************************

 Total jobs : 75 (100.00%)
 # jobs succeeded : 41 (54.67%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 33 (44.00%)
 # jobs unknown : 1 (1.33%)

jobs_succeeded are jobs that have completed successfully. jobs_failed are jobs that have finished, but that did not
complete successfully. jobs_unsubmitted are jobs that are listed in the dag_file, but no information about them was
found in the jobstate.log file. Finally, jobs_unknown are jobs that have started, but have not reached completion.

After the summary section, pegasus-analyzer will display information about each job in the job_failed and
job_unknown categories.

******************Failed jobs' details**********************

=======================findrange_j3=========================

 last state: POST_SCRIPT_FAILURE
 site: local
 submit file: /home/user/diamond-submit/findrange_j3.sub
 output file: /home/user/diamond-submit/findrange_j3.out.000
 error file: /home/user/diamond-submit/findrange_j3.err.000

--------------------Task #1 - Summary-----------------------

 site : local
 hostname : server-machine.domain.com
 executable : (null)
 arguments : -a findrange -T 60 -i f.b2 -o f.c2
 error : 2
 working dir :

In the example above, the findrange_j3 job has failed, and the analyzer displays information about the job, showing that
the job finished with a POST_SCRIPT_FAILURE, and lists the submit, output and error files for this job. Whenever
pegasus-analyzer detects that the output file contains a kickstart record, it will display the breakdown containing each
task in the job (in this case we only have one task). Because pegasus-analyzer was not invoked with the --quiet flag,
it will also display the contents of the output and error files (or the stdout and stderr sections of the kickstart record),
which in this case are both empty.

In the case of SUBDAG and subdax jobs, pegasus-analyzer will indicate it, and show the command needed for the
user to debug that sub-workflow. For example:

=================subdax_black_ID000009=====================

 last state: JOB_FAILURE
 site: local
 submit file: /home/user/run1/subdax_black_ID000009.sub
 output file: /home/user/run1/subdax_black_ID000009.out
 error file: /home/user/run1/subdax_black_ID000009.err
 This job contains sub workflows!
 Please run the command below for more information:
 pegasus-analyzer -d /home/user/run1/blackdiamond_ID000009.000

-----------------subdax_black_ID000009.out-----------------

Executing condor dagman ...

-----------------subdax_black_ID000009.err-----------------

Command Line Tools

238

tells the user the subdax_black_ID000009 sub-workflow failed, and that it can be debugged by using the indicated
pegasus-analyzer command.

See Also
pegasus-status(1), pegasus-monitord(1), pegasus-statistics(1).

Authors
Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

239

Name
pegasus-cleanup — Removes files during Pegasus workflows enactment.

Synopsis
pegasus-cleanup [-h][-d][-f urls]

Description
pegasus-cleanup removes the files associated with the given URL. Some of the protocols it can handle are GridFTP,
SRM, Amazon S3, HTTP, and file://.

Note that pegasus-cleanup is a tool mostly used internally in Pegasus workflows, but the tool can be used stand alone
as well.

Options
-h , --help Prints a usage summary with all the available command-line options.

-f urls , --file urls Specifies the file with URLs to clean up (one per line). If this option is not given the list of
URLs will be read from stdin.

-d , --debug Enables debugging output.

Example
1 some_site_name
echo gsiftp://somehost/some/path | pegasus-cleanup

Credential Handling
Credentials used for cleanup can be specified with a combination of comments in the input file format and environment
variables. For example, give the input file above, pegasus-cleanup will expect either one environment variable spec-
ifying one generic credential (X509_USER_PROXY), or a specific one for the site named in the input file comment
(X509_USER_PROXY_some_site_name).

Authors
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

240

Name
pegasus-cluster — run a list of applications

Synopsis
pegasus-cluster [-d] [-e | -f] [-S ec] [-s fn] [-R fn] [-n nr] [inputfile]

Description
The pegasus-cluster tool executes a list of application in the order specified (assuming sequential mode.) It is generally
used to do horizontal clustering of independent application, and does not care about any application failures. Such
failures should be caught by using pegasus-kickstart to start application.

In vertical clustering mode, the hard failure mode is encouraged, ending execution as soon as one application fails.
When running a complex workflow through pegasus-cluster , the order of applications in the input file must be
topologically sorted.

Applications are usually using pegasus-kickstart to execute. In the pegasus-kickstart case, all invocations of pega-
sus-kickstart except the first should add the pegasus-kickstart option -H to supress repeating the XML preamble
and certain other headers of no interest when repeated.

pegasus-cluster permits shell-style quoting. One level of quoting is removed from the arguments. Please note that
pegasus-kickstart will also remove one level of quoting.

Arguments
-d This option increases the debug level. Debug message are generated on stdout . By default, debug-

ging is minimal.

-e This flag turns on the old behavior of pegasus-cluster to always run everything and return success
no matter what. The -e flag is mutually exclusive with the -f flag. By default, all applications are
executed regardles of failures. Any detected application failure results in a non-zero exit status
from pegasus-cluster.

-f In hard failure mode, as soon as one application fails, either through a non-zero exit code, or by
dying on a signal, further execution is stopped. In parallel execution mode, one or more other
applications later in the sequence file may have been started already by the time failure is detected.
Pegasus-cluster will wait for the completion of these applications, but not start new ones. The -f
flag is mutually exclusive with the -e flag. By default, all applications are executed regardless of
failures. Any detected application failure results in a non-zero exit status from pegasus-cluster.

-h This option prints the help message and exits the program.

-s fn This option will send protocol message (for Mei) to the specified file. By default, all message are
written to stdout .

-R fn The progress reporting feature, if turned on, will write one event record whenever an applica-
tion is started, and one event record whenever an application finished. This is to enable track-
ing of jobs in progress. By default, track logs are not written, unless the environment variable
SEQEXEC_PROGRESS_REPORT is set. If set, progress reports are appended to the file pointed
to by the environment variable.

-S ec This option is a multi-option, which may be used multiple times. For each given non-zero exit-code
of an application, mark it as a form of success. In -f mode, this means that pegasus-cluster will
not fail when seeing this exit code from any application it runs. By default, all non-zero exit code
constitute failure.

-n nr This option determines the amount of parallel execution. Typically, parallel execution is only rec-
ommended on multi-core systems, and must be deployed rather carefully, i.e. only completely in-
dependent jobs across of whole inputfile should ever be attempted to be run in parallel. The argu-

Command Line Tools

241

ment nr is the number of parallel jobs that should be used. In addition to a non-negative integer,
the word auto is also understood. When auto is specified, pegasus-cluster will attempt to auto-
matically determine the number of cores available in the system. Strictly sequential execution, as
if nr was 1, is the default. If the environment variable SEQEXEC_CPUS is set, it will determine
the default number of CPUs.

inputfile The input file specifies a list of application to run, one per line. Comments and empty lines are
permitted. The comment character is the octothorpe (#), and extends to the end of line. By default,
pegasus-cluster uses stdin to read the list of applications to execute.

Return Value
The pegasus-cluster tool returns 1, if an illegal option was used. It returns 2, if the status file from option -s cannot be
opened. It returns 3, if the input file cannot be opened. It does not return any failure for failed applications in old-exit
-e mode. In default and hard failure -f mode, it will return 5 for true failure. The determination of failure is modified
by the -S option.

All other internal errors being absent, pegasus-cluster will always return 0 when run without -f . Unlike shell, it will
not return the last application’s exit code. In default mode, it will return 5, if any application failed. Unlike shell, it
will not return the last application’s exit code. However, it will execute all applications. The determination of failure
is modified by the -S flag. In -f mode, *pegasus-cluster returns either 0 if all main sequence applications succeeded,
or 5 if one failed; or more than one in parallel execution mode. It will run only as long as applications were successful.
As before, the *-S flag determines what constitutes a failure.

The pegasus-cluster application will also create a small summary on stdout for each job, and one for itself, about the
success and failure. The field failed reports any exit code that was not zero or a signal of death termination. It does
not include non-zero exit codes that were marked as success using the -S option.

Task Summary
Each task executed by pegasus-cluster generates a record bracketed by square brackets like this (each entry is broken
over two lines for readability):

[cluster-task id=1, start="2011-04-27T14:31:25.340-07:00", duration=0.521,
 status=0, line=1, pid=18543, app="/bin/usleep"]
[cluster-task id=2, start="2011-04-27T14:31:25.342-07:00", duration=0.619,
 status=0, line=2, pid=18544, app="/bin/usleep"]
[cluster-task id=3, start="2011-04-27T14:31:25.862-07:00", duration=0.619,
 status=0, line=3, pid=18549, app="/bin/usleep"]

Each record is introduced by the string cluster-task with the following constituents, where strings are quoted:

id This is a numerical value for main sequence application, indicating the application’s place in the
sequence file. The setup task uses the string setup , and the cleanup task uses the string cleanup .

start is the ISO 8601 time stamp, with millisecond resolution, when the application was started. This
string is quoted.

duration is the application wall-time duration in seconds, with millisecond resolution.

status is the raw exit status as returned by the wait family of system calls. Typically, the exit code is found
in the high byte, and the signal of death in the low byte. Typically, 0 indicates a successful execution,
and any other value a problem. However, details could differ between systems, and exit codes are
only meaningful on the same os and architecture.

line is the line number where the task was found in the main sequence file. Setup- and cleanup tasks
don’t have this attribute.

pid is the process id under which the application had run.

app is the path to the application that was started. As with the progress record, any pegasus-kickstart
will be parsed out so that you see the true application.

Command Line Tools

242

pegasus-cluster Summary
The final summary of counts is a record bracketed by square brackets like this (broken over two lines for readability):

[cluster-summary stat="ok", lines=3, tasks=3, succeeded=3, failed=0, extra=0,
 duration=1.143, start="2011-04-27T14:31:25.338-07:00", pid=18542, app="./seqexec"]

The record is introduced by the string cluster-summary with the following constituents:

stat The string fail when pegasus-cluster would return with an exit status of 5. Concretely, this is any
failure in default mode, and first failure in -f mode. Otherwise, it will always be the string ok , if
the record is produced.

lines is the stopping line number of the input sequence file, indicating how far processing got. Up to the
number of cores additional lines may have been parsed in case of -f mode.

tasks is the number of tasks processed.

succeeded is the number of main sequence jobs that succeeded.

failed is the number of main sequence jobs that failed. The failure condition depends on the -S settings,
too.

extra is 0, 1 or 2, depending on the existence of setup- and cleanup jobs.

duration is the duration in seconds, with millisecond resolution, how long *pegasus-cluster ran.

start is the start time of pegasus-cluster as ISO 8601 time stamp.

See Also
pegasus-kickstart(1)

Caveats
The -S option sets success codes globally. It is not possible to activate success codes only for one specific application,
and doing so would break the shell compatibility. Due to the global nature, use success codes sparingly as last resort
emergency handler. In better plannable environments, you should use an application wrapper instead.

Example
The following shows an example input file to pegasus-cluster making use of pegasus-kickstart to track applications.

#
mkdir
/path/to/pegasus-kickstart -R HPC -n mkdir /bin/mkdir -m 2755 -p split-corpus split-ne-corpus
#
drop-dian
/path/to/pegasus-kickstart -H -R HPC -n drop-dian -o '^f-new.plain' /path/to/drop-dian /path/to/f-
tok.plain /path/to/f-tok.NE
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 f-new.plain split-
corpus/corpus.
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 /path/to/f-tok.NE
 split-ne-corpus/corpus.

Environment Variables
A number of environment variables permits to influence the behavior of pegasus-cluster during run-time.

SEQEXEC_PROGRESS_REPORTIf this variable is set, and points to a writable file location, progress report
records are appended to the file. While care is taken to atomically append

Command Line Tools

243

records to the log file, in case concurrent instances of pegasus-cluster are run-
ning, broken Linux NFS may still garble some content.

SEQEXEC_CPUS If this variable is set to a non-negative integer, that many CPUs are attempted
to be used. The special value auto permits to auto-detect the number of CPUs
available to pegasus-cluster on the system.

SEQEXEC_SETUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be run before any jobs are started. The exit
code of this setup job will have no effect upon the main job sequence. Success
or failure will not be counted towards the summary.

SEQEXEC_CLEANUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be before pegasus-cluster quits. Failure of
any previous job will have no effect on the ability to run this job. The exit code
of the cleanup job will have no effect on the overall success or failure state.
Success or failure will not be counted towards the summary.

History
As you may have noticed, pegasus-cluster had the name seqexec in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

Command Line Tools

244

Name
pegasus-config — The authority for where parts of the Pegasus system exists on the filesystem. pegasus-config can
be used to find libraries such as the DAX generators.

Synopsis
pegasus-config [-h] [--help] [-V] [--version] [--noeoln]
 [--perl-dump] [--perl-hash] [--python-dump] [--sh-dump]
 [--bin] [--conf] [--java] [--perl] [--python]
 [--python-externals] [--schema] [--classpath]
 [--local-site] [--full-local]

Description
pegasus-config is used to find locations of Pegasus system components. The tool is used internally in Pegasus and by
users who need to find paths for DAX generator libraries and schemas.

Options
-h , --help Prints help and exits.

-V , --version Prints Pegasus version information

--perl-dump Dumps all settings in perl format as separate variables.

--perl-hash Dumps all settings in perl format as single perl hash.

--python-dump Dumps all settings in python format.

--sh-dump Dumps all settings in shell format.

--bin Print the directory containing Pegasus binaries.

--conf Print the directory containing configuration files.

--java Print the directory containing the jars.

--perl Print the directory to include into your PERL5LIB.

--python Print the directory to include into your PYTHONLIB.

--python-externals Print the directory to the external Python libraries.

--schema Print the directory containing schemas.

--classpath Builds a classpath containing the Pegasus jars.

--noeoln Do not produce a end-of-line after output. This is useful when being called from non-
shell backticks in scripts. However, order is important for this option: If you intend
to use it, specify it first.

--local-site [d] Create a site catalog entry for site "local". This is only an XML snippet without root
element nor XML headers. The optional argument "d" points to the mount point to
use. If not specified, defaults to the user’s $HOME directory.

--full-local [d] Create a complete site catalog with only site "local". The an XML snippet without
root element nor XML headers. The optional argument "d" points to the mount point
to use. If not specified, defaults to the user’s $HOME directory.

Example
To set the PYTHONPATH variable in your shell for using the Python DAX API:

Command Line Tools

245

export PYTHONPATH=`pegasus-config --python`

To set the same path inside Python:

config = subprocess.Popen("pegasus-config --python-dump", stdout=subprocess.PIPE,
 shell=True).communicate()[0]
exec config

To set the PERL5LIB variable in your shell for using the Perl DAX API:

export PERL5LIB=`pegasus-config --perl`

To set the same path inside Perl:

eval `pegasus-config --perl-dump`;
die("Unable to eval pegasus-config output: $@") if $@;

will set variables a number of lexically local-scoped my variables with prefix "pegasus_" and expand Perl’s search
path for this script.

Alternatively, you can fail early and collect all Pegasus-related variables into a single global %pegasus variable for
convenience:

BEGIN {
 eval `pegasus-config --perl-hash`;
 die("Unable to eval pegasus-config output: $@") if $@;
}

Author
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

246

Name
pegasus-create-dir — Creates work directories in Pegasus workflows.

Synopsis
pegasus-create-dir [-h][-l level][-u URL]

Description
pegasus-create-dir creates a directory for the given URL. Some of the protocols it can handle are GridFTP, SRM,
Amazon S3, HTTP, and file:// (using mkdir).

Note that pegasus-create-dir is a tool mostly used internally in Pegasus workflows, but the tool can be used stand
alone as well.

Options
-h , --help Prints a usage summary with all the available command-line options.

-l level , --loglevel level The debugging output level. Valid values are debug, info, warning, and error. Default
value is info.

-u URL , --url URL Specifies the directory to create.

-s URL , --site URL Name of the targeted site. This is used when determining which credential to use.

Example
$ pegasus-create-dir -s some_site_name -u gsiftp://somehost/some/path

Credential Handling
Credentials used for create dir can be specified with a combination of comments in the input file format and environ-
ment variables. For example, give the input file above, pegasus-create-dir will expect either one environment variable
specifying one generic credential (X509_USER_PROXY), or a specific one for the site named on the command line
(X509_USER_PROXY_some_site_name).

Authors
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

247

Name
pegasus-dagman — Wrapper around *condor_dagman*. Not to be run by user.

Description
The pegasus-dagman is a python wrapper that invokes pegasus-monitord and condor_dagman both. This is started
automatically by pegasus-submit-dag and ultimately condor_submit_dag. DO NOT USE DIRECTLY

Return Value
If the condor_dagman and pegasus-monitord exit successfully, pegasus-dagman exits with 0, else exits with non-
zero.

Environment Variables
PATH The path variable is used to locate binary for condor_dagman and pegasus-monitord

See Also
pegasus-run(1) pegasus-monitord(1) pegasus-submit-dag(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

248

Name
pegasus-dax-validator — determines if a given DAX file is valid.

Synopsis
pegasus-dax-validator daxfile [verbose]

Description
The pegasus-dax-validator is a simple application that determines, if a given DAX file is valid XML. For this, it
parses the file with as many XML validity checks that the Apache Xerces XML parser framework supports.

Options
daxfile The location of the file containing the DAX.

verbose If any kind of second argument was specified, not limited to the string verbose, the verbose output
mode is switched on.

Return Value
If the DAX was parsed successfully, or only warning’s were issued, the exit code is 0. Any 'error or fatal error will
result in an exit code of 1.

Additionally, a summary statistics with counts of warnings, errors, and fatal errors will be displayed.

Example
The following shows the parsing of a DAX file that uses the wrong kind of value for certain enumerations. The output
shows the errors with the respective line number and column number of the input DAX file, so that one can find and
fix them more easily. (The lines in the example were broken to fit the manpage format.)

$ pegasus-dax-validator bd.dax
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'i386' is not
 facet-valid with respect to enumeration '[x86, x86_64, ppc, ppc_64,
 ia64, sparcv7, sparcv9, amd64]'. It must be a value from the
 enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'i386' of
 attribute 'arch' on element 'executable' is not valid with respect to
 its type, 'ArchitectureType'.
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'darwin' is
 not facet-valid with respect to enumeration '[aix, sunos, linux, macosx,
 windows]'. It must be a value from the enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'darwin' of
 attribute 'os' on element 'executable' is not valid with respect to
 its type, 'OSType'.

0 warnings, 4 errors, and 0 fatal errors detected.

See Also
Apache Xerces-J http://xerces.apache.org/xerces2-j/

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

http://xerces.apache.org/xerces2-j/
http://pegasus.isi.edu/

Command Line Tools

249

Name
pegasus-db-admin — Manage Pegasus databases.

Synopsis
pegasus-db-admin COMMAND [options] [DATABASE_URL]

Description
pegasus-db-admin is used to manage Pegasus databases. The tool can operate directly over a database URL, or can
read configuration parameters from the properties file or a submit directory. In the later case, a database type should
be provided to indicate which properties should be used to connect to the database. For example, the tool will seek
for pegasus.catalog.replica.db.* properties to connect to the JDBCRC database; or seek for pegasus.catalog.master.url
(or pegasus.dashboard.output, which is deprecated) property to connect to the MASTER database; or seek for the
pegasus.catalog.workflow.url (or pegasus.monitord.output, which is deprecated) property to connect to the WORK-
FLOW database. If none of these properties are found, the tool will connect to the default database

Commands
create Creates Pegasus databases from new or empty databases, or updates current database to the latest

version. If a database already exists, it will create a backup (SQLite only) of the current database
in the database folder as a 3-digit integer (e.g., workflow.db.000). Pegasus databases can be created
by 1) passing a database URL, 2) from the properties file, and 3) from the submit directory. Note
that if the properties file or the submit directory is used, a database type (JDBCRC, MASTER, or
WORKFLOW) should be provided.

update Updates the database to the latest or a given Pegasus version provided with the -V or --version option.
If a database already exists, it will create a backup (SQLite only) of the current database in the database
folder as a 3-digit integer (e.g., workflow.db.000).

check Verifies if the database is updated to the latest or a given Pegasus version provided with the -V or
--version option.

version Prints the current version of the database.

Global Options
-h , --help Prints a usage summary with all the available command-line options.

-c , --conf Specifies the properties file. This overrides all other property files. Should be used with -t.

-s , --submitdir Specifies the submit directory. Should be used with -t.

-t , --type Type of the database (JDBCRC, MASTER, or WORKFLOW). Should be used with -c or -s.

-d , --debug Enables debugging.

Examples
Create a database by passing a database URL.
$ pegasus-db-admin create sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin create mysql://localhost:3306/pegasus

Create a database from the properties file. Note that a database
type should be provided.
$ pegasus-db-admin create -c pegasus.properties -t MASTER
$ pegasus-db-admin create -c pegasus.properties -t JDBCRC
$ pegasus-db-admin create -c pegasus.properties -t WORKFLOW

Create a database from the submit directory. Note that a database
type should be provided.

Command Line Tools

250

$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

Update the database schema by passing a database URL.
$ pegasus-db-admin update sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin update mysql://localhost:3306/pegasus

Update the database schema from the properties file. Note that a
database type should be provided.
$ pegasus-db-admin update -c pegasus.properties -t MASTER
$ pegasus-db-admin update -c pegasus.properties -t JDBCRC
$ pegasus-db-admin update -c pegasus.properties -t WORKFLOW

Update the database schema from the submit directory. Note that a
database type should be provided.
$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

Authors
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

251

Name
pegasus-em — Submit and monitor ensembles of workflows

Synopsis
pegasus-em COMMAND [options] [ARGUMENT…]

Commands
server [-d] Start the ensemble manager server.

ensembles List ensembles.

create ENSEMBLE [-
R MAX_RUNNING] [-P
MAX_PLANNING]

Create an ensemble.

pause ENSEMBLE Pause ensemble.

activate ENSEMBLE Activate a paused ensemble.

config ENSEMBLE [-R
MAX_RUNNING] | [-P
MAX_PLANNING]

Configure an ensemble.

submit ENSEMBLE.WORKFLOW
plan_command [ARGUMENT…]

Submit a workflow. The command is either pegasus-plan, or a shell script that
calls pegasus-plan. The output of plan_command must contain the output of
pegasus-plan.

workflows ENSEMBLE [-l] List the workflows in an ensemble.

replan ENSEMBLE.WORKFLOW Replan a failed workflow.

rerun ENSEMBLE.WORKFLOW Rerun a failed workflow.

status ENSEMBLE.WORKFLOW Display the status of a workflow.

analyze ENSEMBLE.WORKFLOW Analyze the current state of a workflow.

priority ENSEMBLE.WORKFLOW
-p PRIORITY

Alter the priority of a workflow.

Common Options
-h , --help Print help message

-d , --debug Enable debugging

Create and Config Options
-R N , --max-running N Maximum number of concurrently running workflows.

-P N , --max-planning N Maximum number of workflows being planned simultaneously.

Workflows Options
-l , --long Use long listing format.

Authors
Pegasus Team <pegasus@isi.edu>

Command Line Tools

252

Name
pegasus-exitcode — Checks the stdout/stderr files of a workflow job for any indication that an error occurred in the
job. This script is intended to be invoked automatically by DAGMan as the POST script of a job.

Synopsis
pegasus-exitcode [-h][-r rv][-n][-s msg][-f msg] job.out

Description
pegasus-exitcode is a utility that examines the STDOUT of a job to determine if the job failed, and renames the
STDOUT and STDERR files of a job to preserve them in case the job is retried.

Pegasus uses pegasus-exitcode as the DAGMan postscript for jobs submitted via Globus GRAM. This tool exists as
a workaround to a known problem with Globus and Condor-G where the exitcodes of GRAM jobs are not returned.
This is a problem because Pegasus uses the exitcode of a job to determine if the job failed or not.

In order to get around the exitcode problem, Pegasus can wrap GRAM jobs with Kickstart, which records the exitcode
of the job in an XML invocation record, which it writes to the job’s STDOUT. The STDOUT is transferred from the
execution host back to the submit host when the job terminates. After the job terminates, DAGMan runs the job’s
postscript, which Pegasus sets to be pegasus-exitcode. pegasus-exitcode looks at the invocation record generated
by kickstart to see if the job succeeded or failed. If the invocation record indicates a failure, then pegasus-exitcode
returns a non-zero result, which indicates to DAGMan that the job has failed. If the invocation record indicates that
the job succeeded, then pegasus-exitcode returns 0, which tells DAGMan that the job succeeded.

In addition, clustered jobs executed with pegasus-cluster or pegasus-mpi-cluster will have a [cluster-summa-
ry] record in their STDOUT. pegasus-exitcode can examine these records to determine if any of the tasks in the
clustered job failed.

pegasus-exitcode performs several checks (some optional) to determine whether a job failed or not. These checks
include:

1. Is the Condor exitcode non-zero? If so, then the job failed.

2. Is STDOUT empty? If it is empty, then the job failed.

3. Are there any failure messages in the STDOUT or STDERR? If so, the job failed.

4. Are all of the success messages in the STDOUT or STDERR? If not, then the job failed.

5. Does the [cluster-summary] record indicate that the job was successful. If not, then the job failed.

6. Are there any <status> tags with a non-zero value? If there are, then the job failed. Note that, if this is a clustered
job, there could be multiple <status> tags, one for each task. If any of them are non-zero, then the job failed.

7. Is there at least one <status> tag with a zero value? There must be at least one successful invocation or the
job has failed.

In addition, pegasus-exitcode allows the caller to specify the exitcode returned by Condor using the --return argu-
ment. This can be passed to pegasus-exitcode in a DAGMan post script by using the $RETURN variable. If this value
is non-zero, then pegasus-exitcode returns a non-zero result before performing any other checks. For GRAM jobs,
the value of $RETURN will always be 0 regardless of whether the job failed or not.

In addition to checking the success/failure of a job, pegasus-exitcode also renames the STDOUT and STDERR files of
the job so that if the job is retried, the STDOUT and STDERR of the previous run are not lost. It does this by appending
a sequence number to the end of the files. For example, if the STDOUT file is called "job.out", then the first time the
job is run pegasus-exitcode will rename the file "job.out.000". If the job is run again, then pegasus-exitcode sees that
"job.out.000" already exists and renames the file "job.out.001". It will continue to rename the file by incrementing
the sequence number every time the job is executed.

Command Line Tools

253

Options
-h , --help Prints a usage summary with all the available command-line options.

-r rv , --return rv Return value reported by DAGMan. This can be specified in the DAG using
the $RETURN variable. If this is non-zero, then pegasus-exitcode immediately
fails with a non-zero return value itself. If it is zero, then just rotate the file and
don’t check for proper kickstart output. This option can be used in cases where
kickstart cannot be used (such as pegasus-create-dir) to enable file rotation.

-n , --no-rename Don’t rename job.out and job.err to .out.XXX and .err.XXX. This option is used
primarily for testing.

-f msg , --failure-message msg Failure message to find in job stdout/stderr. If this message exists in the std-
out/stderr of the job, then the job will be considered a failure no matter what
other output exists. If multiple failure messages are provided, then none of them
can exist in the output or the job is considered a failure.

-s msg , --success-message msg Success message to find in job stdout/stderr. If this message does not exist in the
stdout/stderr of the job, then the job will be considered a failure no matter what
other output exists. If multiple success messages are provided, then they must all
exist in the output or the job is considered a failure.

Authors
Gideon Juve <juve@usc.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

254

Name
pegasus-graphviz — Convert a DAX or DAG into a graphviz dot file

Synopsis
pegasus-graphviz [options] FILE

Description
pegasus-graphviz is a tool that generates a graphviz DOT file based on a Pegasus DAX file or DAGMan DAG file.

Options
-h , --help Show the help message

-s , --nosimplify Do not simplify the graph by removing redundant edges. [default: False]

-l LABEL , --label LA-
BEL

What attribute to use for labels. One of label,xform, or id. For label, the transformation is
used for jobs that have no node-label. [default: label]

-o FILE , --output FILE Write output to FILE [default: stdout]

-r XFORM , --remove
XFORM

Remove jobs from the workflow by transformation name

-W WIDTH , --width
WIDTH

Width of the digraph.

-H HEIGHT , --height
HEIGHT

Height of the digraph.

-f , --files Include files. This option is only valid for DAX files. [default: false]

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

255

Name
pegasus-gridftp — Perform file and directory operations on remote GridFTP servers

Synopsis
pegasus-gridftp ls [options] [URL…]
pegasus-gridftp mkdir [options] [URL…]
pegasus-gridftp rm [options] [URL…]

Description
pegasus-gridftp is a client for Globus GridFTP servers. It enables remote operations on files and directories via the
GridFTP protocol. This tool was created to enable more efficient remote directory creation and file cleanup tasks in
Pegasus.

Options

Global Options

-v Turn on verbose output. Verbosity can be increased by specifying multiple -v arguments.

-i FILE Read a list of URLs to operate on from FILE.

rm Options

-f If the URL does not exist, then ignore the error.

-r Recursively delete files and directories.

ls Options

-a List files beginning with a ".".

-l Create a long-format listing with file size, creation date, type, permissions, etc.

mkdir Options

-p Create intermediate directories as necessary.

-f Ignore error if directory already exists

Subcommands
pegasus-gridftp has several subcommands to implement different operations.

ls The ls subcommand lists the details of a file, or the contents of a directory on the remote server.

mkdir The mkdir subcommand creates one or more directories on the remote server.

rm The rm subcommand deletes one or more files and directories from the remote server.

URL Format
All URLs supplied to pegasus-gridftp should begin with "gsiftp://".

Configuration
pegasus-gridftp uses the CoG JGlobus API to communicate with remote GridFTP servers. Refer to the CoG JGlobus
documentation for information about configuring the API, such as how to specify the user’s proxy, etc.

Command Line Tools

256

Return Value
pegasus-gridftp returns a zero exist status if the operation is successful. A non-zero exit status is returned in case
of failure.

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

257

Name
pegasus-halt — stops a workflow gracefully, current jobs will finish

Synopsis
pegasus-halt [rundir]

Description
pegasus-halt stops a workflow gracefully by allowing the jobs already running to finish on their own. No new jobs
will be submitted. Once all jobs have finished, the workflow will stop. A stopped workflow can be restarted with the
pegasus-run command.

Another way to remove a workflow is with the pegasus-remove command. The difference is that pegasus-remove
will stop running jobs.

Options
rundir The run directory of the workflow you want to stop

Authors
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

258

Name
pegasus-invoke — invokes a command from a file

Synopsis
pegasus-invoke (app | @fn) [arg | *@fn [..]]

Description
The pegasus-invoke tool invokes a single application with as many arguments as your Unix permits (128k characters
for Linux). Arguments are come from two places, either the command-line as regular arguments, or from a special
file, which contains one argument per line.

The pegasus-invoke tool became necessary to work around the 4k argument length limit in Condor. It also permits
to use arguments inside argument files without worry about shell, Condor or Globus escape necessities. All argument
file contents are passed as is, one line per argument entry.

Arguments
-d This option increases the debug level. Currently, only debugging or no debugging is distinguished. Debug

message are generated on stdout . By default, debugging is disabled.

-h This option prints the help message and exits the program.

-- This option stops any option processing. It may only be necessary, if the application is stated on the com-
mand-line, and starts with a hyphen itself.The first argument must either be the application to run as ful-
ly-specified location (either absolute, or relative to current wd), or a file containing one argument per line.
The PATH environment variables is not used to locate an application. Subsequent arguments may either be
specified explicitely on the commandline. Any argument that starts with an at (@) sign is taken to introduce a
filename, which contains one argument per line. The textual file may contain long arguments and filenames.
However, Unices still impose limits on the maximum length of a directory name, and the maximum length
of a file name. These lengths are not checked, because pegasus-invoke is oblivious of the application (e.g.
what argument is a filename, and what argument is a mere string resembling a filename).

Return Value
The pegasus-invoke tool returns 127, if it was unable to find the application. It returns 126, if there was a problem
parsing the file. All other exit status, including 126 and 127, come from the application.

See Also
pegasus-kickstart(1)

Example
$ echo "/bin/date" > X
$ echo "-Isec" >> X
$ pegasus-invoke @X
2005-11-03T15:07:01-0600

Recursion is also possible. Please mind not to use circular inclusions. Also note how duplicating the initial at (@) sign
will escape its meaning as inclusion symbol.

$ cat test.3
This is test 3

$ cat test.2
/bin/echo
@test.3
@@test.3

Command Line Tools

259

$ pegasus-invoke @test.2
This is test 3 @test.3

Restrictions
While the arguments themselves may contain files with arguments to parse, starting with an at (@) sign as before, the
maximum recursion limit is 32 levels of inclusions. It is not possible (yet) to use stdin as source of inclusion.

History
As you may have noticed, pegasus-invoke had the name invoke in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Mike Wilde <wilde at mcs dot anl dot gov>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

Command Line Tools

260

Name
pegasus-keg — kanonical executable for grids

Synopsis
pegasus-keg [-a appname] [-t interval |-T interval] [-l logname]
 [-P prefix] [-o fn [..]] [-i fn [..]] [-G sz [..]] [-m memory]
 [-C] [-e env [..]] [-p parm [..]] [-u data_unit]

Description
The kanonical executable is a stand-in for regular binaries in a DAG - but not for their arguments. It allows to trace
the shape of the execution of a DAG, and thus is an aid to debugging DAG related issues.

Key feature of pegasus-keg is that it can copy any number of input files, including the generator case, to any number
of output files, including the datasink case. In addition, it protocols the IPv4 and hostname of the host it ran upon, the
current timestamp, and the run time from start til the point of logging the information, the current working directory
and some information on the system environment. pegasus-keg will also report all input files, the current output files
and any requested string and environment value.

The workflow of the Keg tool is as follows: - if -m - allocate a memory buffer of the specified amount - if -i - read all
input files into the memory buffer - if -o - write either the input files content (or a generated content if -G) to output
files - if -T - generate CPU load for the specified time period decreased by the time period spent on IO stuff; if the
IO stuff time period exceeds the time period specified here the program exits with code status 3 - if -t - wait/sleep
for the specified time period decreased by time periods spent on IO stuff (and CPU load generating if any); if the
time period spent on previous activities exceeds the amount specified here the program exits with code status 3 - if
-l - write info to the specified log file.

Arguments
The -e, -i, -o, -p and -G arguments allow lists with arbitrary number of arguments. These options may also occur
repeatedly on the command line. The file options may be provided with the special filename - to indicate stdout in
append mode for writing, or stdin for reading. The -a, -l , -P , -T and -t arguments should only occur a single time
with a single argument.

If pegasus-keg is called without any arguments, it will display its usage and exit with success.

-a appname This option allows pegasus-keg to display a different name as its applications. This mode
of operation is useful in make-believe mode. The default is the basename of argv[0].

-e env [..] This option names any number of environment variables, whose value should be reported
as part of the data dump. By default, no environment variables are reported.

-i infile [..] The pegasus-keg binary can work on any number of input files. For each output file,
every input file will be opened, and its content copied to the output file. Textual input
files are assumed. Each input line is indented by two spaces. The input file content is
bracketed between an start and end section, see below. By default, pegasus-keg operates
in generator mode.

-l logfile The logfile is the name of a file to append atomically the self-info, see below. The atomic
write guarantees that the multi-line information will not interleave with other processes
that simultaneously write to the same file. The default is not to use any log file.

-o outfile [..] The pegasus-keg can work on any number of output files. For each output file, every
input file will be opened, and its content copied to the output file. Textual input
files are assumed. Each input line is indented by two spaces. The input file content
is bracketed between an start and end section, see 2nd example. After all input files
are copied, the data dump from this instance of pegasus-keg is appended to the out-
put file. Without output files, pegasus-keg operates in data sink mode. Accept also

Command Line Tools

261

<filename>=<filesize><data_unit> form, where <data_unit> is a character supported by
the -u switch.

-G size [..] If you want pegasus-keg to generate a lot of output, the generator option will do that for
you. Just specify how much, in bytes (but you can change it with -u switch), you want.
You can specify more than 1 value here if you specify more than 1 output file. Subsequent
values specified here will correspond to sizes of subsequent output files. This option is
off by default.

-u data_unit By default, the output data generator (the -G switch) generates the specified amount of
data in Bytes. You can alter this behavior with this switch. It accepts one of the following
characters as data_unit value: B for Bytes, K for KiloBytes, M for MegaBytes, and G for
GigaBytes.

-C This option causes pegasus-keg to list all environment variables that start with the prefix
_CONDOR The option is useful, if .B pegasus-keg is run as (part of) a Condor job. This
option is off by default.

-p string [..] Any number of parameters can be reported, without being specific on their content. Ef-
fectively, these strings are copied straight from the command line. By default, no extra
arguments are shown.

-P prefix Each line from every input file is indented with a prefix string to visually emphasize the
provenance of an input files through multiple instances of pegasus-keg. By default, two
spaces are used as prefix string.

-t interval The interval is an amount of sleep time that the pegasus-keg executable is to sleep. This
can be used to emulate light work without straining the pool resources. If used together
with the -T spin option, the sleep interval comes before the spin interval. The default is
no sleep time.

-T interval The interval is an amount of busy spin time that the pegasus-keg executable is to simulate
intense computation. The simulation is done by random julia set calculations. This option
can be used to emulate an intense work to strain pool resources. If used together with the -t
sleep option, the sleep interval comes before the spin interval. The default is no spin time.

-m memory The amount of memory ([MB]) the Keg process should use. This option can be used to
emulated application’s memory requirements. The default is not to allocate anything.

Return Value
Execution as planned will return 0. The failure to open an input file will return 1, the failure to open an output file,
including the log file, will return with exit code 2. If the time spent on IO exceeds the specified time CPU load period
with -T or the time spent on IO and CPU load exceeds the specified wall time with -T the return code will be 3.

Example
The example shows the bracketing of an input file, and the copy produced on the output file. For illustration purposes,
the output file is connected to stdout :

$ date > xx
$ pegasus-keg -i xx -p a b c -o -
--- start xx ----
 Thu May 5 10:55:45 PDT 2011
--- final xx ----
Timestamp Today: 20110505T105552.910-07:00 (1304618152.910;0.000)
Applicationname: pegasus-keg [3661M] @ 128.9.xxx.xxx (xxx.isi.edu)
Current Workdir: /opt/pegasus/default/bin/pegasus-keg
Systemenvironm.: x86_64-Linux 2.6.18-238.9.1.el5
Processor Info.: 4 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2660.068
Load Averages : 0.298 0.135 0.104
Memory Usage MB: 11970 total, 8089 free, 0 shared, 695 buffered
Swap Usage MB: 12299 total, 12299 free
Filesystem Info: / ext3 62GB total, 20GB avail

Command Line Tools

262

Filesystem Info: /lfs/balefire ext4 1694GB total, 1485GB avail
Filesystem Info: /boot ext2 493MB total, 447MB avail
Output Filename: -
Input Filenames: xx
Other Arguments: a b c

Restrictions
The input file must be textual files. The behaviour with binary files is unspecified.

The host address is determined from the primary interface. If there is no active interface besides loopback, the host
address will default to 0.0.0.0. If the host address is within a virtual private network address range, only (VPN) will
be displayed as hostname, and no reverse address lookup will be attempted.

The processor info line is only available on Linux systems. The line will be missing on other operating systems. Its
information is assuming symmetrical multi processing, reflecting the CPU name and speed of the last CPU available
in /dev/cpuinfo .

There is a limit of 4 * page size to the output buffer of things that .B pegasus-keg can report in its self-info dump.
There is no such restriction on the input to output file copy.

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Mike Wilde

Yong Zhao

Pegasus - http://pegasus.isi.edu/

http://pegasus.isi.edu/

Command Line Tools

263

Name
pegasus-kickstart — remote job wrapper

Synopsis
pegasus-kickstart [-n tr] [-N dv] [-H] [-R site] [-W | -w dir]
 [-L lbl -T iso] [-s p | @fn] [-S p | @fn] [-i fn]
 [-o fn] [-e fn] [-X] [-l fn sz] [-F] (-I fn | app [appflags])
pegasus-kickstart -V

Description
pegasus-kickstart is a wrapper program which manages and monitors the execution of jobs on remote resources.

Sitting in between the remote scheduler and the application process, it is possible for pegasus-kickstart to gather
additional information about the process' run-time behavior and resource usage, including the exit status of jobs. This
information is important for Pegasus invocation tracking as well as detecting Globus GRAM job failures.

pegasus-kickstart allows the optional execution of jobs before and after the main application job that run in chained
execution with the main application job. See section SUBJOBS for details about this feature.

It also allows stdin, stdout, and stderr to be redirected from/to specific files.

All jobs with relative path specifications to the application are part of search relative to the current working directory
(yes, this is unsafe), and by prepending each component from the PATH environment variable. The first match is used.
Jobs that use absolute pathnames, starting in a slash, are exempt. Using an absolute path to your executable is the
safe and recommended option.

pegasus-kickstart rewrites the command line of any job (pre, post and main) with variable substitutions from Unix
environment variables. See section VARIABLE REWRITING below for details on this feature.

Options
-n tr In order to associate the minimal performance information of the job with the invocation records,

the jobs needs to carry which transformation was responsible for producing it. The format is the
textual notation for fully-qualified definition names, like namespace::name:version, with only the
name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-N dv The jobs may carry which instantiation of a transformation was responsible for producing it. The
format is the textual notation for fully-qualified definition names, like namespace::name:version,
with only the name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-H This option avoids pegasus-kickstart writing the XML preamble (entity), if you need to combine
multiple pegasus-kickstart records into one document.

Additionally, if specified, the environment and the resource usage segments will not be written,
assuming that a in a concatenated record version, the initial run will have captured those settings.

-R site In order to provide the greater picture, pegasus-kickstart can reflect the site handle (resource iden-
tifier) into its output.

There is no default. If no value is given, the attribute will not be generated.

-L lbl , -T iso These optional arguments denote the workflow label (from DAX) and the workflow’s last modifi-
cation time (from DAX). The label lbl can be any sensible string of up to 32 characters, but should
use C identifier characters. The timestamp iso must be an ISO 8601 compliant time-stamp.

Command Line Tools

264

-S l=p If stat information on any file is required before any jobs were started, logical to physical file map-
pings to stat can be passed using the -S option. The LFN and PFN are concatenated by an equals (=)
sign. The LFN is optional: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome command line length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value initial. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-s fn If stat information on any file is required after all jobs have finished, logical to physical file mappings
to stat can be passed using the -s option. The LFN and PFN are concatenated by an equals (=) sign.
The LFN is optional: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome commandline length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value final. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-i fn This option allows pegasus-kickstart to re-connect the stdin of the application that it starts. Use a
single hyphen to share stdin with the one provided to pegasus-kickstart.

The default is to connect stdin to /dev/null.

-o fn This option allows pegasus-kickstart to re-connect the stdout of the application that it starts. The
mode is used whenever an application produces meaningful results on its stdout that need to be
tracked by Pegasus. The real stdout of Globus jobs is staged via GASS (GT2) or RFT (GT4). The
real stdout is used to propagate the invocation record back to the submit site. Use the single hyphen
to share the application’s stdout with the one that is provided to pegasus-kickstart. In that case,
the output from pegasus-kickstart will interleave with application output. For this reason, such a
mode is not recommended.

In order to provide an un-captured stdout as part of the results, it is the default to connect the stdout of
the application to a temporary file. The content of this temporary file will be transferred as payload
data in the pegasus-kickstart results. The content size is subject to payload limits, see the -B option.
If the content grows large, only the last portion will become part of the payload. If the temporary
file grows too large, it may flood the worker node’s temporary space. The temporary file will be
deleted after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stdout to a temporary file.

-e fn This option allows pegasus-kickstart to re-connect the stderr of the application that it starts. This
option is used whenever an application produces meaningful results on stderr that needs tracking
by Pegasus. The real stderr of Globus jobs is staged via GASS (GT2) or RFT (GT4). It is used to
propagate abnormal behavior from both, pegasus-kickstart and the application that it starts, though
its main use is to propagate application dependent data and heartbeats. Use a single hyphen to share
stderr with the stderr that is provided to pegasus-kickstart. This is the backward compatible be-
havior.

Command Line Tools

265

In order to provide an un-captured stderr as part of the results, by default the stderr of the application
will be connected to a temporary file. Its content is transferred as payload data in the pegasus-kick-
start results. If too large, only the last portion will become part of the payload. If the temporary file
grows too large, it may flood the worker node’s temporary space. The temporary file will be deleted
after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stderr to a temporary file.

-l logfn allows to append the performance data to the specified file. Thus, multiple XML documents may
end up in the same file, including their XML preamble. stdout is normally used to stream back the
results. Usually, this is a GASS-staged stream. Use a single hyphen to generate the output on the
stdout that was provided to pegasus-kickstart, the default behavior.

Default is to append the invocation record onto the provided stdout.

-w dir permits the explicit setting of a new working directory once pegasus-kickstart is started. This is
useful in a remote scheduling environment, when the chosen working directory is not visible on
the job submitting host. If the directory does not exist, pegasus-kickstart will fail. This option is
mutually exclusive with the -W dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-W dir permits the explicit creation and setting of a new working directory once pegasus-kickstart is started.
This is useful in a remote scheduling environment, when the chosen working directory is not visible
on the job submitting host. If the directory does not exist, pegasus-kickstart will attempt to create
it, and then change into it. Both, creation and directory change may still fail. This option is mutually
exclusive with the -w dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-X make an application executable, no matter what. It is a work-around code for a weakness of globus-
url-copy which does not copy the permissions of the source to the destination. Thus, if an executable
is staged-in using GridFTP, it will have the wrong permissions. Specifying the -X flag will attempt
to change the mode to include the necessary x (and r) bits to make the application executable.

Default is not to change the mode of the application. Note that this feature can be misused by hackers,
as it is attempted to call chmod on whatever path is specified.

-B sz Changes the amount of stdout and stderr data to include in the output. The last sz bytes of the stdout
and stderr of the process will be copied into kickstart’s output. All other data will be discarded. The
special value all can be used to capture all the stdout/stderr of the process. The default is 256KB.

-F This flag will issue an explicit fsync() call on kickstart’s own stdout file. Typically you won’t need
this flag. Albeit, certain shared file system situations may improve when adding a flush after the
written invocation record.

The default is to just use kickstart’s NFS alleviation strategy by locking and unlocking stdout.

-I fn In this mode, the application name and any arguments to the application are specified inside of file fn.
The file contains one argument per line. Escaping from Globus, Condor and shell meta characters is
not required. This mode permits to use the maximum possible command line length of the underlying
operating system, e.g. 128k for Linux. Using the -I mode stops any further command line processing
of pegasus-kickstart command lines.

Default is to use the app flags mode, where the application is specified explicitly on the com-
mand-line.

Command Line Tools

266

-f This flag causes kickstart to output full information, including the environment and resource limits
under which the job ran, and any useful auxilliary statcalls. If the job fails, then -f is implied.

-k S This flag causes kickstart to send the job a SIGTERM if it is still running after S seconds. The default
value is 0, which disables the timeout.

-K S This flag causes kickstart to send the job a SIGKILL if it is still running S seconds after recieving a
SIGTERM sent as a result of the -k flag. The default value is 5. If -k is not set, or is set to 0, then
this flag is ignored.

-t This flag causes kickstart to use ptrace() to collect resource usage info for the process by intercepting
the process start and stop events. This flag only exists when kickstart is compiled for Linux.

-z This flag causes kickstart to use ptrace() to intercept system calls and report a list of files accessed
and I/O performed. This flag only exists when kickstart is compiled for Linux.

-Z This flag causes kickstart to use LD_PRELOAD to intercept library calls and report a list of files
accessed and I/O performed. This flag only exists when kickstart is compiled for Linux.

-q This flag causes kickstart to omit the <data> part of the <statcall> records when the job exits suc-
cessfully. This is designed to reduce the size of the output logs for large workflows.

app The path to the application has to be completely specified. The application is a mandatory option.

appflags Application may or may not have additional flags.

Return Value
pegasus-kickstart will return the return value of the main job. In addition, the error code 127 signals that the call
to exec failed, and 126 that reconnecting the stdio failed. A job failing with the same exit codes is indistinguishable
from pegasus-kickstart failures.

See Also
pegasus-plan(1), condor_submit_dag(1), condor_submit(1), getrusage(3c).

Subjobs
Subjobs are a new feature and may have a few wrinkles left.

In order to allow specific setups and assertion checks for compute nodes, pegasus-kickstart allows the optional
execution of a prejob. This prejob is anything that the remote compute node is capable of executing. For modern Unix
systems, this includes #! scripts interpreter invocations, as long as the x bits on the executed file are set. The main job
is run if and only if the prejob returned regularly with an exit code of zero.

With similar restrictions, the optional execution of a postjob is chained to the success of the main job. The postjob
will be run, if the main job terminated normally with an exit code of zero.

In addition, a user may specify a setup and a cleanup job. The setup job sets up the remote execution environment. The
cleanup job may tear down and clean-up after any job ran. Failure to run the setup job has no impact on subsequent
jobs. The cleanup is a job that will even be attempted to run for all failed jobs. No job information is passed. If you
need to invoke multiple setup or clean-up jobs, bundle them into a script, and invoke the clean-up script. Failure of the
clean-up job is not meant to affect the progress of the remote workflow (DAGMan). This may change in the future.

The setup-, pre-, and post- and cleanup-job run on the same compute node as the main job to execute. However, since
they run in separate processes as children of pegasus-kickstart, they are unable to influence each others nor the main
jobs environment settings.

All jobs and their arguments are subject to variable substitutions as explained in the next section.

Command Line Tools

267

To specify the prejob, insert the the application invocation and any optional commandline argument into the environ-
ment variable GRIDSTART_PREJOB. If you are invoking from a shell, you might want to use single quotes to protect
against the shell. If you are invoking from Globus, you can append the RSL string feature. From Condor, you can use
Condor’s notion of environment settings. In Pegasus use the profile command to set generic scripts that will work on
multiple sites, or the transformation catalog to set environment variables in a pool-specific fashion. Please remember
that the execution of the main job is chained to the success of the prejob.

To set up the postjob, use the environment variable GRIDSTART_POSTJOB to point to an application with potential
arguments to execute. The same restrictions as for the prejob apply. Please note that the execution of the post job is
chained to the main job.

To provide the independent setup job, use the environment variable GRIDSTART_SETUP. The exit code of the setup
job has no influence on the remaining chain of jobs. To provide an independent cleanup job, use the environment
variable GRIDSTART_CLEANUP to point to an application with possible arguments to execute. The same restrictions
as for prejob and postjob apply. The cleanup is run regardless of the exit status of any other jobs.

Variable Rewriting
Variable substitution is a new feature and may have a few wrinkles left.

The variable substitution employs simple rules from the Bourne shell syntax. Simple quoting rules for backslashed
characters, double quotes and single quotes are obeyed. Thus, in order to pass a dollar sign to as argument to your job,
it must be escaped with a backslash from the variable rewriting.

For pre- and postjobs, double quotes allow the preservation of whitespace and the insertion of special characters like \a
(alarm), \b (backspace), \n (newline), \r (carriage return), \t (horizontal tab), and \v (vertical tab). Octal modes are not
allowed. Variables are still substituted in double quotes. Single quotes inside double quotes have no special meaning.

Inside single quotes, no variables are expanded. The backslash only escapes a single quote or backslash.

Backticks are not supported.

Variables are only substituted once. You cannot have variables in variables. If you need this feature, please request it.

Outside quotes, arguments from the pre- and postjob are split on linear whitespace. The backslash makes the next
character verbatim.

Variables that are rewritten must start with a dollar sign either outside quotes or inside double quotes. The dollar may
be followed by a valid identifier. A valid identifier starts with a letter or the underscore. A valid identifier may contain
further letters, digits or underscores. The identifier is case sensitive.

The alternative use is to enclose the identifier inside curly braces. In this case, almost any character is allowed for
the identifier, including whitespace. This is the only curly brace expansion. No other Bourne magic involving curly
braces is supported.

One of the advantages of variable substitution is, for example, the ability to specify the application as $HOME/bin/
app1 in the transformation catalog, and thus to gridstart. As long as your home directory on any compute node has a
bin directory that contains the application, the transformation catalog does not need to care about the true location of
the application path on each pool. Even better, an administrator may decide to move your home directory to a different
place. As long as the compute node is set up correctly, you don’t have to adjust any Pegasus data.

Mind that variable substitution is an expert feature, as some degree of tricky quoting is required to protect substitutable
variables and quotes from Globus, Condor and Pegasus in that order. Note that Condor uses the dollar sign for its
own variables.

The variable substitution assumptions for the main job differ slightly from the prejob and postjob for technical reasons.
The pre- and postjob command lines are passed as one string. However, the main jobs command line is already split
into pieces by the time it reaches pegasus-kickstart. Thus, any whitespace on the main job’s command line must be
preserved, and further argument splitting avoided.

It is highly recommended to experiment on the Unix command line with the echo and env applications to obtain a
feeling for the different quoting mechanisms needed to achieve variable substitution.

Command Line Tools

268

Example
You can run the pegasus-kickstart executable locally to verify that it is functioning well. In the initial phase, the
format of the performance data may be slightly adjusted.

$ env GRIDSTART_PREJOB='/bin/usleep 250000' \\
 GRIDSTART_POSTJOB='/bin/date -u' \\
 pegasus-kickstart -l xx \\$PEGASUS_HOME/bin/keg -T1 -o-
$ cat xx
<?xml version="1.0" encoding="ISO-8859-1"?>
 ...
 </statcall>
</invocation>

Please take note a few things in the above example:

The output from the postjob is appended to the output of the main job on stdout. The output could potentially be
separated into different data sections through different temporary files. If you truly need the separation, request that
feature.

The log file is reported with a size of zero, because the log file did indeed barely exist at the time the data structure
was (re-) initialized. With regular GASS output, it will report the status of the socket file descriptor, though.

The file descriptors reported for the temporary files are from the perspective of pegasus-kickstart. Since the temporary
files have the close-on-exec flag set, pegasus-kickstarts file descriptors are invisible to the job processes. Still, the
'stdio of the job processes are connected to the temporary files.

Even this output already appears large. The output may already be too large to guarantee that the append operation
on networked pipes (GASS, NFS) are atomically written.

The current format of the performance data is as follows:

Timeouts
Kickstart sets timeouts for the job based on the -k and -K flags. The -k flag sets the time kickstart will wait before
it sends the job a SIGTERM, and the -K flag sets the time kickstart will wait after delivering a SIGTERM until it
delivers a SIGKILL. The -K timeout is designed to give the job some time to write a checkpoint, which it can trigger
by handling the SIGTERM. If the job runs for longer than the timeout specified using -k, then then the job exits with
a non-zero exit status.

If the job has GRIDSTART_SETUP, GRIDSTART_PREJOB, or GRIDSTART_POSTJOB, then their runtimes
are included in the timeout and they will be sent SIGTERM/SIGKILL in the same manner as the main job. If
GRIDSTART_CLEANUP is set, then it will run regardless of whether processes from the other stages were signalled.
If GRIDSTART_SETUP is specified, and it runs longer than the timeout, then it will be signalled, and the other stages
will be skipped.

Output Format
Refer to http://pegasus.isi.edu/wms/docs/schemas/iv-2.2/iv-2.2.html for an up-to-date description of elements and
their attributes. Check with http://pegasus.isi.edu/documentation for invocation schemas with a higher version number.

Restrictions
There is no version for the Condor standard universe. It is simply not possible within the constraints of Condor.

Due to its very nature, pegasus-kickstart will also prove difficult to port outside the Unix environment.

Any of the pre-, main-, cleanup and postjob are unable to influence one another’s visible environment.

Do not use a Pegasus transformation with just the name null and no namespace nor version.

First Condor, and then Unix, place a limit on the length of the command line. The additional space required for the
gridstart invocation may silently overflow the maximum space, and cause applications to fail. If you suspect to work
with many argument, try an argument-file based approach.

http://pegasus.isi.edu/wms/docs/schemas/iv-2.2/iv-2.2.html
http://pegasus.isi.edu/documentation

Command Line Tools

269

A job failing with exit code 126 or 127 is indistinguishable from pegasus-kickstart failing with the same exit codes.
Sometimes, careful examination of the returned data can help.

If the logfile is collected into a shared file, due to the size of the data, simultaneous appends on a shared filesystem from
different machines may still mangle data. Currently, file locking is not even attempted, although all data is written
atomically from the perspective of pegasus-kickstart.

The upper limit of characters of command line characters is currently not checked by pegasus-kickstart. Thus, some
variable substitutions could potentially result in a command line that is larger than permissible.

If the output or error file is opened in append mode, but the application decides to truncate its output file, as in the
above example by opening /dev/fd/1 inside keg, the resulting file will still be truncated. This is correct behavior, but
sometimes not obvious.

Files
/usr/share/pegasus/schema/
iv-2.2.xsd

is the suggested location of the latest XML schema describing the data on the
submit host.

Environment Variables
GRIDSTART_TMP is the hightest priority to look for a temporary directory, if specified. This rather

special variable was introduced to overcome some peculiarities with the FNAL
cluster.

TMP is the next hightest priority to look for a temporary directory, if specified.

TEMP is the next priority for an environment variable denoting a temporary files di-
rectory.

TMPDIR is next in the checklist. If none of these are found, either the stdio definition
P_tmpdir is taken, or the fixed string /tmp.

GRIDSTART_SETUP contains a string that starts a job to be executed unconditionally before any
other jobs, see above for a detailed description.

GRIDSTART_PREJOB contains a string that starts a job to be executed before the main job, see above
for a detailed description.

GRIDSTART_POSTJOB contains a string that starts a job to be executed conditionally after the main
job, see above for a detailed description.

GRIDSTART_CLEANUP contains a string that starts a job to be executed unconditionally after any of the
previous jobs, see above for a detailed description.

KICKSTART_PREPEND_PATH the value of this variable is prepended to the PATH variable seen by Kickstart
and passed to the job. The modified PATH is also used to look up executables
for the main job and any pre/post/setup/cleanup jobs.

History
As you may have noticed, pegasus-kickstart had the name kickstart in previous incantations. We are slowly moving
to the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Michael Milligan <mbmillig@uchicago.edu>

Mike Wilde <wilde@mcs.anl.gov>

Command Line Tools

270

Yong Zhao <yongzh@cs.uchicago.edu>

Jens-S. Vöckler <voeckler@isi.edu>

Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Command Line Tools

271

Name
pegasus-monitord — tracks a workflow progress, mining information

Synopsis
pegasus-monitord [--help|-help] [--verbose|-v]
 [--adjust|-a i] [--foreground|-N]
 [--no-daemon|-n] [--job|-j jobstate.log file]
 [--log|-l logfile] [--conf properties file]
 [--no-recursive] [--no-database | --no-events]
 [--replay|-r] [--no-notifications]
 [--notifications-max max_notifications]
 [--notifications-timeout timeout]
 [--sim|-s millisleep] [--db-stats]
 [--skip-stdout] [--force|-f]
 [--socket] [--output-dir | -o dir]
 [--dest|-d PATH or URL] [--encoding|-e bp | bson]
 DAGMan output file

Description
This program follows a workflow, parsing the output of DAGMAN’s dagman.out file. In addition to generating the
jobstate.log file, pegasus-monitord can also be used mine information from the workflow dag file and jobs' submit and
output files, and either populate a database or write a NetLogger events file with that information. pegasus-monitord
can also perform notifications when tracking a workflow’s progress in real-time.

Options
-h , --help Prints a usage summary with all the available command-line options.

-v , --verbose Sets the log level for pegasus-monitord. If omitted, the default level will be
set to WARNING. When this option is given, the log level is changed to INFO.
If this option is repeated, the log level will be changed to DEBUG.

The log level in pegasus-monitord can also be adjusted interactively, by send-
ing the USR1 and USR2 signals to the process, respectively for incrementing
and decrementing the log level.

-a i , --adjust i For adjusting time zone differences by i seconds, default is 0.

-N , --foreground Do not daemonize pegasus-monitord, go through the motions as if (Condor).

-n , --no-daemon Do not daemonize pegasus-monitord, keep it in the foreground (for debug-
ging).

-j jobstate.log file , --job
jobstate.log file

Alternative location for the jobstate.log file. The default is to write a
jobstate.log in the workflow directory. An absolute file name should only be
used if the workflow does not have any sub-workflows, as each sub-workflow
will generate its own jobstate.log file. If an alternative, non-absolute, filename
is given with this option, pegasus-monitord will create one file in each work-
flow (and sub-workflow) directory with the filename provided by the user with
this option. If an absolute filename is provided and sub-workflows are found,
a warning message will be printed and pegasus-monitord will not track any
sub-workflows.

--log logfile , --log-file logfile Specifies an alternative logfile to use instead of the monitord.log file in the
main workflow directory. Differently from the jobstate.log file above, pega-
sus-monitord only generates one logfile per execution (and not one per work-
flow and sub-workflow it tracks).

Command Line Tools

272

--conf properties_file is an alternative file containing properties in the key=value format, and allows
users to override values read from the braindump.txt file. This option has prece-
dence over the properties file specified in the braindump.txt file. Please note
that these properties will apply not only to the main workflow, but also to all
sub-workflows found.

--no-recursive This options disables pegasus-monitord to automatically follow any sub-
workflows that are found.

--nodatabase , --no-database , --
no-events

Turns off generating events (when this option is given, pegasus-monitord will
only generate the jobstate.log file). The default is to automatically log informa-
tion to a SQLite database (see the --dest option below for more details). This
option overrides any parameter given by the --dest option.

-r , --replay This option is used to replay the output of an already finished workflow. It
should only be used after the workflow is finished (not necessarily successful-
ly). If a jobstate.log file is found, it will be rotated. However, when using a
database, all previous references to that workflow (and all its sub-workflows)
will be erased from it. When outputing to a bp file, the file will be deleted.
When running in replay mode, pegasus-monitord will always run with the --
no-daemon option, and any errors will be output directly to the terminal. Also,
pegasus-monitord will not process any notifications while in replay mode.

--no-notifications This options disables notifications completely, making pegasus-monitord ig-
nore all the .notify files for all workflows it tracks.

--notifications-max
max_notifications

This option sets the maximum number of concurrent notifications that pega-
sus-monitord will start. When the max_notifications limit is reached, pega-
sus-monitord will queue notifications and wait for a pending notification script
to finish before starting a new one. If max_notifications is set to 0, notifications
will be disabled.

--notifications-timeout timeout Normally, pegasus-monitord will start a notification script and wait indefi-
nitely for it to finish. This option allows users to set up a maximum timeout that
pegasus-monitord will wait for a notification script to finish before terminat-
ing it. If notification scripts do not finish in a reasonable amount of time, it can
cause other notification scripts to be queued due to the maximum number of
concurrent scripts allowed by pegasus-monitord. Additionally, until all noti-
fication scripts finish, pegasus-monitord will not terminate.

-s millisleep , --sim millisleep This option simulates delays between reads, by sleeping millisleep millisec-
onds. This option is mainly used by developers.

--db-stats This option causes the database module to collect and print database statistics
at the end of the execution. It has no effect if the --no-database option is given.

--skip-stdout This option causes pegasus-monitord not to populate jobs' stdout and stderr
into the BP file or the Stampede database. It should be used to avoid increasing
the database size substantially in cases where jobs are very verbose in their
output.

-f , --force This option causes pegasus-monitord to skip checking for another instance of
itself already running on the same workflow directory. The default behavior
prevents two or more pegasus-monitord instances from starting and running
simultaneously (which would cause the bp file and database to be left in an un-
stable state). This option should noly be used when the user knows the previous
instance of pegasus-monitord is NOT running anymore.

--socket This option causes pegasus-monitord to start a socket interface that can
be used for advanced debugging. The port number for connecting to pega-
sus-monitord can be found in the monitord.sock file in the workflow directory
(the file is deleted when pegasus-monitord finishes). If not already started,

Command Line Tools

273

the socket interface is also created when pegasus-monitord receives a USR1
signal.

-o dir , --ouput-dir dir When this option is given, pegasus-monitord will create all its output files in
the directory specified by dir. This option is useful for allowing a user to debug
a workflow in a directory the user does not have write permissions. In this case,
all files generated by pegasus-monitord will have the workflow wf_uuid as
a prefix so that files from multiple sub-workflows can be placed in the same
directory. This option is mainly used by pegasus-analyzer. It is important to
note that the location for the output BP file or database is not changed by this
option and should be set via the --dest option.

-d URL params , --dest URL
params

This option allows users to specify the destination for the log events generated
by pegasus-monitord. If this option is omitted, pegasus-monitord will cre-
ate a SQLite database in the workflow’s run directory with the same name as
the workflow, but with a .stampede.db prefix. For an empty scheme, params
are a file path with - meaning standard output. For a x-tcp scheme, params are
TCP_host[:port=14380]. For a database scheme, params are a SQLAlchemy
engine URL with a database connection string that can be used to specify dif-
ferent database engines. Please see the examples section below for more infor-
mation on how to use this option. Note that when using a database engine other
than sqlite, the necessary Python database drivers will need to be installed.

-e encoding , --encoding encoding This option specifies how to encode log events. The two available possibilities
are bp and bson. If this option is not specified, events will be generated in the
bp format.

DAGMan_output_file The DAGMan_output_file is the only requires command-line argument in pe-
gasus-monitord and must have the .dag.dagman.out extension.

Return Value
If the plan could be constructed, pegasus-monitord returns with an exit code of 0. However, in case of error, a non-zero
exit code indicates problems. In that case, the logfile should contain additional information about the error condition.

Environment Variables
pegasus-monitord does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

Examples
Usually, pegasus-monitord is invoked automatically by pegasus-run and tracks the workflow progress in real-time,
producing the jobstate.log file and a corresponding SQLite database. When a workflow fails, and is re-submitted
with a rescue DAG, pegasus-monitord will automatically pick up from where it left previously and continue the
jobstate.log file and the database.

If users need to create the jobstate.log file after a workflow is already finished, the --replay | -r option should be used
when running pegasus-monitord manually. For example:

$ pegasus_monitord -r diamond-0.dag.dagman.out

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. If a diamond-0.stampede.db SQLite database already exists, pegasus-monitord will purge
all references to the workflow id specified in the braindump.txt file, including all sub-workflows associated with that
workflow id.

$ pegasus_monitord -r --no-database diamond-0.dag.dagman.out

will do the same thing, but without generating any log events.

$ pegasus_monitord -r --dest `pwd`/diamond-0.bp diamond-0.dag.dagman.out

Command Line Tools

274

will create the file diamond-0.bp in the current directory, containing NetLogger events with all the workflow data.
This is in addition to the jobstate.log file.

For using a database, users should provide a database connection string in the format of:

dialect://username:password@host:port/database

Where dialect is the name of the underlying driver (mysql, sqlite, oracle, postgres) and database is the name of the
database running on the server at the host computer.

If users want to use a different SQLite database, pegasus-monitord requires them to specify the absolute path of the
alternate file. For example:

$ pegasus_monitord -r --dest sqlite:////home/user/diamond_database.db diamond-0.dag.dagman.out

Here are docs with details for all of the supported drivers: http://www.sqlalchemy.org/docs/05/reference/di-
alects/index.html

Additional per-database options that work into the connection strings are outlined there.

It is important to note that one will need to have the appropriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQLAlchemy and the SQLite Python driver.

As a final note, it is important to mention that unlike when using SQLite databases, using SQLAlchemy with other
database servers, e.g. MySQL or Postgres, the target database needs to exist. So, if a user wanted to connect to:

mysql://pegasus-user:supersecret@localhost:localport/diamond

it would need to first connect to the server at localhost and issue the appropriate create database command before
running pegasus-monitord as SQLAlchemy will take care of creating the tables and indexes if they do not already
exist.

See Also
pegasus-run(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://pegasus.isi.edu

Command Line Tools

275

Name
pegasus-mpi-cluster — a tool for running computational workflows expressed as DAGs (Directed Acyclic Graphs)
on computational clusters using MPI.

Synopsis
pegasus-mpi-cluster [options] workflow.dag

Description
pegasus-mpi-cluster is a tool used to run HTC (High Throughput Computing) scientific workflows on systems de-
signed for HPC (High Performance Computing). Many HPC systems have custom architectures that are optimized for
tightly-coupled, parallel applications. These systems commonly have exotic, low-latency networks that are designed
for passing short messages very quickly between compute nodes. Many of these networks are so highly optimized
that the compute nodes do not even support a TCP/IP stack. This makes it impossible to run HTC applications using
software that was designed for commodity clusters, such as Condor.

pegasus-mpi-cluster was developed to enable loosely-coupled HTC applications such as scientific workflows to
take advantage of HPC systems. In order to get around the network issues outlined above, pegasus-mpi-cluster uses
MPI (Message Passing Interface), a commonly used API for writing SPMD (Single Process, Multiple Data) parallel
applications. Most HPC systems have an MPI implementation that works on whatever exotic network architecture
the system uses.

An pegasus-mpi-cluster job consists of a single master process (this process is rank 0 in MPI parlance) and several
worker processes. The master process manages the workflow and assigns workflow tasks to workers for execution.
The workers execute the tasks and return the results to the master. Any output written to stdout or stderr by the tasks
is captured (see TASK STDIO).

pegasus-mpi-cluster applications are expressed as DAGs (Directed Acyclic Graphs) (see DAG FILES). Each node
in the graph represents a task, and the edges represent dependencies between the tasks that constrain the order in which
the tasks are executed. Each task is a program and a set of parameters that need to be run (i.e. a command and some
optional arguments). The dependencies typically represent data flow dependencies in the application, where the output
files produced by one task are needed as inputs for another.

If an error occurs while executing a DAG that causes the workflow to stop, it can be restarted using a rescue file,
which records the progress of the workflow (see RESCUE FILES). This enables pegasus-mpi-cluster to pick up
running the workflow where it stopped.

pegasus-mpi-cluster was designed to work either as a standalone tool or as a complement to the Pegasus Workflow
Managment System (WMS). For more information about using PMC with Pegasus see the section on PMC AND
PEGASUS.

pegasus-mpi-cluster allows applications expressed as a DAG to be executed in parallel on a large number of compute
nodes. It is designed to be simple, lightweight and robust.

Options
-h , --help Print help message

-V , --version Print version information

-v , --verbose Increase logging verbosity. Adding multiple -v increases the level more. The
default log level is INFO. (see LOGGING)

-q , --quiet Decrease logging verbosity. Adding multiple -q decreases the level more. The
default log level is INFO. (see LOGGING)

-s , --skip-rescue Ignore the rescue file for workflow.dag if it exists. Note that pegasus-mpi-clus-
ter will still create a new rescue file for the current run. The default behavior
is to use the rescue file if one is found. (see RESCUE FILES)

-o path , --stdout path Path to file for task stdout. (see TASK STDIO and --per-task-stdio)

Command Line Tools

276

-e path , --stderr path Path to file for task stderr. (see TASK STDIO and --per-task-stdio)

-m M , --max-failures M Stop submitting new tasks after M tasks have failed. Once M has been reached,
pegasus-mpi-cluster will finish running any tasks that have been started, but
will not start any more tasks. This option is used to prevent pegasus-mpi-clus-
ter from continuing to run a workflow that is suffering from a systematic error,
such as a missing binary or an invalid path. The default for M is 0, which means
unlimited failures are allowed.

-t T , --tries T Attempt to run each task T times before marking the task as failed. Note that
the T tries do not count as failures for the purposes of the -m option. A task is
only considered failed if it is tried T times and all T attempts result in a non-
zero exitcode. The value of T must be at least 1. The default is 1.

-n , --nolock Do not lock DAGFILE. By default, pegasus-mpi-cluster will attempt to ac-
quire an exclusive lock on DAGFILE to prevent multiple MPI jobs from run-
ning the same DAG at the same time. If this option is specified, then the lock
will not be acquired.

-r , --rescue path Path to rescue log. If the file exists, and -s is not specified, then the log will be
used to recover the state of the workflow. The file is truncated after it is read
and a new rescue log is created in its place. The default is to append .rescue to
the DAG file name. (see RESCUE FILES)

--host-script path Path to a script or executable to launch on each unique host that pegasus-mpi-
cluster is running on. This path can also be set using the PMC_HOST_SCRIPT
environment variable. (see HOST SCRIPTS)

--host-memory size Amount of memory available on each host in MB. The default is to deter-
mine the amount of physical RAM automatically. This value can also be set
using the PMC_HOST_MEMORY environment variable. (see RESOURCE-
BASED SCHEDULING)

--host-cpus cpus Number of CPUs available on each host. The default is to determine the
number of CPU cores automatically. This value can also be set using
the PMC_HOST_CPUS environment variable. (see RESOURCE-BASED
SCHEDULING)

--strict-limits This enables strict memory usage limits for tasks. When this option is specified,
and a task tries to allocate more memory than was requested in the DAG, the
memory allocation operation will fail.

--max-wall-time minutes This is the maximum number of minutes that pegasus-mpi-cluster will allow
the workflow to run. When this time expires pegasus-mpi-cluster will abort
the workflow and merge all of the stdout/stderr files of the workers. The value
is in minutes, and the default is unlimited wall time. This option was added
so that the output of a workflow will be recorded even if the workflow ex-
ceeds the max wall time of its batch job. This value can also be set using the
PMC_MAX_WALL_TIME environment variable.

--per-task-stdio This causes PMC to generate a .out.XXX and a .err.XXX file for each task in-
stead of writing task stdout/stderr to --stdout and --stderr. The name of the files
are "TASKNAME.out.XXX" and "TASKNAME.err.XXX", where "TASK-
NAME" is the name of the task from the DAG and "XXX" is a sequence number
that is incremented each time the task is tried. This option overrides the values
for --stdout and --stderr. This argument is used by Pegasus when workflows
are planned in PMC-only mode to facilitate debugging and monitoring.

--jobstate-log This option causes PMC to generate a jobstate.log file for the workflow. The
file is named "jobstate.log" and is placed in the same directory where the DAG
file is located. If the file already exists, then PMC appends new lines to the
existing file. This option is used by Pegasus when workflows are planned in
PMC-only mode to facilitate monitoring.

Command Line Tools

277

--monitord-hack This option causes PMC to generate a .dagman.out file for the workflow. This
file mimics the contents of the .dagman.out file generated by Condor DAGMan.
The point of this option is to trick monitord into thinking that it is dealing with
DAGMan so that it will generate the appropriate events to populate the STAM-
PEDE database for monitoring purposes. The file is named "DAG.dagman.out"
where "DAG" is the path to the PMC DAG file.

--no-resource-log Do not generate a workflow.dag.resource file for the workflow.

--no-sleep-on-recv Do not use polling with sleep() to implement message receive. (see Known
Issues: CPU Usage)

--maxfds Set the maximum number of file descriptors that can be left open by the master
for I/O forwarding. By default this value is set automatically based on the value
of getrlimit(RLIMIT_NOFILE). The value must be at least 1, and cannot be
more than RLIMIT_NOFILE.

--keep-affinity By default PMC attempts to reset the CPU and memory affinity. This is to en-
sure that all available CPUs and memory can be used by PMC tasks on sys-
tems that are not configured properly. This flag tells PMC to keep the affin-
ity settings inherited from its parent. Note that the memory policy can only
be cleared if PMC was compiled with libnuma. CPU affinity is cleared using
sched_setaffinity(), and memory policy is cleared with set_mempolicy().

DAG Files
pegasus-mpi-cluster workflows are expressed using a simple text-based format similar to that used by Condor DAG-
Man. There are only two record types allowed in a DAG file: TASK and EDGE. Any blank lines in the DAG (lines
with all whitespace characters) are ignored, as are any lines beginning with # (note that # can only appear at the be-
ginning of a line, not in the middle).

The format of a TASK record is:

"TASK" id [options...] executable [arguments...]

Where id is the ID of the task, options is a list of task options, executable is the path to the executable or script to run,
and arguments… is a space-separated list of arguments to pass to the task. An example is:

TASK t01 -m 10 -c 2 /bin/program -a -b

This example specifies a task t01 that requires 10 MB memory and 2 CPUs to run /bin/program with the arguments
-a and -b. The available task options are:

-m M , --request-memory M The amount of memory required by the task in MB. The default is 0, which
means memory is not considered for this task. This option can be set for a
job in the DAX by specifying the pegasus::pmc_request_memory profile. (see
RESOURCE-BASED SCHEDULING)

-c N , --request-cpus N The number of CPUs required by the task. The default is 1, which implies that
the number of slots on a host should be less than or equal to the number of
physical CPUs in order for all the slots to be used. This option can be set for
a job in the DAX by specifying the pegasus::pmc_request_cpus profile. (see
RESOURCE-BASED SCHEDULING)

-t T , --tries T The number of times to try to execute the task before failing permanently. This
is the task-level equivalent of the --tries command-line option.

-p P , --priority P The priority of the task. P should be an integer. Larger values have higher pri-
ority. The default is 0. Priorities are simply hints and are not strict—if a task
cannot be matched to an available slot (e.g. due to resource availability), but
a lower-priority task can, then the task will be deferred and the lower priority
task will be executed. This option can be set for a job in the DAX by specifying
the pegasus::pmc_priority profile.

Command Line Tools

278

-f VAR=FILE , --pipe-forward
VAR=FILE

Forward I/O to file FILE using pipes to communicate with the task. The envi-
ronment variable VAR will be set to the value of a file descriptor for a pipe
to which the task can write to get data into FILE. For example, if a task speci-
fies: -f FOO=/tmp/foo then the environment variable FOO for the task will be
set to a number (e.g. 3) that represents the file /tmp/foo. In order to specify
this argument in a Pegasus DAX you need to set the pegasus::pmc_arguments
profile (note that the value of pmc_arguments must contain the "-f" part
of the argument, so a valid value would be: <profile namespace="pegasus"
key="pmc_arguments">-f A=/tmp/a </profile>). (see I/O FORWARDING)

-F SRC=DEST , --file-forward
SRC=DEST

Forward I/O to the file DEST from the file SRC. When the task finishes, the
worker will read the data from SRC and send it to the master where it will be
written to the file DEST. After SRC is read it is deleted. In order to specify
this argument in a Pegasus DAX you need to set the pegasus::pmc_arguments
profile. (see I/O FORWARDING)

The format of an EDGE record is:

"EDGE" parent child

Where parent is the ID of the parent task, and child is the ID of the child task. An example EDGE record is:

EDGE t01 t02

A simple diamond-shaped workflow would look like this:

diamond.dag
TASK A /bin/echo "I am A"
TASK B /bin/echo "I am B"
TASK C /bin/echo "I am C"
TASK D /bin/echo "I am D"

EDGE A B
EDGE A C
EDGE B D
EDGE C D

Rescue Files
Many different types of errors can occur when running a DAG. One or more of the tasks may fail, the MPI job may
run out of wall time, pegasus-mpi-cluster may segfault (we hope not), the system may crash, etc. In order to ensure
that the DAG does not need to be restarted from the beginning after an error, pegasus-mpi-cluster generates a rescue
file for each workflow.

The rescue file is a simple text file that lists all of the tasks in the workflow that have finished successfully. This file
is updated each time a task finishes, and is flushed periodically so that if the work- flow fails and the user restarts
it, pegasus-mpi-cluster can determine which tasks still need to be executed. As such, the rescue file is a sort-of
transaction log for the workflow.

The rescue file contains zero or more DONE records. The format of these records is:

"DONE" *taskid*

Where taskid is the ID of the task that finished successfully.

By default, rescue files are named DAGNAME.rescue where DAGNAME is the path to the input DAG file. The file
name can be changed by specifying the -r argument.

PMC and Pegasus

Using PMC for Pegasus Task Clustering

PMC can be used as the wrapper for executing clustered jobs in Pegasus. In this mode Pegasus groups several tasks
together and submits them as a single clustered job to a remote system. PMC then executes the individual tasks in
the cluster and returns the results.

Command Line Tools

279

PMC can be specified as the task manager for clustered jobs in Pegasus in three ways:

1. Globally in the properties file

The user can set a property in the properties file that results in all the clustered jobs of the workflow being executed
by PMC. In the Pegasus properties file specify:

#PEGASUS PROPERTIES FILE
pegasus.clusterer.job.aggregator=mpiexec

In the above example, all the clustered jobs on all remote sites will be launched via PMC as long as the property
value is not overridden in the site catalog.

2. By setting the profile key "job.aggregator" in the site catalog:

<site handle="siteX" arch="x86" os="LINUX">
 ...
 <profile namespace="pegasus" key="job.aggregator">mpiexec</profile>
</site>

In the above example, all the clustered jobs on a siteX are going to be executed via PMC as long as the value is
not overridden in the transformation catalog.

3. By setting the profile key "job.aggregator" in the transformation catalog:

tr B {
 site siteX {
 pfn "/path/to/mytask"
 arch "x86"
 os "linux"
 type "INSTALLED"
 profile pegasus "clusters.size" "3"
 profile pegasus "job.aggregator" "mpiexec"
 }
}

In the above example, all the clustered jobs for transformation B on siteX will be executed via PMC.

It is usually necessary to have a pegasus::mpiexec entry in your transformation catalog that specifies a) the path to
PMC on the remote site and b) the relevant globus profiles such as xcount, host_xcount and maxwalltime to control
size of the MPI job. That entry would look like this:

tr pegasus::mpiexec {
 site siteX {
 pfn "/path/to/pegasus-mpi-cluster"
 arch "x86"
 os "linux"
 type "INSTALLED"
 profile globus "maxwalltime" "240"
 profile globus "host_xcount" "1"
 profile globus "xcount" "32"
 }
}

If this transformation catalog entry is not specified, Pegasus will attempt create a default path on the basis of the
environment profile PEGASUS_HOME specified in the site catalog for the remote site.

PMC can be used with both horizontal and label-based clustering in Pegasus, but we recommend using label-based
clustering so that entire sub-graphs of a Pegasus DAX can be clustered into a single PMC job, instead of only a single
level of the workflow.

Pegasus Profiles for PMC

There are several Pegasus profiles that map to PMC task options:

pmc_request_memory This profile is used to set the --request-memory task option and is usually specified
in the DAX or transformation catalog.

pmc_request_cpus This key is used to set the --request-cpus task option and is usually specified in the
DAX or transformation catalog.

Command Line Tools

280

pmc_priority This key is used to set the --priority task option and is usually specified in the DAX.

These profiles are used by Pegasus when generating PMC’s input DAG when PMC is used as the task manager for
clustered jobs in Pegasus.

The profiles can be specified in the DAX like this:

<job id="ID0000001" name="mytask">
 <arguments>-a 1 -b 2 -c 3</arguments>
 ...
 <profile namespace="pegasus" key="pmc_request_memory">1024</profile>
 <profile namespace="pegasus" key="pmc_request_cpus">4</profile>
 <profile namespace="pegasus" key="pmc_priority">10</profile>
</job>

This example specifies a PMC task that requires 1GB of memory and 4 cores, and has a priority of 10. It produces
a task in the PMC DAG that looks like this:

TASK mytask_ID00000001 -m 1024 -c 4 -p 10 /path/to/mytask -a 1 -b 2 -c 3

Using PMC for the Entire Pegasus DAX

Pegasus can also be configured to run the entire workflow as a single PMC job. In this mode Pegasus will generate a
single PMC DAG for the entire workflow as well as a PBS script that can be used to submit the workflow.

In contrast to using PMC as a task clustering tool, in this mode there are no jobs in the workflow executed without
PMC. The entire workflow, including auxilliary jobs such as directory creation and file transfers, is managed by PMC.
If Pegasus is configured in this mode, then DAGMan and Condor are not required.

To run in PMC-only mode, set the property "pegasus.code.generator" to "PMC" in the Pegasus properties file:

pegasus.code.generator=PMC

In order to submit the resulting PBS job you may need to make changes to the .pbs file generated by Pegasus to get it
to work with your cluster. This mode is experimental and has not been used extensively.

Logging
By default, all logging messages are printed to stderr. If you turn up the logging using -v then you may end up with
a lot of stderr being forwarded from the workers to the master.

The log levels in order of severity are: FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

The default logging level is INFO. The logging levels can be increased with -v and decreased with -q.

Task STDIO
By default the stdout and stderr of tasks will be redirected to the master’s stdout and stderr. You can change the path of
these files with the -o and -e arguments. You can also enable per-task stdio files using the --per-task-stdio argument.
Note that if per-task stdio files are not used then the stdio of all workers will be merged into one out and one err file
by the master at the end, so I/O from different workers will not be interleaved, but I/O from each worker will appear
in the order that it was generated. Also note that, if the job fails for any reason, the outputs will not be merged, but
instead there will be one file for each worker named DAGFILE.out.X and DAGFILE.err.X, where DAGFILE is the
path to the input DAG, and X is the worker’s rank.

Host Scripts
A host script is a shell script or executable that pegasus-mpi-cluster launches on each unique host on which it is
running. They can be used to start auxilliary services, such as memcached, that the tasks in a workflow require.

Host scripts are specified using either the --host-script argument or the PMC_HOST_SCRIPT environment variable.

The host script is started when pegasus-mpi-cluster starts and must exit with an exitcode of 0 before any tasks can
be executed. If it the host script returns a non-zero exitcode, then the workflow is aborted. The host script is given 60

Command Line Tools

281

seconds to do any setup that is required. If it doesn’t exit in 60 seconds then a SIGALRM signal is delivered to the
process, which, if not handled, will cause the process to terminate.

When the workflow finishes, pegasus-mpi-cluster will deliver a SIGTERM signal to the host script’s process group.
Any child processes left running by the host script will receive this signal unless they created their own process group.
If there were any processes left to receive this signal, then they will be given a few seconds to exit, then they will be
sent SIGKILL. This is the mechanism by which processes started by the host script can be informed of the termination
of the workflow.

Resource-Based Scheduling
High-performance computing resources often have a low ratio of memory to CPUs. At the same time, workflow tasks
often have high memory requirements. Often, the memory requirements of a workflow task exceed the amount of
memory available to each CPU on a given host. As a result, it may be necessary to disable some CPUs in order to
free up enough memory to run the tasks. Similarly, many codes have support for multicore hosts. In that case it is
necessary for efficiency to ensure that the number of cores required by the tasks running on a host do not exceed the
number of cores available on that host.

In order to make this process more efficient, pegasus-mpi-cluster supports resource-based scheduling. In re-
source-based scheduling the tasks in the workflow can specify how much memory and how many CPUs they require,
and pegasus-mpi-cluster will schedule them so that the tasks running on a given host do not exceed the amount of
physical memory and CPUs available. This enables pegasus-mpi-cluster to take advantage of all the CPUs available
when the tasks' memory requirement is low, but also disable some CPUs when the tasks' memory requirement is high-
er. It also enables workflows with a mixture of single core and multi-core tasks to be executed on a heterogenous pool.

If there are no hosts available that have enough memory and CPUs to execute one of the tasks in a workflow, then
the workflow is aborted.

Memory

Users can specify both the amount of memory required per task, and the amount of memory available per host. If the
amount of memory required by any task exceeds the available memory of all the hosts, then the workflow will be
aborted. By default, the host memory is determined automatically, however the user can specify --host-memory to
"lie" to pegasus-mpi-cluster. The amount of memory required for each task is specified in the DAG using the -m/--
request-memory argument (see DAG Files).

CPUs

Users can specify the number of CPUs required per task, and the total number of CPUs available on each host. If
the number of CPUs required by a task exceeds the available CPUs on all hosts, then the workflow will be aborted.
By default, the number of CPUs on a host is determined automatically, but the user can specify --host-cpus to over-
or under-subscribe the host. The number of CPUs required for each task is specified in the DAG using the -c/--
request-cpus argument (see DAG Files).

I/O Forwarding
In workflows that have lots of small tasks it is common for the I/O written by those tasks to be very small. For example,
a workflow may have 10,000 tasks that each write a few KB of data. Typically each task writes to its own file, resulting
in 10,000 files. This I/O pattern is very inefficient on many parallel file systems because it requires the file system to
handle a large number of metadata operations, which are a bottleneck in many parallel file systems.

One way to handle this problem is to have all 10,000 tasks write to a single file. The problem with this approach is
that it requires those tasks to synchronize their access to the file using POSIX locks or some other mutual exclusion
mechanism. Otherwise, the writes from different tasks may be interleaved in arbitrary order, resulting in unusable data.

In order to address this use case PMC implements a feature that we call "I/O Forwarding". I/O forwarding enables
each task in a PMC job to write data to an arbitrary number of shared files in a safe way. It does this by having PMC
worker processes collect data written by the task and send it over over the high-speed network using MPI messaging
to the PMC master process, where it is written to the output file. By having one process (the PMC master process)
write to the file all of the I/O from many parallel tasks can be synchronized and written out to the files safely.

Command Line Tools

282

There are two different ways to use I/O forwarding in PMC: pipes and files. Pipes are more efficient, but files are
easier to use.

I/O forwarding using pipes

I/O forwarding with pipes works by having PMC worker processes collect data from each task using UNIX pipes.
This approach is more efficient than the file-based approach, but it requires the code of the task to be changed so that
the task writes to the pipe instead of a regular file.

In order to use I/O forwarding a PMC task just needs to specify the -f/--pipe-forward argument to specify the name
of the file to forward data to, and the name of an environment variable through which the PMC worker process can
inform it of the file descriptor for the pipe.

For example, if there is a task "mytask" that needs to forward data to two files: "myfile.a" and "myfile.b", it would
look like this:

TASK mytask -f A=/tmp/myfile.a -f B=/tmp/myfile.b /bin/mytask

When the /bin/mytask process starts it will have two variables in its environment: "A=3" and "B=4", for example.
The value of these variables is the file descriptor number of the corresponding files. In this case, if the task wants to
write to "/tmp/myfile.a", it gets the value of environment variable "A", and calls write() on that descriptor number.
In C the code for that looks like this:

char *A = getenv("A");
int fd = atoi(A);
char *message = "Hello, World\n";
write(fd, message, strlen(message));

In some programming languages it is not possible to write to a file descriptor directly. Fortran, for example, refers to
files by unit number instead of using file descriptors. In these languages you can either link C I/O functions into your
binary and call them from routines written in the other language, or you can open a special file in the Linux /proc file
system to get another handle to the pipe you want to access. For the latter, the file you should open is "/proc/self/fd/
NUMBER" where NUMBER is the file descriptor number you got from the environment variable. For the example
above, the pipe for myfile.a (environment variable A) is "/proc/self/fd/3".

If you are using pegasus-kickstart, which is probably the case if you are using PMC for a Pegasus workflow, then
there’s a trick you can do to avoid modifying your code. You use the /proc file system, as described above, but you
let pegasus-kickstart handle the path construction. For example, if your application has an argument, -o, that allows
you to specify the output file then you can write your task like this:

TASK mytask -f A=/tmp/myfile.a /bin/pegasus-kickstart /bin/mytask -o /proc/self/fd/$A

In this case, pegasus-kickstart will replace the $A in your application arguments with the file descriptor number you
want. Your code can open that path normally, write to it, and then close it as if it were a regular file.

I/O forwarding using files

I/O forwarding with files works by having tasks write out data in files on the local disk. The PMC worker process
reads these files and forwards the data to the master where it can be written to the desired output file. This approach
may be much less efficient than using pipes because it involves the file system, which has more overhead than a pipe.

File forwarding can be enabled by giving the -F/--file-forward argument to a task.

Here’s an example:

TASK mytask -F /tmp/foo.0=/scratch/foo /bin/mytask -o /tmp/foo.0

In this case, the worker process will expect to find the file /tmp/foo.0 when mytask exits successfully. It reads the
data from that file and sends it to the master to be written to the end of /scratch/foo. After /tmp/foo.0 is read it will
be deleted by the worker process.

This approach works best on systems where the local disk is a RAM file system such as Cray XT machines. Alterna-
tively, the task can use /dev/shm on a regular Linux cluster. It might also work relatively efficiently on a local disk
if the file system cache is able to absorb all of the reads and writes.

Command Line Tools

283

I/O forwarding caveats

When using I/O forwarding it is important to consider a few caveats.

First, if the PMC job fails for any reason (including when the workflow is aborted for violating --max-wall-time),
then the files containing forwarded I/O may be corrupted. They can include partial records, meaning that only part
of the I/O from one or more tasks was written, and they can include duplicate records, meaning that the I/O was
written, but the PMC job failed before the task could be marked as successful, and the workflow was restarted later.
We make no guarantees about the contents of the data files in this case. It is up to the code that reads the files to a)
detect and b) recover from such problems. To eliminate duplicates the records should include a unique identifier, and
to eliminate partials the records should include a checksum.

Second, you should not use I/O forwarding if your task is going to write a lot of data to the file. Because the PMC
worker is reading data off the pipe/file into memory and sending it in an MPI message, if you write too much, then
the worker process will run the system out of memory. Also, all the data needs to fit in a single MPI message. In pipe
forwarding there is no hard limit on the size, but in file forwarding the limit is 1MB. We haven’t benchmarked the
performance on large I/O, but anything larger than about 1 MB is probably too much. At any rate, if your data is larger
than 1MB, then I/O forwarding probably won’t have much of a performance benefit anyway.

Third, the I/O is not written to the file if the task returns a non-zero exitcode. We assume that if the task failed that
you don’t want the data it produced.

Fourth, the data from different tasks is not interleaved. All of the data written by a given task will appear sequentially
in the output file. Note that you can still get partial records, however, if any data from a task appears it will never be
split among non-adjacent ranges in the output file. If you have 3 tasks that write: "I am a task" you can get:

I am a taskI am a taskI am a task

and:

I am a taskI amI am a task

but not:

I am a taskI amI am a task a task

Fifth, data from different tasks appears in arbitrary order in the output file. It depends on what order the tasks were
executed by PMC, which may be arbitrary if there are no dependencies between the tasks. The data that is written
should contain enough information that you are able to determine which task produced it if you require that. PMC
does not add any headers or trailers to the data.

Sixth, a task will only be marked as successful if all of its I/O was successfully written. If the workflow completed
successfully, then the I/O is guaranteed to have been written.

Seventh, if the master is not able to write to the output file for any reason (e.g. the master tries to write the I/O to the
destination file, but the write() call returns an error) then the task is marked as failed even if the task produced a non-
zero exitcode. In other words, you may get a non-zero kickstart record even when PMC marks the task failed.

Eighth, the pipes are write-only. If you need to read and write data from the file you should use file forwarding and
not pipe forwarding.

Ninth, all files are opened by the master in append mode. This is so that, if the workflow fails and has to be restarted,
or if a task fails and is retried, the data that was written previously is not lost. PMC never truncates the files. This is
one of the reasons why you can have partial records and duplicate records in the output file.

Finally, in file forwarding the output file is removed when the task exits. You cannot rely on the file to be there when
the next task runs even if you write it to a shared file system.

Misc

Resource Utilization

At the end of the workflow run, the master will report the resource utilization of the job. This is done by adding up
the total runtimes of all the tasks executed (including failed tasks) and dividing by the total wall time of the job times

Command Line Tools

284

N, where N is both the total number of processes including the master, and the total number of workers. These two
resource utilization values are provided so that users can get an idea about how efficiently they are making use of
the resources they allocated. Low resource utilization values suggest that the user should use fewer cores, and longer
wall time, on future runs, while high resource utilization values suggest that the user could use more cores for future
runs and get a shorter wall time.

Known Issues

Cray Compiler Wrappers

On Cray machines, the CC compiler wrapper for C++ code should be used to compile PMC. That wrapper links in all
the required MPI libraries. Cray compiler wrappers should not be used to compile tasks that run under PMC. If
you use a Cray wrapper to compile a task that runs under PMC, then the task will hang, or exit immediately with a 0
exit code without doing anything. This seems to be a problem with the libraries that are linked into the code when it
is compiled with a Cray wrapper. To summarize: on Cray machines, compile PMC with the CC wrapper, but compile
code that runs under PMC without any wrappers.

fork() and exec()

In order for the worker processes to start tasks on the compute node the compute nodes must support the fork() and
exec() system calls. If your target machine runs a stripped-down OS on the compute nodes that does not support these
system calls, then pegasus-mpi-cluster will not work.

CPU Usage

Many MPI implementations are optimized so that message sends and receives do busy waiting (i.e. they spin/poll on
a message send or receive instead of sleeping). The reasoning is that sleeping adds overhead and, since many HPC
systems use space sharing on dedicated hardware, there are no other processes competing, so spinning instead of
sleeping can produce better performance. On those implementations MPI processes will run at 100% CPU usage even
when they are just waiting for a message. This is a big problem for multicore tasks in pegasus-mpi-cluster because
idle slots consume CPU resources. In order to solve this problem pegasus-mpi-cluster processes sleep for a short
period between checks for waiting messages. This reduces the load significantly, but causes a short delay in receiving
messages. If you are using an MPI implementation that sleeps on message send and receive instead of doing busy
waiting, then you can disable the sleep by specifying the --no-sleep-on-recv option. Note that the master will always
sleep if --max-wall-time is specified because there is no way to interrupt or otherwise timeout a blocking call in MPI
(e.g. SIGALRM does not cause MPI_Recv to return EINTR).

Environment Variables
The environment variables below are aliases for command-line options. If the environment variable is present, then it
is used as the default for the associated option. If both are present, then the command-line option is used.

PMC_HOST_SCRIPT Alias for the --host-script option.

PMC_HOST_MEMORY Alias for the --host-memory option.

PMC_HOST_CPUS Alias for the --host-cpus option.

PMC_MAX_WALL_TIME Alias for the --max-wall-time option.

Author
Gideon Juve <gideon@isi.edu>

Mats Rynge <rynge@isi.edu>

Command Line Tools

285

Name
pegasus-plan — runs Pegasus to generate the executable workflow

Synopsis
pegasus-plan [-v] [-q] [-V] [-h]
 [-Dprop=value…]] [-b prefix]
 [--conf propsfile]
 [-c cachefile[,cachefile…]] [--cleanup cleanup strategy]
 [-C style[,style…]]
 [--dir dir]
 [--force] [--force-replan]
 [--inherited-rc-files] [-j prefix]
 [-n][-I input-dir][-O output-dir] [-o site]
 [-s site1[,site2…]]
 [--staging-site s1=ss1[,s2=ss2[..]]
 [--randomdir[=dirname]]
 [--relative-dir dir]
 [--relative-submit-dir dir]
 -d daxfile

Description
The pegasus-plan command takes in as input the DAX and generates an executable workflow usually in form of
condor submit files, which can be submitted to an execution site for execution.

As part of generating an executable workflow, the planner needs to discover:

data The Pegasus Workflow Planner ensures that all the data required for the execution of the ex-
ecutable workflow is transferred to the execution site by adding transfer nodes at appropriate
points in the DAG. This is done by looking up an appropriate Replica Catalog to determine the
locations of the input files for the various jobs. By default, a file based replica catalog is used.

The Pegasus Workflow Planner also tries to reduce the workflow, unless specified otherwise.
This is done by deleting the jobs whose output files have been found in some location in the
Replica Catalog. At present no cost metrics are used. However preference is given to a location
corresponding to the execution site

The planner can also add nodes to transfer all the materialized files to an output site. The location
on the output site is determined by looking up the site catalog file, the path to which is picked
up from the pegasus.catalog.site.file property value.

executables The planner looks up a Transformation Catalog to discover locations of the executables referred
to in the executable workflow. Users can specify INSTALLED or STAGEABLE executables
in the catalog. Stageable executables can be used by Pegasus to stage executables to resources
where they are not pre-installed.

resources The layout of the sites, where Pegasus can schedule jobs of a workflow are described in the
Site Catalog. The planner looks up the site catalog to determine for a site what directories a job
can be executed in, what servers to use for staging in and out data and what jobmanagers (if
applicable) can be used for submitting jobs.

The data and executable locations can now be specified in DAX’es conforming to DAX schema version 3.2 or higher.

Options
Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s

Command Line Tools

286

properties file and the PEGASUS home location. One may set several CLI prop-
erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
ties file property of the same key.

-d file , --dax file The DAX is the XML input file that describes an abstract workflow. This is a
mandatory option, which has to be used.

-b prefix , --basename prefix The basename prefix to be used while constructing per workflow files like the
dagman file (.dag file) and other workflow specific files that are created by
Condor. Usually this prefix, is taken from the name attribute specified in the
root element of the dax files.

-c file[,file,…] , --cache file[,file,
…]

A comma separated list of paths to replica cache files that override the results
from the replica catalog for a particular LFN.

Each entry in the cache file describes a LFN , the corresponding PFN and the
associated attributes. The site attribute should be specified for each entry.

LFN_1 PFN_1 site=[site handle 1]
LFN_2 PFN_2 site=[site handle 2]
 ...
LFN_N PFN_N [site handle N]

To treat the cache files as supplemental replica catalogs set the property
pegasus.catalog.replica.cache.asrc to true. This results in the mapping in the
cache files to be merged with the mappings in the replica catalog. Thus, for a
particular LFN both the entries in the cache file and replica catalog are avail-
able for replica selection.

-C style[,style,…] , --cluster
style[,style,…]

Comma-separated list of clustering styles to apply to the workflow. This mode
of operation results in clustering of n compute jobs into a larger jobs to reduce
remote scheduling overhead. You can specify a list of clustering techniques to
recursively apply them to the workflow. For example, this allows you to cluster
some jobs in the workflow using horizontal clustering and then use label based
clustering on the intermediate workflow to do vertical clustering.

The clustered jobs can be run at the remote site, either sequentially or by using
MPI. This can be specified by setting the property pegasus.job.aggregator.
The property can be overridden by associating the PEGASUS profile key col-
lapser either with the transformation in the transformation catalog or the exe-
cution site in the site catalog. The value specified (to the property or the profile),
is the logical name of the transformation that is to be used for clustering jobs.
Note that clustering will only happen if the corresponding transformations are
catalogued in the transformation catalog.

PEGASUS ships with a clustering executable pegasus-cluster that can be found
in the $PEGASUS_HOME/bin directory. It runs the jobs in the clustered job
sequentially on the same node at the remote site.

In addition, an MPI based clustering tool called pegasus-mpi-cluster', is also
distributed and can be found in the bin directory. pegasus-mpi-cluster can also
be used in the sharedfs setup and needs to be compiled against the remote site
MPI install. directory. The wrapper is run on every MPI node, with the first one
being the master and the rest of the ones as workers.

By default, pegasus-cluster is used for clustering jobs unless overridden in the
properties or by the pegasus profile key collapser.

The following type of clustering styles are currently supported:

• horizontal is the style of clustering in which jobs on the same level are ag-
gregated into larger jobs. A level of the workflow is defined as the greatest

Command Line Tools

287

distance of a node, from the root of the workflow. Clustering occurs only on
jobs of the same type i.e they refer to the same logical transformation in the
transformation catalog.

Horizontal Clustering can operate in one of two modes. a. Job count based.

The granularity of clustering can be specified by associating either the PE-
GASUS profile key clusters.size or the PEGASUS profile key clusters.num
with the transformation.

The clusters.size key indicates how many jobs need to be clustered into the
larger clustered job. The clusters.num key indicates how many clustered jobs
are to be created for a particular level at a particular execution site. If both
keys are specified for a particular transformation, then the clusters.num key
value is used to determine the clustering granularity.

a. Runtime based.

To cluster jobs according to runtimes user needs to set one property and
two profile keys. The property pegasus.clusterer.preference must be set to
the value runtime. In addition user needs to specify two Pegasus profiles.
a. clusters.maxruntime which specifies the maximum duration for which
the clustered job should run for. b. job.runtime which specifies the dura-
tion for which the job with which the profile key is associated, runs for.
Ideally, clusters.maxruntime should be set in transformation catalog and
job.runtime should be set for each job individually.

• label is the style of clustering in which you can label the jobs in your work-
flow. The jobs with the same level are put in the same clustered job. This
allows you to aggregate jobs across levels, or in a manner that is best suited
to your application.

To label the workflow, you need to associate PEGASUS profiles with the
jobs in the DAX. The profile key to use for labeling the workflow can be
set by the property pegasus.clusterer.label.key. It defaults to label, meaning
if you have a PEGASUS profile key label with jobs, the jobs with the same
value for the pegasus profile key label will go into the same clustered job.

--cleanup cleanup strategy The cleanup strategy to be used for workflows. Pegasus can add cleanup jobs
to the executable workflow that can remove files and directories during the
workflow execution. The default strategy is inplace .

The following type of cleanup strategies are currently supported:

• none disables cleanup altogether. The planner does not add any cleanup jobs
in the executable workflow whatsoever.

• leaf the planner adds a leaf cleanup node per staging site that removes the
directory created by the create dir job in the workflow.

• inplace the planner adds in addition to leaf cleanup nodes, cleanup nodes per
level of the workflow that remove files no longer required during execution.
For example, an added cleanup node will remove input files for a particular
compute job after the job has finished successfully.

By default, for hierarchal workflows the inplace cleanup is always turned
off. This is because the cleanup algorithm (InPlace) does not work across
the sub workflows. For example, if you have two DAX jobs in your top level
workflow and the child DAX job refers to a file generated during the execu-
tion of the parent DAX job, the InPlace cleanup algorithm when applied to
the parent dax job will result in the file being deleted, when the sub workflow
corresponding to parent DAX job is executed. This would result in failure

Command Line Tools

288

of sub workflow corresponding to the child DAX job, as the file deleted is
required to present during it’s execution.

In case there are no data dependencies across the dax jobs, then yes you can
enable the InPlace algorithm for the sub dax’es . To do this you can set the
property

pegasus.file.cleanup.scope deferred

This will result in cleanup option to be picked up from the arguments for the
DAX job in the top level DAX.

--conf propfile The path to properties file that contains the properties planner needs to use
while planning the workflow.

--dir dir The base directory where you want the output of the Pegasus Workflow Plan-
ner usually condor submit files, to be generated. Pegasus creates a directory
structure in this base directory on the basis of username, VO Group and the
label of the workflow in the DAX.

By default the base directory is the directory from which one runs the pega-
sus-plan command.

-f , --force This bypasses the reduction phase in which the abstract DAG is reduced, on the
basis of the locations of the output files returned by the replica catalog. This is
analogous to a make style generation of the executable workflow.

--force-replan By default, for hierarichal workflows if a DAX job fails, then on job retry the
rescue DAG of the associated workflow is submitted. This option causes Pega-
sus to replan the DAX job in case of failure instead.

-g , --group The VO Group to which the user belongs to.

-h , --help Displays all the options to the pegasus-plan command.

--inherited-rc-files file[,file,…] A comma separated list of paths to replica files. Locations mentioned in these
have a lower priority than the locations in the DAX file. This option is usu-
ally used internally for hierarchical workflows, where the file locations men-
tioned in the parent (encompassing) workflow DAX, passed to the sub work-
flows (corresponding) to the DAX jobs.

-I , --input-dir A path to the input directory where the input files reside. This internally loads
a Directory based Replica Catalog backend, that constructs does a directory
listing to create the LFN#PFN mappings for the files in the input directory. You
can specify additional properties either on the command line or the properties
file to control the site attribute and url prefix associated with the mappings.

pegasus.catalog.replica.directory.site specifies the site attribute to associate
with the mappings. Defaults to local

pegasus.catalog.replica.directory.url.prefix specifies the URL prefix to use
while constructing the PFN. Defaults to file://

-j prefix , --job-prefix prefix The job prefix to be applied for constructing the filenames for the job submit
files.

-n , --nocleanup This option is deprecated. Use --cleanup none instead.

-o site , --output-site site The output site to which the output files of the DAX are transferred to.

By default the materialized data remains in the working directory on the ex-
ecution site where it was created. Only those output files are transferred to an
output site for which transfer attribute is set to true in the DAX.

Command Line Tools

289

-O output directory , --output-dir
output directory

The output directory to which the output files of the DAX are transferred to.

If -o is specified the storage directory of the site specified as the output site is
updated to be the directory passed. If no output site is specified, then this option
internally sets the output site to local with the storage directory updated to the
directory passed.

-q , --quiet Decreases the logging level.

-r[dirname] , --
randomdir[=dirname]

Pegasus Worfklow Planner adds create directory jobs to the executable work-
flow that create a directory in which all jobs for that workflow execute on a
particular site. The directory created is in the working directory (specified in
the site catalog with each site).

By default, Pegasus duplicates the relative directory structure on the submit
host on the remote site. The user can specify this option without arguments
to create a random timestamp based name for the execution directory that are
created by the create dir jobs. The user can can specify the optional argument
to this option to specify the basename of the directory that is to be created.

The create dir jobs refer to the dirmanager executable that is shipped as part
of the PEGASUS worker package. The transformation catalog is searched for
the transformation named pegasus::dirmanager for all the remote sites where
the workflow has been scheduled. Pegasus can create a default path for the
dirmanager executable, if PEGASUS_HOME environment variable is associ-
ated with the sites in the site catalog as an environment profile.

--relative-dir dir The directory relative to the base directory where the executable workflow it to
be generated and executed. This overrides the default directory structure that
Pegasus creates based on username, VO Group and the DAX label.

--relative-submit-dir dir The directory relative to the base directory where the executable workflow it to
be generated. This overrides the default directory structure that Pegasus creates
based on username, VO Group and the DAX label. By specifying --relative-dir
and --relative-submit-dir you can have different relative execution directory
on the remote site and different relative submit directory on the submit host.

-s site[,site,…] , --sites site[,site,
…]

A comma separated list of execution sites on which the workflow is to be exe-
cuted. Each of the sites should have an entry in the site catalog, that is being
used. To run on the submit host, specify the execution site as local.

In case this option is not specified, all the sites in the site catalog are picked up
as candidates for running the workflow.

--staging-site s1=ss1[,s2=ss2[..]] A comma separated list of key=value pairs , where the key is the execution site
and value is the staging site for that execution site.

In case of running on a shared filesystem, the staging site is automatically as-
sociated by the planner to be the execution site. If only a value is specified, then
that is taken to be the staging site for all the execution sites. e.g --staging-site
local means that the planner will use the local site as the staging site for all jobs
in the workflow.

-s , --submit Submits the generated executable workflow using pegasus-run script in
$PEGASUS_HOME/bin directory. By default, the Pegasus Workflow Planner
only generates the Condor submit files and does not submit them.

-v , --verbose Increases the verbosity of messages about what is going on. By default, all
FATAL, ERROR, CONSOLE and WARN messages are logged. The logging
hierarchy is as follows:

1. FATAL

Command Line Tools

290

2. ERROR

3. CONSOLE

4. WARN

5. INFO

6. CONFIG

7. DEBUG

8. TRACE

For example, to see the INFO, CONFIG and DEBUG messages additionally,
set -vvv.

-V , --version Displays the current version number of the Pegasus Workflow Management
System.

Return Value
If the Pegasus Workflow Planner is able to generate an executable workflow successfully, the exitcode will be 0. All
runtime errors result in an exitcode of 1. This is usually in the case when you have misconfigured your catalogs etc.
In the case of an error occurring while loading a specific module implementation at run time, the exitcode will be 2.
This is usually due to factory methods failing while loading a module. In case of any other error occurring during the
running of the command, the exitcode will be 1. In most cases, the error message logged should give a clear indication
as to where things went wrong.

Controlling pegasus-plan Memory Consumption
pegasus-plan will try to determine memory limits automatically using factors such as total system memory and
potential memory limits (ulimits). The automatic limits can be overridden by setting the JAVA_HEAPMIN and
JAVA_HEAPMAX environment variables before invoking pegasus-plan. The values are in megabytes. As a rule of
thumb, JAVA_HEAPMIN can be set to half of the value of JAVA_HEAPMAX.

Pegasus Properties
This is not an exhaustive list of properties used. For the complete description and list of properties refer to
$PEGASUS_HOME/doc/advanced-properties.pdf

pegasus.selector.site Identifies what type of site selector you want to use. If not specified the default
value of Random is used. Other supported modes are RoundRobin and Non-
JavaCallout that calls out to a external site selector.

pegasus.catalog.replica Specifies the type of replica catalog to be used.

If not specified, then the value defaults to File.

pegasus.catalog.replica.url Contact string to access the replica catalog. In case of File it is path to the file
based replica catalog.

pegasus.dir.exec A suffix to the workdir in the site catalog to determine the current working
directory. If relative, the value will be appended to the working directory from
the site.config file. If absolute it constitutes the working directory.

pegasus.catalog.transformation Specifies the type of transformation catalog to be used. One can use only a file
based transformation catalog, with the value as Text.

pegasus.catalog.transformation.file The location of file to use as transformation catalog.

Command Line Tools

291

If not specified, then the default location of $PEGASUS_HOME/etc/tc.text

pegasus.catalog.site Specifies the type of site catalog to be used. One can use either a text based or
an xml based site catalog. At present the default is XML.

pegasus.catalog.site.file The location of file to use as a site catalog. If not specified, then default value of
$PEGASUS_HOME/etc/sites.xml is used in case of the xml based site catalog.

pegasus.data.configuration This property sets up Pegasus to run in different environments. This can be set
to

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared
filesystem on the execution site. This assumes, that the head node of a cluster
and the worker nodes share a filesystem. The staging site in this case is the
same as the execution site.

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execu-
tion site without relying on a shared filesystem between the head node and the
worker nodes.

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool,
with the nodes not sharing a filesystem. Data is staged to the compute nodes
from the submit host using Condor File IO.

pegasus.code.generator The code generator to use. By default, Condor submit files are generated for
the executable workflow. Setting to Shell results in Pegasus generating a shell
script that can be executed on the submit host.

Files
$PEGASUS_HOME/etc/
dax-3.3.xsd

is the suggested location of the latest DAX schema to produce DAX output.

$PEGASUS_HOME/etc/
sc-4.0.xsd

is the suggested location of the latest Site Catalog schema that is used to create
the XML version of the site catalog

$PEGASUS_HOME/etc/
tc.data.text

is the suggested location for the file corresponding to the Transformation Cat-
alog.

$PEGASUS_HOME/etc/
sites.xml4 | $PEGASUS_HOME/
etc/sites.xml3

is the suggested location for the file containing the site information.

$PEGASUS_HOME/lib/
pegasus.jar

contains all compiled Java bytecode to run the Pegasus Workflow Planner.

See Also
pegasus-run(1), pegasus-status(1), pegasus-remove(1), pegasus-rc-client(1), pegasus-analyzer(1)

Authors
Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

292

Name
pegasus-plots — A tool to generate graphs and charts to visualize workflow run.

Synopsis
pegasus-plots [-h|--help]
 [-o|--output outdir]
 [-c|--conf propfile]
 [-m|--max-graph-nodes max]
 [-p|--plotting-level level]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [submitdir]

Description
pegasus-plots generates graphs and charts to visualize workflow run. It generates workflow execution Gantt chart, job
over time chart, time chart, dax and dag graph. It uses executable 'dot\' to generate graphs. pegasus-plots looks for the
executable in your path and generates graphs based on it’s availability .

Options
-h , --help Prints a usage summary with all the available command-line options.

-o outdir , --output outdir Writes the output to the given directory

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-m max , --max-graph-nodes max Maximum limit on the number of tasks/jobs in the dax/dag up to which the
graph should be generated. The default value is 100.

-p level , --plotting-level level Specifies the charts and graphs to generate. Valid levels are: all, all_charts,
all_graphs, dax_graph, dag_graph, gantt_chart, host_chart, time_chart,
breakdown_chart. Default is all_charts. The output generated by pega-
sus-plots is based on the level set:

• all: generates all charts and graphs.

• all_charts: generates all charts.

• all_graphs: generates all graphs.

• dax_graph: generates dax graph.

• dag_graph: generates dag graph.

• gantt_chart: generates the workflow execution Gantt chart.

• host_chart: generates the host over time chart.

• time_chart: generates the time chart which shows the job instance/invoca-
tion count and runtime over time.

• breakdown_chart: generates the breakdown chart which shows the invoca-
tion count and runtime grouped by transformation name.

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

Command Line Tools

293

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

Example
Runs pegasus-plots and writes the output to the given directory:

pegasus-plots -o /scratch/plot /scratch/grid-setup/run0001

Authors
Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

294

Name
pegasus-rc-client — shell client for replica implementations

Synopsis
pegasus-rc-client [-Dproperty=value[…]] [-V]
 [-c fn] [-p k=v]
 [[-f fn]|[-i|-d fn]|[cmd [args]]

Description
The shell interface to replica catalog implementations is a prototype. It determines from various property setting which
class implements the replica manager interface, and loads that driver at run-time. Some commands depend on the
implementation.

Options
Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’s properties file and
the PEGASUS home location. One may set several CLI properties by giving this option
multiple times. The -D option(s) must be the first option on the command line. A CLI
property take precedence over the properties file property of the same key.

-c fn , --conf fn Path to the property file

-f fn , --file fn The optional input file argument permits to enter non-interactive bulk mode. If this op-
tion is not present, replica manager specific commands should be issued on the com-
mand-line. The special filename hyphen (-) can be used to read from pipes.

Default is to use an interactive interface reading from stdin.

-i fn , --insert fn The optional input file argument permits insertion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation.

Each line in the file denotes one mapping of the format <lfn> <pfn> [k=v [..]]

-d fn , --delete fn The optional input file argument permits deletion of entries from the Replica Catalog in
a bulk mode, wherever supported by the underlying implementation.

Each line in the file denotes one mapping of the format: <lfn> <pfn> [k=v [..]]

-p k=v , --pref k=v This option may be specified multiple times. Each specification populates instance pref-
erences. Preferences control the extend of log information, or the output format string
to use in listings.

The keys format and level are recognized as of this writing.

There are no defaults.

cmd [args] If not in file-driven mode, a single command can be specified with its arguments.

Default is to use interactive mode.

-V , --version displays the version of Pegasus you are using.

Return Value
Regular and planned program terminations will result in an exit code of 0. Abnormal termination will result in a non-
zero exit code.

Command Line Tools

295

Files
$PEGASUS_HOME/etc/proper-
ties

contains the basic properties with all configurable options.

$HOME/.pegasusrc contains the basic properties with all configurable options.

pegasus.jar contains all compiled Java bytecode to run the replica manager.

Environment Variables
PEGASUS_HOME is the suggested base directory of your the execution environment.

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as
$JAVA_HOME/bin/java.

CLASSPATH should be set to contain all necessary files for the execution environment. Please make sure
that your CLASSPATH includes pointer to the replica implementation required jar files.

Properties
The complete branch of properties pegasus.catalog.replica including itself are interpreted by the prototype. While the
pegasus.catalog.replica property itself steers the backend to connect to, any meaning of branched keys is dependent
on the backend. The same key may have different meanings for different backends.

pegasus.catalog.replica determines the name of the implementing class to load at run-time. If the class
resides in org.griphyn.common.catalog.replica no prefix is required. Other-
wise, the fully qualified class name must be specified.

pegasus.catalog.replica.file is used by the SimpleFile implementation. It specifies the path to the file to use
as the backend for the catalog.

pegasus.catalog.replica.db.driver is used by a simple rDBMs implementation. The string is the fully-qualified
class name of the JDBC driver used by the RDBMS implementer.

pegasus.catalog.replica.db.url is the JDBC URL to use to connect to the database.

pegasus.catalog.replica.db.user is used by a simple rDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.db.passwordis used by a simple RDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.chunk.size is used by the pegasus-rc-client for the bulk insert and delete operations. The
value determines the number of lines that are read in at a time, and worked
upon at together.

Commands
The command line tool provides a simplified shell-wrappable interface to manage a replica catalog backend. The
commands can either be specified in a file in bulk mode, in a pipe, or as additional arguments to the invocation.

Note that you must escape special characters from the shell.

help displays a small resume of the commands.

exit , quit should only be used in interactive mode to exit the interactive mode.

clear drops all contents from the backend. Use with special care!

insert <lfn> <pfn> [k=v […]] inserts a given lfn and pfn, and an optional site string into the backend. If the
site is not specified, a null value is inserted for the site.

Command Line Tools

296

delete <lfn> <pfn> [k=v […]] removes a triple of lfn, pfn and, optionally, site from the replica backend. If
the site was not specified, all matches of the lfn pfn pairs will be removed,
regardless of the site.

lookup <lfn> [<lfn> […]] retrieves one or more mappings for a given lfn from the replica backend.

remove <lfn> [<lfn> […]] removes all mappings for each lfn from the replica backend.

list [lfn <pat>] [pfn <pat>]
[<name> <pat>]

obtains all matches from the replica backend. If no arguments were specified,
all contents of the replica backend are matched. You must use the word lfn, pfn
or <name> before specifying a pattern. The pattern is meaningful only to the
implementation. Thus, a SQL implementation may chose to permit SQL wild-
card characters. A memory-resident service may chose to interpret the pattern
as regular expression.

set [var [value]] sets an internal variable that controls the behavior of the front-end. With no
arguments, all possible behaviors are displayed. With one argument, just the
matching behavior is listed. With two arguments, the matching behavior is set
to the value.

Database Schema
The tables are set up as part of the PEGASUS database setup. The files concerned with the database have a suffix
-rc.sql.

Authors
Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmetha at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot dot edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Command Line Tools

297

Name
pegasus-remove — removes a workflow that has been planned and submitted using pegasus-plan and pegasus-run

Synopsis
pegasus-remove [-d dagid] [-v] [rundir]

Description
The pegasus-remove command remove a submitted/running workflow that has been planned and submitted using
pegasus-plan and pegasus-run. The command can be invoked either in the planned directory with no options and
arguments or just the full path to the run directory.

Another way to remove a workflow is with the pegasus-halt command. The difference is that pegasus-halt will allow
current jobs to finish gracefully before stopping the workflow.

Options
By default pegasus-remove does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs to
be specified or the dagid of the workflow to be removed.

pegasus-remove takes the following options:

-d dagid , --dagid
dagid

The workflow dagid to remove

-v , --verbose Raises debug level. Each invocation increase the level by 1.

rundir Is the full qualified path to the base directory containing the planned workflow DAG and
submit files. This is optional if pegasus-remove command is invoked from within the run
directory.

Return Value
If the workflow is removed successfully pegasus-remove returns with an exit code of 0. However, in case of error, a
non-zero exit code indicates problems. An error message clearly marks the cause.

Files
The following files are opened:

braindump This file is located in the rundir. pegasus-remove uses this file to find out paths to several other files.

Environment Variables
PATH The path variable is used to locate binary for condor_rm.

See Also
pegasus-plan(1), pegasus-run(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Command Line Tools

298

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

299

Name
pegasus-run — executes a workflow that has been planned using *pegasus-plan*.

Synopsis
pegasus-run [-Dproperty=value…][-c propsfile][-d level]
 [-v][--grid*][rundir]

Description
The pegasus-run command executes a workflow that has been planned using pegasus-plan. By default pegasus-run
can be invoked either in the planned directory with no options and arguments or just the full path to the run directory.
pegasus-run also can be used to resubmit a failed workflow by running the same command again.

Options
By default pegasus-run does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs
to be specified.

pegasus-run takes the following options

-Dproperty=value The -D option allows an advanced user to override certain properties which influence
pegasus-run. One may set several CLI properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

See the PROPERTIES section below.

-c propsfile , --conf
propsfile

Provide a property file to override the default Pegasus properties file from the planning
directory. Ordinary users do not need to use this option unless the specifically want to
override several properties

-d level , --debug level Set the debug level for the client. Default is 0.

-v , --verbose Raises debug level. Each invocation increase the level by 1.

--grid Enable grid checks to see if your submit machine is GRID enabled.

rundir Is the full qualified path to the base directory containing the planned workflow DAG
and submit files. This is optional if the pegasus-run command is invoked from within
the run directory.

Return Value
If the workflow is submitted for execution pegasus-run returns with an exit code of 0. However, in case of error, a
non-zero return value indicates problems. An error message clearly marks the cause.

Files
The following files are created, opened or written to:

braindump This file is located in the rundir. pegasus-run uses this file to find out paths to
several other files, properties configurations etc.

pegasus.?????????.properties This file is located in the rundir. pegasus-run uses this properties file by default
to configure its internal settings.

Command Line Tools

300

workflowname.dag pegasus-run uses the workflowname.dag or workflowname.sh file and submits
it either to condor for execution or runs it locally in a shell environment

Properties
pegasus-run reads its properties from several locations.

RUNDIR/
pegasus.??????????.properties

The default location for pegasus-run to read the properties from

--conf propfile properties file provided in the conf option replaces the default properties file
used.

$HOME/.pegasusrc will be used if neither default rundir properties or --conf propertiesfile are
found.

Additionally properties can be provided individually using the -
Dpropkey=propvalue option on the command line before all other options.
These properties will override properties provided using either --conf or
RUNDIR/pegasus.???????.properties or the $HOME/.pegasusrc

The merge logic is CONF PROPERTIES || DEFAULT RUNDIR PROP-
ERTIES || PEGASUSRC overriden by Command line properties

Environment Variables
PATH The path variable is used to locate binaries for condor-submit-dag, condor-dagman, con-

dor-submit,pegasus-submit-dag, pegasus-dagman and pegasus-monitord

See Also
pegasus-plan(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

301

Name
pegasus-s3 — Upload, download, delete objects in Amazon S3

Synopsis
pegasus-s3 help
pegasus-s3 ls [options] URL
pegasus-s3 mkdir [options] URL…
pegasus-s3 rmdir [options] URL…
pegasus-s3 rm [options] [URL…]
pegasus-s3 put [options] FILE URL
pegasus-s3 get [options] URL [FILE]
pegasus-s3 lsup [options] URL
pegasus-s3 rmup [options] URL [UPLOAD]
pegasus-s3 cp [options] SRC… DEST

Description
pegasus-s3 is a client for the Amazon S3 object storage service and any other storage services that conform to the
Amazon S3 API, such as Eucalyptus Walrus.

Options

Global Options

-h , --help Show help message for subcommand and exit

-d , --debug Turn on debugging

-v , --verbose Show progress messages

-C FILE , --
conf=FILE

Path to configuration file

ls Options

-l , --long Use long listing format that includes size, etc.

rm Options

-f , --force If the URL does not exist, then ignore the error.

-F FILE , --
file=FILE

File containing a list of URLs to delete

put Options

-c X , --chunksize=X Set the chunk size for multipart uploads to X MB. A value of 0 disables multipart uploads.
The default is 10MB, the min is 5MB and the max is 1024MB. This parameter only applies
for sites that support multipart uploads (see multipart_uploads configuration parameter
in the CONFIGURATION section). The maximum number of chunks is 10,000, so if
you are uploading a large file, then the chunk size is automatically increased to enable the
upload. Choose smaller values to reduce the impact of transient failures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel
uploads with 4 threads. This parameter is only valid if the site supports mulipart uploads
and the --chunksize parameter is not 0. Otherwise parallel uploads are disabled.

-b , --create-bucket Create the destination bucket if it does not already exist

Command Line Tools

302

get Options

-c X , --chunksize=X Set the chunk size for parallel downloads to X megabytes. A value of 0 will avoid
chunked reads. This option only applies for sites that support ranged downloads (see
ranged_downloads configuration parameter). The default chunk size is 10MB, the min is
1MB and the max is 1024MB. Choose smaller values to reduce the impact of transient fail-
ures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel
downloads with 4 threads. This parameter is only valid if the site supports ranged downloads
and the --chunksize parameter is not 0. Otherwise parallel downloads are disabled.

rmup Options

-a , --all Cancel all uploads for the specified bucket

cp Options

-c , --create-dest Create the destination bucket if it does not exist.

-r , --recursive If SRC is a bucket, copy all of the keys in that bucket to DEST. In that case DEST must
be a bucket.

-f , --force If DEST exists, then overwrite it.

Subcommands
pegasus-s3 has several subcommands for different storage service operations.

help The help subcommand lists all available subcommands.

ls The ls subcommand lists the contents of a URL. If the URL does not contain a bucket, then all the buckets
owned by the user are listed. If the URL contains a bucket, but no key, then all the keys in the bucket are
listed. If the URL contains a bucket and a key, then all keys in the bucket that begin with the specified
key are listed.

mkdir The mkdir subcommand creates one or more buckets.

rmdir The rmdir subcommand deletes one or more buckets from the storage service. In order to delete a bucket,
the bucket must be empty.

rm The rm subcommand deletes one or more keys from the storage service.

put The put subcommand stores the file specified by FILE in the storage service under the bucket and key
specified by URL. If the URL contains a bucket, but not a key, then the file name is used as the key.

If a transient failure occurs, then the upload will be retried several times before pegasus-s3 gives up
and fails.

The put subcommand can do both chunked and parallel uploads if the service supports multipart uploads
(see multipart_uploads in the CONFIGURATION section). Currently only Amazon S3 supports mul-
tipart uploads.

This subcommand will check the size of the file to make sure it can be stored before attempting to store it.

Chunked uploads are useful to reduce the probability of an upload failing. If an upload is chunked, then
pegasus-s3 issues separate PUT requests for each chunk of the file. Specifying smaller chunks (using --
chunksize) will reduce the chances of an upload failing due to a transient error. Chunksizes can range
from 5 MB to 1GB (chunk sizes smaller than 5 MB produced incomplete uploads on Amazon S3). The
maximum number of chunks for any single file is 10,000, so if a large file is being uploaded with a small
chunksize, then the chunksize will be increased to fit within the 10,000 chunk limit. By default, the file
will be split into 10 MB chunks if the storage service supports multipart uploads. Chunked uploads can be

Command Line Tools

303

disabled by specifying a chunksize of 0. If the upload is chunked, then each chunk is retried independently
under transient failures. If any chunk fails permanently, then the upload is aborted.

Parallel uploads can increase performance for services that support multipart uploads. In a parallel upload
the file is split into N chunks and each chunk is uploaded concurrently by one of M threads in first-come,
first-served fashion. If the chunksize is set to 0, then parallel uploads are disabled. If M > N, then the
actual number of threads used will be reduced to N. The number of threads can be specified using the --
parallel argument. If --parallel is 1, then only a single thread is used. The default value is 4. There is no
maximum number of threads, but it is likely that the link will be saturated by 4 to 8 threads.

Under certain circumstances, when a multipart upload fails it could leave behind data on the server. When
a failure occurs the put subcommand will attempt to abort the upload. If the upload cannot be aborted,
then a partial upload may remain on the server. To check for partial uploads run the lsup subcommand.
If you see an upload that failed in the output of lsup, then run the rmup subcommand to remove it.

get The get subcommand retrieves an object from the storage service identified by URL and stores it in the
file specified by FILE. If FILE is not specified, then the key is used as the file name (Note: if the key has
slashes, then the file name will be a relative subdirectory, but pegasus-s3 will not create the subdirectory
if it does not exist).

If a transient failure occurs, then the download will be retried several times before pegasus-s3 gives up
and fails.

The get subcommand can do both chunked and parallel downloads if the service supports ranged down-
loads (see ranged_downloads in the CONFIGURATION section). Currently only Amazon S3 has good
support for ranged downloads. Eucalyptus Walrus supports ranged downloads, but the current release,
1.6, is inconsistent with the Amazon interface and has a bug that causes ranged downloads to hang in
some cases. It is recommended that ranged downloads not be used with Eucalyptus until these issues
are resolved.

Chunked downloads can be used to reduce the probability of a download failing. When a download is
chunked, pegasus-s3 issues separate GET requests for each chunk of the file. Specifying smaller chunks
(using --chunksize) will reduce the chances that a download will fail to do a transient error. Chunk
sizes can range from 1 MB to 1 GB. By default, a download will be split into 10 MB chunks if the site
supports ranged downloads. Chunked downloads can be disabled by specifying a --chunksize of 0. If
a download is chunked, then each chunk is retried independently under transient failures. If any chunk
fails permanently, then the download is aborted.

Parallel downloads can increase performance for services that support ranged downloads. In a parallel
download, the file to be retrieved is split into N chunks and each chunk is downloaded concurrently by
one of M threads in a first-come, first-served fashion. If the chunksize is 0, then parallel downloads are
disabled. If M > N, then the actual number of threads used will be reduced to N. The number of threads
can be specified using the --parallel argument. If --parallel is 1, then only a single thread is used. The
default value is 4. There is no maximum number of threads, but it is likely that the link will be saturated
by 4 to 8 threads.

lsup The lsup subcommand lists active multipart uploads. The URL specified should point to a bucket. This
command is only valid if the site supports multipart uploads. The output of this command is a list of
keys and upload IDs.

This subcommand is used with rmup to help recover from failures of multipart uploads.

rmup The rmup subcommand cancels and active upload. The URL specified should point to a bucket, and
UPLOAD is the long, complicated upload ID shown by the lsup subcommand.

This subcommand is used with lsup to recover from failures of multipart uploads.

cp The cp subcommand copies keys on the server. Keys cannot be copied between accounts.

URL Format
All URLs for objects stored in S3 should be specified in the following format:

Command Line Tools

304

s3[s]://USER@SITE[/BUCKET[/KEY]]

The protocol part can be s3:// or s3s://. If s3s:// is used, then pegasus-s3 will force the connection to use SSL and
override the setting in the configuration file. If s3:// is used, then whether the connection uses SSL or not is determined
by the value of the endpoint variable in the configuration for the site.

The USER@SITE part is required, but the BUCKET and KEY parts may be optional depending on the context.

The USER@SITE portion is referred to as the “identity”, and the SITE portion is referred to as the “site”. Both the
identity and the site are looked up in the configuration file (see CONFIGURATION) to determine the parameters
to use when establishing a connection to the service. The site portion is used to find the host and port, whether to
use SSL, and other things. The identity portion is used to determine which authentication tokens to use. This format
is designed to enable users to easily use multiple services with multiple authentication tokens. Note that neither the
USER nor the SITE portion of the URL have any meaning outside of pegasus-s3. They do not refer to real usernames
or hostnames, but are rather handles used to look up configuration values in the configuration file.

The BUCKET portion of the URL is the part between the 3rd and 4th slashes. Buckets are part of a global namespace
that is shared with other users of the storage service. As such, they should be unique.

The KEY portion of the URL is anything after the 4th slash. Keys can include slashes, but S3-like storage services
do not have the concept of a directory like regular file systems. Instead, keys are treated like opaque identifiers for
individual objects. So, for example, the keys a/b and a/c have a common prefix, but cannot be said to be in the same
directory.

Some example URLs are:

s3://ewa@amazon
s3://juve@skynet/gideon.isi.edu
s3://juve@magellan/pegasus-images/centos-5.5-x86_64-20101101.part.1
s3s://ewa@amazon/pegasus-images/data.tar.gz

Configuration
Each user should specify a configuration file that pegasus-s3 will use to look up connection parameters and authen-
tication tokens.

Search Path

This client will look in the following locations, in order, to locate the user’s configuration file:

1. The -C/--conf argument

2. The S3CFG environment variable

3. $HOME/.pegasus/s3cfg

4. $HOME/.s3cfg

If it does not find the configuration file in one of these locations it will fail with an error. The $HOME/.s3cfg location
is only supported for backward-compatibility. $HOME/.pegasus/s3cfg should be used instead.

Configuration File Format

The configuration file is in INI format and contains two types of entries.

The first type of entry is a site entry, which specifies the configuration for a storage service. This entry specifies the
service endpoint that pegasus-s3 should connect to for the site, and some optional features that the site may support.
Here is an example of a site entry for Amazon S3:

[amazon]
endpoint = http://s3.amazonaws.com/

The other type of entry is an identity entry, which specifies the authentication information for a user at a particular
site. Here is an example of an identity entry:

Command Line Tools

305

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

It is important to note that user names and site names used are only logical—they do not correspond to actual hostnames
or usernames, but are simply used as a convenient way to refer to the services and identities used by the client.

The configuration file should be saved with limited permissions. Only the owner of the file should be able to read
from it and write to it (i.e. it should have permissions of 0600 or 0400). If the file has more liberal permissions, then
pegasus-s3 will fail with an error message. The purpose of this is to prevent the authentication tokens stored in the
configuration file from being accessed by other users.

Configuration Variables

endpoint (site) The URL of the web service endpoint. If the URL begins with https, then SSL
will be used.

max_object_size (site) The maximum size of an object in GB (default: 5GB)

multipart_uploads (site) Does the service support multipart uploads (True/False, default: False)

ranged_downloads (site) Does the service support ranged downloads? (True/False, default: False)

access_key (identity) The access key for the identity

secret_key (identity) The secret key for the identity

Example Configuration

This is an example configuration that specifies a two sites (amazon and magellan) and three identities
(pegasus@amazon,juve@magellan, and voeckler@magellan). For the amazon site the maximum object
size is 5TB, and the site supports both multipart uploads and ranged downloads, so both uploads and downloads can
be done in parallel.

[amazon]
endpoint = https://s3.amazonaws.com/
max_object_size = 5120
multipart_uploads = True
ranged_downloads = True

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

[magellan]
NERSC Magellan is a Eucalyptus site. It doesn't support multipart uploads,
or ranged downloads (the defaults), and the maximum object size is 5GB
(also the default)
endpoint = https://128.55.69.235:8773/services/Walrus

[juve@magellan]
access_key = quwefahsdpfwlkewqjsdoijldsdf
secret_key = asdfa9wejalsdjfljasldjfasdfa

[voeckler@magellan]
Each site can have multiple associated identities
access_key = asdkfaweasdfbaeiwhkjfbaqwhei
secret_key = asdhfuinakwjelfuhalsdflahsdl

Example
List all buckets owned by identity user@amazon:

$ pegasus-s3 ls s3://user@amazon

List the contents of bucket bar for identity user@amazon:

$ pegasus-s3 ls s3://user@amazon/bar

Command Line Tools

306

List all objects in bucket bar that start with hello:

$ pegasus-s3 ls s3://user@amazon/bar/hello

Create a bucket called mybucket for identity user@amazon:

$ pegasus-s3 mkdir s3://user@amazon/mybucket

Delete a bucket called mybucket:

$ pegasus-s3 rmdir s3://user@amazon/mybucket

Upload a file foo to bucket bar:

$ pegasus-s3 putfoo s3://user@amazon/bar/foo

Download an object foo in bucket bar:

$ pegasus-s3 get s3://user@amazon/bar/foo foo

Upload a file in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 put --parallel 4 --chunksize 100 foo s3://user@amazon/bar/foo

Download an object in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 get --parallel 4 --chunksize 100 s3://user@amazon/bar/foo foo

List all partial uploads for bucket bar:

$ pegasus-s3 lsup s3://user@amazon/bar

Remove all partial uploads for bucket bar:

$ pegasus-s3 rmup --all s3://user@amazon/bar

Return Value
pegasus-s3 returns a zero exist status if the operation is successful. A non-zero exit status is returned in case of failure.

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

307

Name
pegasus-sc-converter — A client to convert site catalog from one format to another format.

Synopsis
pegasus-sc-converter [-v] [-V] [-h] [-Dproperty=value…]
 [-I fmt] [-O fmt]
 -i infile[,infile,…] -o outfile

Description
The pegasus-sc-converter program is used to convert the site catalog from one format to another.

Currently, the following formats of site catalog exist.

XML4 This format is a superset of previous formats. All information about a site that can be described about a
site can be described in this format. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node. The user can also
specify which different file-servers for read/write operations

A sample entry in this format looks as follows

<site handle="osg" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>

 <directory path="/tmp" type="local-scratch">
 <file-server operation="put" url="file:///tmp"/>
 </directory>

 <profile namespace="pegasus" key="style">condor</profile>
 <profile namespace="condor" key="universe">vanilla</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-4.0.xsd.

XML3 This format is a superset of previous formats. All information about a site that can be described about a
site can be described in this format. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node.

A sample entry in this format looks as follows

<site handle="local" arch="x86" os="LINUX">
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu">
 </replica-catalog>

http://pegasus.isi.edu/schema/sc-4.0.xsd

Command Line Tools

308

 <profile namespace="env" key="GLOBUS_LOCATION" >/nfs/software/globus/default</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/nfs/software/globus/default/lib</
profile>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/software/pegasus/default</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-3.0.xsd.

Options
-i infile[,infile,…] , --input
infile[,infile,…]

The comma separated list of input files that need to be converted to a file in the
format specified by --oformat option.

-o outfile , --output outfile The output file to which the output needs to be written out to.

Other Options

-O fmt , --oformat
fmt

The output format of the output file.

Valid values for the output format is XML3, XML4.

-v , --verbose Increases the verbosity of messages about what is going on.

By default, all FATAL ERROR, ERROR , WARNINGS and INFO messages are logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner Software.

-h , --help Displays all the options to the pegasus-plan command.

Example
pegasus-sc-converter -i sites.xml -o sites.xml.new -O XML3 -vvvvv

Authors
Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu/schema/sc-3.0.xsd
http://pegasus.isi.edu

Command Line Tools

309

Name
pegasus-service — Runs the Pegasus Service server

Synopsis
pegasus-service [options]

Options
-H , --host Hostname on which the service listens for request. Default: 127.0.0.1s

-p , --port Port on which the service listens for requests. Default: 5000

-d , --debug Enable debugging

-h , --help Print help message

Configuration
The authentication/authorization settings can be specified in the configuration file.

Authors
Pegasus Team <pegasus@isi.edu>

Command Line Tools

310

Name
pegasus-statistics — A tool to generate statistics about the workflow run.

Synopsis
pegasus-statistics [-h|--help]
 [-o|--output dir]
 [-c|--conf propfile]
 [-p|--statistics-level level]
 [-t|--time-filter filter]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [-m|--multiple-wf]
 [-p|--ispmc]
 [-u|--isuuid]
 [[submitdir ..] | [workflow_uuid ..]]

Description
pegasus-statistics generates statistics about the workflow run like total jobs/tasks/sub workflows ran, how many suc-
ceeded/failed etc. It generates job instance statistics like run time, condor queue delay etc. It generates invocation
statistics information grouped by transformation name. It also generates job instance and invocation statistics infor-
mation grouped by time and host.

Options
-h , --help Prints a usage summary with all the available command-line options.

-o dir , --output dir Writes the output to the given directory.

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-s level , --statistics-level level Specifies the statistics information to generate. Valid levels are: all, summa-
ry, wf_stats, jb_stats, tf_stats, and ti_stats. Default is summary. The output
generated by pegasus-statistics is based on the the level set:

• all: generates all the statistics information.

• summary: generates the workflow statistics summary. In the case of a hier-
archical workflow the summary is across all sub workflows.

• wf_stats: generates the workflow statistics information of each individual
workflow. In case of a hierarchical workflow the workflow statistics are cre-
ated for each sub workflow.

• jb_stats: generates the job statistics information of each individual work-
flow. In case of hierarchical workflow the job statistics is created for each
sub workflows. Note: Not supported when generating statistics over multiple
workflows.

• tf_stats: generates the invocation statistics information of each individual
workflow grouped by transformation name .In case of hierarchical workflow
the transformation statistics is created for each sub workflows.

• ti_stats: generates the job instance and invocation statistics like total count
and runtime grouped by time and host.

-t filter , --time-filter filter Specifies the time filter to group the time statistics. Valid filter values are:
month, week, day, hour. Default is day.

Command Line Tools

311

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

-m , --multiple-wf Set this option when generating statistics over more than one workflow. The
tool automatically sets this flag if multiple submit directories or multiple work-
flow UUIDs are provided. This option would need to be set explicitly only to
generate statistics over all workflows in a single STAMPEDE database. NOTE:
When workflows are specified as UUIDs the --conf options needs to be set for
the tool to determine the STAMPEDE database URL.

-p , --ispmc Set this flag to generate statistics for workflows which are run with PMC clus-
tering enabled. It is recommended that this option be used when calculating
statistics over multiple workflow runs.

-u , --isuuid Set this option if the positional argument are workflow UUIDs. NOTE: When
workflows are specified as UUIDs the --conf options needs to be set for the tool
to determine the STAMPEDE database URL.

Example
Runs pegasus-statistics and writes the output to the given directory:

$ pegasus-statistics -o /scratch/statistics /scratch/grid-setup/run0001

Runs pegasus-statistics over a workflow run identified by a single workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0cb602ce0

Runs pegasus-statistics over a workflow run identified by a multiple workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0cb602ce0 \
7ef77af8-4eb2-45ca-b37d-c5a02186133a

Runs pegasus-statistics over all workflows in the STAMPEDE database:

$ pegasus-statistics --conf pegasusrc --multiple-wf

Authors
Prasanth Thomas Rajiv Mayani

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

312

Name
pegasus-status — Pegasus workflow- and run-time status

Synopsis
pegasus-status [-h|--help]
 [-V|--version] [-v|--verbose] [-d|--debug]
 [-w|--watch [s]]
 [-L|--[no]legend] [-c|--[no]color] [-U|--[no]utf8]
 [-Q|--[no]queue] [-i|--[no]idle] [--[no]held]
 [--[no]heavy] [-S|--[no]success]
 [-j|--jobtype jt] [-s|--site sid]
 [-u|--user name]
 { [-l|--long] | [-r|--rows] }
 [rundir]

Description
pegasus-status shows the current state of the Condor Q and a workflow, depending on settings. If no valid run directory
could be determined, including the current directory, pegasus-status will show all jobs of the current user and no
workflows. If a run directory was specified, or the current directory is a valid run directory, status about the workflow
will also be shown.

Many options will modify the behavior of this program, not withstanding a proper UTF-8 capable terminal, watch
mode, the presence of jobs in the queue, progress in the workflow directory, etc.

Options
-h , --help Prints a concise help and exits.

-V , --version Prints the version information and exits.

-w [sec] , --watch
[sec]

This option enables the watch mode. In watch mode, the program repeatedly polls the status
sources and shows them in an updating window. The optional argument sec to this option
determines how often these sources are polled.

We strongly recommend to set this interval not too low, as frequent polling will degrade the
scheduler performance and increase the host load. In watch mode, the terminal size is the
limiting factor, and parts of the output may be truncated to fit it onto the given terminal.

Watch mode is disabled by default. The sec argument defaults to 60 seconds.

-L , --legend , --
nolegend

This option shows a legend explaining the columns in the output, or turns off legends.

By default, legends are turned off to save terminal real estate.

-c , --color , --nocol-
or

This option turns on (or off) ANSI color escape sequences in the output. The single letter
option can only switch on colors.

By default, colors are turned off, as they will not display well on a terminal with black back-
ground.

-U , --utf8 , --noutf8 This option turns on (or off) the output of Unicode box drawing characters as UTF-8 encoded
sequences. The single option can only turn on box drawing characters.

The defaults for this setting depend on the LANG environment variable. If the variable con-
tains a value ending in something indicating UTF-8 capabilities, the option is turned on by
default. It is off otherwise.

-Q , --queue , --no-
queue

This option turns on (or off) the output from parsing Condor Q.

Command Line Tools

313

By default, Condor Q will be parsed for jobs of the current user. If a workflow run directory
is specified, it will furthermore be limited to jobs only belonging to the workflow.

-v , --verbose This option increases the expert level, showing more information about the condor_q state.
Being an incremental option, two increases are supported.

Additionally, the signals SIGUSR1 and SIGUSR2 will increase and decrease the expert level
respectively during run-time.

By default, the simplest queue view is enabled.

-d , --debug This is an internal debugging tool and should not be used outside the development team. As
incremental option, it will show Pegasus-specific ClassAd tuples for each job, more in the
second level.

By default, debug mode is off.

-u name , --user
name

This option permits to query the queue for a different user than the current one. This may be
of interest, if you are debugging the workflow of another user.

By default, the current user is assumed.

-i , --idle , --noidle With this option, jobs in Condor state idle are omitted from the queue output.

By default, idle jobs are shown.

--held , --noheld This option enables or disabled showing of the reason a job entered Condor’s held state. The
reason will somewhat destroy the screen layout.

By default, the reason is shown.

--heavy , --noheavy If the terminal is UTF-8 capable, and output is to a terminal, this option decides whether to
use heavyweight or lightweight line drawing characters.

By default, heavy lines connect the jobs to workflows.

-j jt , --jobtype jt This option filters the Condor jobs shown only to the Pegasus jobtypes given as argument
or arguments to this option. It is a multi-option, and may be specified multiple times, and
may use comma-separated lists. Use this option with an argument help to see all valid and
recognized jobtypes.

By default, all Pegasus jobtypes are shown.

-s site , --site site This option limits the Condor jobs shown to only those pertaining to the (remote) site site.
This is an multi-option, and may be specified multiple times, and may use comma-separated
lists.

By default, all sites are shown.

-l , --long This option will show one line per sub-DAG, including one line for the workflow. If there is
only a single DAG pertaining to the rundir, only total will be shown.

This option is mutually exclusive with the --rows option. If both are specified, the --long
option takes precedence.

By default, only DAG totals (sums) are shown.

-r , --rows , --
norows

This option is shows the workflow summary statistics in rows instead of columns. This option
is useful for sending the statistics in email and later viewing them in a proportional font.

This option is mutually exclusive with the --long option. If both are specified, the --long
option takes precedence.

Command Line Tools

314

By default, the summary is shown in columns.

-S , --success , --no-
success

This option modifies the previous --long option. It will omit (or show) fully successful sub-
DAGs from the output.

By default, all DAGs are shown.

rundir This option show statistics about the given DAG that runs in rundir. To gather proper statis-
tics, pegasus-status needs to traverse the directory and all sub-directories. This can become
an expensive operation on shared filesystems.

By default, the rundir is assumed to be the current directory. If the current directory is not
a valid rundir, no DAG statistics will be shown.

Return Value
pegasus-status will typically return success in regular mode, and the termination signal in watch mode. Abnormal
behavior will result in a non-zero exit code.

Example
pegasus-status This invocation will parse the Condor Q for the current user and show all her

jobs. Additionally, if the current directory is a valid Pegasus workflow direc-
tory, totals about the DAG in that directory are displayed.

pegasus-status -l rundir As above, but providing a specific Pegasus workflow directory in argument
rundir and requesting to itemize sub-DAGs.

pegasus-status -j help This option will show all permissible job types and exit.

pegasus-status -vvw 300 -Ll This invocation will parse the queue, print it in high-expert mode, show legends,
itemize DAG statistics of the current working directory, and redraw the terminal
every five minutes with updated statistics.

Restrictions
Currently only supports a single (optional) run directory. If you want to watch multiple run directories, I suggest to
open multiple terminals and watch them separately. If that is not an option, or deemed too expensive, you can ask
pegasus-support at isi dot edu to extend the program.

See Also
condor_q(1), pegasus-statistics(1)

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

http://pegasus.isi.edu/

Command Line Tools

315

Name
pegasus-submit-dag — Wrapper around *condor_submit_dag*. Not to be run by user.

Description
The pegasus-submit-dag is a wrapper that invokes condor_submit_dag. This is started automatically by pega-
sus-run. DO NOT USE DIRECTLY

Return Value
If the workflow is submitted succesfully pegasus-submit-dag exits with 0, else exits with non-zero.

Environment Variables
PATH The path variable is used to locate binary for condor_submit_dag and pegasus-dagman

See Also
pegasus-run(1) pegasus-dagman(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

316

Name
pegasus-submitdir — Manage a workflow submit directory.

Synopsis
pegasus-submitdir COMMAND [options] SUBMITDIR

Description
pegasus-submitdir is used to manage submit directories generated by the Pegasus planner.

The archive command significantly reduces the size of workflow submit directories by compressing the data in a way
such that it remains accessible to tools such as pegasus-statistics, pegasus-plots, and pegasus-analyzer.

The extract command reverses the effect of the archive command.

The move command relocates a submit directory and updates relevant pointers in the database so that it can still be
accessed through the dashboard.

The delete command removes the submit directory and cleans up any associated records in the user’s master database.

Commands
archive SUBMITDIR Compresses a workflow submit directory in a way that allows pegasus-dashboard,

pegasus-statistics, pegasus-plots, and pegasus-analyzer to keep working. It creates
a gzipped tar archive of the submit files and logs that excludes files such as the
workflow database, braindump file, and monitord logs, which are used by pegasus
reporting tools.

extract SUBMITDIR Uncompresses a previously archived submit directory. This option returns the sub-
mit directory to the state it was before pegasus-submitdir archive was applied to it.

move SUBMITDIR DEST Move a workflow submit dir from SUBMITDIR to DEST. This operation updates
the relevant database records so that the dashboard continues to function. DEST can
be either an existing directory, in which case the submit dir becomes a subdirecto-
ry, or a new path, in which case the submit dir is renamed. IMPORTANT This
operation should only be performed on workflows that will not be resubmitted in
the future. Moving a workflow does not update absolute paths in any of the submit
files, so after a workflow has been moved it is not possible to rerun it.

delete SUBMITDIR Delete a workflow submit dir. This operation removes all related records from the
user’s master database, including ensemble manager records. Deleted workflows do
not appear in the dashboard.

Global Options
-h , --help Prints a usage summary with all the available command-line options.

Authors
Gideon Juve <gideon@isi.edu [mailto:gideon@isi.edu]>

Pegasus Team http://pegasus.isi.edu

mailto:gideon@isi.edu
mailto:gideon@isi.edu
http://pegasus.isi.edu

Command Line Tools

317

Name
pegasus-tc-client — A full featured generic client to handle adds, deletes and queries to the Transformation Catalog
(TC).

Synopsis
pegasus-tc-client [-Dproperty=value…] [-h] [-v] [-V]
 OPERATION TRIGGERS [OPTIONS]

Description
The pegasus-tc-client command is a generic client that performs the three basic operation of adding, deleting and
querying of any Transformation Catalog implemented to the TC API. The client implements all the operations sup-
ported by the TC API. It is up to the TC implementation whether they support all operations or modes.

The following 3 operations are supported by the pegasus-tc-client. One of these operations have to be specified to
run the client.

ADD This operation allows the client to add or update entries in the Transformation Catalog. Entries can be
added one by one on the command line or in bulk by using the BULK Trigger and providing a file with
the necessary entries. Also Profiles can be added to either the logical transformation or the physical
transformation.

DELETE This operation allows the client to delete entries from the Transformation Catalog. Entries can be delet-
ed based on logical transformation, by resource, by transformation type as well as the transformation
system information. Also Profiles associated with the logical or physical transformation can be deleted.

QUERY This operation allows the client to query for entries from the Transformation Catalog. Queries can be
made for printing all the contents of the Catalog or for specific entries, for all the logical transformations
or resources etc.

See the TRIGGERS and VALID COMBINATIONS section for more details.

Operations
To select one of the 3 operations.

-a, --add Perform addition operations on the TC.

-d, --delete Perform delete operations on the TC.

-q, --query Perform query operations on the TC.

Triggers
Triggers modify the behavior of an OPERATION. For example, if you want to perform a bulk operation you would
use a BULK Trigger or if you want to perform an operation on a Logical Transformation then you would use the
LFN Trigger.

The following 7 Triggers are available. See the VALID COMBINATIONS section for the correct grouping and usage.

-B Triggers a bulk operation.

-L Triggers an operation on a logical transformation.

-P Triggers an operation on a physical transformation

-R Triggers an operation on a resource.

-E Triggers an operation on a Profile.

Command Line Tools

318

-T Triggers an operation on a Type.

-S Triggers an operation on a System information.

Options
The following options are applicable for all the operations.

-Dproperty=value The -D options allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s
properties file and the PEGASUS home location. One may set several CLI prop-
erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
ties file property of the same key.

-l, --lfn logical The logical transformation to be added. The format is:
NAMESPACE::NAME:VERSION. The name is always required, name-
space and version are optional.

-p, --pfn physical The physical transformation to be added. For INSTALLED executables its a
local file path, for all others its a url.

-t, --type type The type of physical transformation. Valid values are: INS-
TALLED, STATIC_BINARY, DYNAMIC_BINARY, SCRIPT, SOURCE,
PACMAN_PACKAGE.

-r, --resource resource The resourceID where the transformation is located.

-e, --profile profiles The profiles for the transformation. Multiple profiles of same namespace can
be added simultaneously by separating them with a comma ",". Each pro-
file section is written as NAMESPACE::KEY=VALUE,KEY2=VALUE2
e.g. ENV::JAVA_HOME=/usr/bin/java2,PEGASUS_HOME=/usr/
local/pegasus. To add multiple namespaces you need to repeat the -e op-
tion for each namespace. e.g. -e ENV::JAVA_HOME=/usr/bin/java -
e GLOBUS::JobType=MPI,COUNT=10

-s, --system systeminfo The architecture, os, osversion and glibc if any for the executable. Each system
info is written in the form ARCH::OS:OSVER:GLIBC

-v, --verbose Displays the output in verbose mode (Lots of Debugging info).

-V, --version Displays the Pegasus version.

-h, --help Generates help

Other Options
-o, --oldformat Generates the output in the old single line format

-c, --conf path to property file

Valid Combinations
The following are valid combinations of OPERATIONS, TRIGGERS, OPTIONS for the pegasus-tc-client.

ADD

Add TC Entry -a -l lfn -p pfn -t type -r resource -s system [-e profiles…]

Adds a single entry into the transformation catalog.

Command Line Tools

319

Add PFN Profile -a -P -E -p pfn -t type -r resource -e profiles …

Adds profiles to a specified physical transformation on a given resource and of a given
type.

Add LFN Profile -a -L -E -l lfn -e profiles …

Adds profiles to a specified logical transformation.

Add Bulk Entries -a -B -f file

Adds entries in bulk mode by supplying a file containing the entries. The format of the
file contains 6 columns. E.g.

#RESOURCE LFN PFN TYPE SYSINFO PROFILES
#
isi NS::NAME:VER /bin/date INSTALLED ARCH::OS:OSVERS:GLIBC
 NS::KEY=VALUE,KEY=VALUE;NS2::KEY=VALUE,KEY=VALUE

DELETE

Delete all TC -d -BPRELST

Deletes the entire contents of the TC.

WARNING : USE WITH CAUTION.

Delete by LFN -d -L -l lfn [-r resource] [-t type]

Deletes entries from the TC for a particular logical transformation and additionally
a resource and or type.

Delete by PFN -d -P -l lfn -p pfn [-r resource] [-t type]

Deletes entries from the TC for a given logical and physical transformation and ad-
ditionally on a particular resource and or of a particular type.

Delete by Type -d -T -t type [-r resource]

Deletes entries from TC of a specific type and/or on a specific resource.

Delete by Resource -d -R -r resource

Deletes the entries from the TC on a particular resource.

Delete by SysInfo -d -S -s sysinfo

Deletes the entries from the TC for a particular system information type.

Delete Pfn Profile -d -P -E -p pfn -r resource -t type [-e profiles ..]

Deletes all or specific profiles associated with a physical transformation.

Delete Lfn Profile -d -L -E -l lfn -e profiles ….

Deletes all or specific profiles associated with a logical transformation.

QUERY

Query Bulk -q -B

Queries for all the contents of the TC. It produces a file format TC which can be added
to another TC using the bulk option.

Query LFN -q -L [-r resource] [-t type]

Command Line Tools

320

Queries the TC for logical transformation and/or on a particular resource and/or of a
particular type.

Query PFN -q -P -l lfn [-r resource] [-t type]

Queries the TC for physical transformations for a give logical transformation and/or
on a particular resource and/or of a particular type.

Query Resource -q -R -l lfn [-t type]

Queries the TC for resources that are registered and/or resources registered for a spe-
cific type of transformation.

Query LFN Profile -q -L -E -l lfn

Queries for profiles associated with a particular logical transformation

Query Pfn Profile -q -P -E -p pfn -r resource -t type

Queries for profiles associated with a particular physical transformation

Properties
These are the properties you will need to set to use either the File or Database TC.

For more details please check the $PEGASUS_HOME/etc/sample.properties file.

pegasus.catalog.transformation Identifies what impelemntation of TC will be used. If relative name is used then
the path org.griphyn.cPlanner.tc is prefixed to the name and used as the class
name to load. The default value if Text. Other supported mode is File

pegasus.catalog.transformation.file The file path where the text based TC is located. By default the path
$PEGASUS_HOME/var/tc.data is used.

Files
$PEGASUS_HOME/var/tc.data is the suggested location for the file corresponding to the Transformation Cat-

alog

$PEGASUS_HOME/etc/proper-
ties

is the location to specify properties to change what Transformation Catalog
Implementation to use and the implementation related PROPERTIES.

pegasus.jar contains all compiled Java bytecode to run the Pegasus planner.

Environment Variables
PEGASUS_HOME Path to the PEGASUS installation directory.

JAVA_HOME Path to the JAVA 1.4.x installation directory.

CLASSPATH The classpath should be set to contain all necessary PEGASUS files for the execution environ-
ment. To automatically add the CLASSPATH to you environment, in the $PEGASUS_HOME
directory run the script source setup-user-env.csh or source setup-user-env.sh.

Authors
Gaurang Mehta <gmehta at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

321

Name
pegasus-tc-converter — A client to convert transformation catalog from one format to another format.

Synopsis
pegasus-tc-converter [-Dproperty=value…] [-v] [-q] [-V] [-h]
 [-I fmt] [-O fmt]
 [-N dbusername] [-P dbpassword] [-U dburl] [-H dbhost]
 -i infile[,infile,…] -o outfile

Description
The tc-convert program is used to convert the transformation catalog from one format to another.

Currently, the following formats of transformation catalog exist:

Text This is a easy to read multi line textual format.

A sample entry in this format looks as follows:

tr example::keg:1.0 {
 site isi {
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "installed"
 }
}

File This is a tuple based format which contains 6 columns.

RESOURCE LFN PFN TYPE SYSINFO PROFILES

A sample entry in this format looks as follows

isi example::keg:1.0 /path/to/keg INSTALLED INTEL32::LINUX:fc_4:
 env::JAVA_HOME="/bin/java.1.6"

Database Only MySQL is supported for the time being.

Options
-Dproperty=value The -D option allows an experienced user to override certain properties which influence

the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-I fmt , --iformat fmt The input format of the input files. Valid values for the input format are: File, Text,
and Database.

-O fmt --oformat fmt The output format of the output file. Valid values for the output format are: File, Text, and
Database.

-i infile[,infile,…] --input infile[,infile,…] The comma separated list of input files that need to be converted to a file
in the format specified by the --oformat option.

-o outfile , --output out-
file

The output file to which the output needs to be written out to.

Command Line Tools

322

Other Options

-N dbusername , --db-user-name
dbusername

The database user name.

-P dbpassword , --db-user-pwd
dbpassword

The database user password.

-U dburl , --db-url dburl The database url.

-H dbhost , --db-host dbhost The database host.

-v , --verbose Increases the verbosity of messages about what is going on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

-q , --quiet Decreases the verbosity of messages about what is going on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner Soft-
ware.

-h , --help Displays all the options to the pegasus-tc-converter command.

Example
Text to file format conversion

pegasus-tc-converter -i tc.data -I File -o tc.txt -O Text -v

File to Database(new) format con-
version

pegasus-tc-converter -i tc.data -I File -N mysql_user -P mysql_pwd -U jdbc:mysql://localhost:3306/tc
 -H localhost -O Database -v

Database (username, password,
host, url specified in properties file)
to text format conversion

pegasus-tc-converter -I Database -o tc.txt -O Text -vvvvv

Authors
Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

323

Name
pegasus-transfer — Handles data transfers in Pegasus workflows.

Synopsis
pegasus-transfer [-h]
 [--file inputfile]
 [--threads number_threads]
 [--max-attempts attempts]
 [--debug]

Description
pegasus-transfer takes a list of url pairs, either on stdin or with an input file, determines the correct tool to use for
the transfer and executes the transfer. Some of the protocols pegasus-transfer can handle are GridFTP, SRM, Amazon
S3, HTTP, and local cp/symlinking. Failed transfers are retried.

Note that pegasus-transfer is a tool mostly used internally in Pegasus workflows, but the tool can be used stand alone
as well.

Options
-h , --help Prints a usage summary with all the available command-line options.

-f inputfile , --file inputfile File with input pairs. If not given, stdin will be used.

-m , --max-attempts attempts Maximum number of attempts for retrying failed transfers.

-t , --threads number_threads The number of threads to use. This controls the parallelism of transfers.

-d , --debug Enables debugging output.

Example
$ pegasus-transfer
src 1 local_site
file:///etc/hosts
dst 1 local_site
file:///tmp/foo
CTRL+D

Credential Handling
Credentials used for transfers can be specified with a combination of comments in the input file format and environment
variables. For example, give the following input file:

src 1 isi
gsiftp://workflow.isi.edu/data/file.dat
dst 1 tacc_stampede
gsiftp://gridftp.stampede.tacc.utexas.edu/scratch/file.dat

pegasus-transfer will expect either one environment variable specifying one credential to be used on both end of
the connection (X509_USER_PROXY), or two separate environment variables specifying two different credentials
to be used on the two ends of the connection. The the latter case, the environment variables are derived from the
site names provided in the input file commments. In the example above, the environment variables would be named
X509_USER_PROXY_isi and X509_USER_PROXY_tacc_stampede

Threading
In order to speed up data transfers, pegasus-transfer will start a set of transfers in parallel using threads. Threads are
turned off when retrying failed transfers.

Command Line Tools

324

Author
Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

Command Line Tools

325

Name
pegasus-version — print or match the version of the toolkit.

Synopsis
pegasus-version [-Dproperty=value] [-m [-q]] [-V] [-f] [-l]

Description
This program prints the version string of the currently active Pegasus toolkit on stdout.

pegasus-version is a simple command-line tool that reports the version number of the Pegasus distribution being used.
In its most basic invocation, it will show the current version of the Pegasus software you have installed:

$ pegasus-version
3.1.0cvs

If you want to know more details about the installed version, i.e. which system it was compiled for and when, use
the long or full mode:

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

Options
-Dproperty=value The -D option allows an experienced user to override certain properties which influence

the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-f , --full The --full mode displays internal build metrics, like OS type and libc version, addition
to the version number. It appends the build time as time stamp to the version. The time
stamp uses ISO 8601 format, and is a UTC stamp.

-l , --long This option is an alias for --full.

-V , --version Displays the version of the Pegasus planner you are using.

--verbose is ignored in this tool. However, to provide a uniform interface for all tools, the option
is recognized and will not trigger an error.

Return Value
The program will usually return with success (0). In match mode, if the internal version does not match the external
installation, an exit code of 1 is returned. If run-time errors are detected, an exit code of 2 is returned, 3 for fatal errors.

Environment Variables
JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as

$JAVA_HOME/bin/java.

Example
$ pegasus-version
3.1.0cvs

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

Command Line Tools

326

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

http://pegasus.isi.edu

327

Chapter 16. Useful Tips
Migrating From Pegasus <4.5 to Pegasus >=4.5

Since Pegasus 4.5 all databases are managed by a single tool: pegasus-db-admin. Databases will be automatically
updated when pegasus-planner is invoked, but it may require manually invocation of the pegasus-db-admin for
other Pegasus tools.

The check command verifies if the database is compatible with the Pegasus' latest version. If the database is not
compatible, it will print the following message:

$ pegasus-db-admin check
Your database is NOT compatible with version 4.5.0

If you are running the check command for the first time, the tool will prompt the following message:

Missing database tables or tables are not updated:
 dbversion
Run 'pegasus-db-admin update <path_to_database>' to create/update your database.

To update the database, run the following command:

$ pegasus-db-admin update
Your database has been updated.
Your database is compatible with Pegasus version: 4.5.0

The pegasus-db-admin tool can operate directly over a database URL, or can read configuration parameters from
the properties file or a submit directory. In the later case, a database type should be provided to indicate which prop-
erties should be used to connect to the database. For example, the tool will seek for pegasus.catalog.replica.db.*
properties to connect to the JDBCRC database; or seek for pegasus.catalog.master.url (or pegasus.dashboard.output,
which is deprecated) property to connect to the MASTER database; or seek for the pegasus.catalog.workflow.url
(or pegasus.monitord.output, which is deprecated) property to connect to the WORKFLOW database. If none of
these properties are found, the tool will connect to the default database in the user's home directory (sqlite:///
${HOME}/.pegasus/workflow.db).

Example: connection by providing the URL to the database:

$ pegasus-db-admin create sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin update sqlite:///${HOME}/.pegasus/workflow.db

Example: connection by providing a properties file that contains the information to connect to the database. Note that
a database type (MASTER, WORKFLOW, or JDBCRC) should be provided:

$ pegasus-db-admin update -c pegasus.properties -t MASTER
$ pegasus-db-admin update -c pegasus.properties -t JDBCRC
$ pegasus-db-admin update -c pegasus.properties -t WORKFLOW

Example: connection by providing the path to the submit directory containning the braindump.txt file, where infor-
mation to connect to the database can be extracted. Note that a database type (MASTER, WORKFLOW, or JDBCRC)
should also be provided:

$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

Useful Tips

328

Note that, if no URL is provided, the tool will create/use a SQLite database in the user's home directory:
${HOME}/.pegasus/workflow.db.

For complete description of pegasus-db-admin, see the man page.

Migrating From Pegasus 3.1 to Pegasus 4.X
With Pegasus 4.0 effort has been made to move the Pegasus installation to be FHS compliant, and to make workflows
run better in Cloud environments and distributed grid environments. This chapter is for existing users of Pegasus who
use Pegasus 3.1 to run their workflows and walks through the steps to move to using Pegasus 4.0

Move to FHS layout
Pegasus 4.0 is the first release of Pegasus which is Filesystem Hierarchy Standard (FHS) [http://www.pathname.com/
fhs/] compliant. The native packages no longer installs under /opt. Instead, pegasus-* binaries are in /usr/bin/ and
example workflows can be found under /usr/share/pegasus/examples/.

To find Pegasus system components, a pegasus-config tool is provided. pegasus-config supports setting up the envi-
ronment for

• Python

• Perl

• Java

• Shell

For example, to find the PYTHONPATH for the DAX API, run:

export PYTHONPATH=`pegasus-config --python`

For complete description of pegasus-config, see the man page.

Stampede Schema Upgrade Tool
Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Useful Tips

329

2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Existing users running in a condor pool with a non shared
filesystem setup

Existing users that are running workflows in a cloud environment with a non shared filesystem setup have to do some
trickery in the site catalog to include placeholders for local/submit host paths for execution sites when using CondorIO.
In Pegasus 4.0, this has been rectified.

For example, for a 3.1 user, to run on a local-condor pool without a shared filesystem and use Condor file IO for file
transfers, the site entry looks something like this

 <site handle="local-condor" arch="x86" os="LINUX">
 <grid type="gt2" contact="localhost/jobmanager-fork" scheduler="Fork" jobtype="auxillary"/>
 <grid type="gt2" contact="localhost/jobmanager-condor" scheduler="unknown"
 jobtype="compute"/>
 <head-fs>

 <!-- the paths for scratch filesystem are the paths on local site as we execute create dir
 job
 on local site. Improvements planned for 4.0 release.-->
 <scratch>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/submit-host/scratch"/>
 <internal-mount-point mount-point="/submit-host/scratch"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/glusterfs/scratch"/>
 <internal-mount-point mount-point="/glusterfs/scratch"/>
 </shared>

Useful Tips

330

 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://dummyValue.url.edu" />
 <profile namespace="env" key="PEGASUS_HOME" >/cluster-software/pegasus/2.4.1</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/cluster-software/globus/5.0.1</profile>

 <!-- profies for site to be treated as condor pool -->
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>

 <!-- to enable kickstart staging from local site-->
 <profile namespace="condor" key="transfer_executable">true</profile>

 </site>

With Pegasus 4.0 the site entry for a local-condor pool can be as concise as the following

 <site handle="condorpool" arch="x86" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

The planner in 4.0 correctly picks up the paths from the local site entry to determine the staging location for the condor
io on the submit host.

Users should read pegasus data staging configuration chapter and also look in the examples directory (share/pega-
sus/examples).

New Clients for directory creation and file cleanup
Pegasus 4.0 has new clients for directory creation and cleanup.

• pegasus-create-dir

• pegasus-cleanup

Both these clients are python based wrapper scripts around various protocol specific clients that are used to determine
what client to pick up.

Table 16.1. Clients interfaced to by pegasus-create-dir

Client Used For

globus-url-copy to create directories against a gridftp/ftp server

srm-mkdir to create directories against a SRM server.

mkdir to create a directory on the local filesystem

pegasus-s3 to create a s3 bucket in the amazon cloud

scp staging files using scp

imkdir to create a directory against an IRODS server

Table 16.2. Clients interfaced to by pegasus-cleanup

Client Used For

globus-url-copy to remove a file against a gridftp/ftp server. In this case a
zero byte file is created

srm-rm to remove files against a SRM server.

rm to remove a file on the local filesystem

Useful Tips

331

Client Used For

pegasus-s3 to remove a file from the s3 bucket.

scp to remove a file against a scp server. In this case a zero
byte file is created.

irm to remove a file against an IRODS server

With Pegasus 4.0, the planner will prefer to run the create dir and cleanup jobs locally on the submit host. The only
case, where these jobs are scheduled to run remotely is when for the staging site, a file server is specified.

Migrating From Pegasus 2.X to Pegasus 3.X
With Pegasus 3.0 effort has been made to simplify configuration. This chapter is for existing users of Pegasus who
use Pegasus 2.x to run their workflows and walks through the steps to move to using Pegasus 3.0

PEGASUS_HOME and Setup Scripts
Earlier versions of Pegasus required users to have the environment variable PEGASUS_HOME set and to source
a setup file $PEGASUS_HOME/setup.sh | $PEGASUS_HOME/setup.csh before running Pegasus to setup CLASS-
PATH and other variables.

Starting with Pegasus 3.0 this is no longer required. The above paths are automaticallly determined by the Pegasus
tools when they are invoked.

All the users need to do is to set the PATH variable to pick up the pegasus executables from the bin directory.

$ export PATH=/some/install/pegasus-3.0.0/bin:$PATH

Changes to Schemas and Catalog Formats

DAX Schema

Pegasus 3.0 by default now parses DAX documents conforming to the DAX Schema 3.2 available here [http://
pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on API references.

Starting Pegasus 3.0 , DAX generation API's are provided in Java/Python and Perl for users to use in their DAX
Generators. The use of API's is highly encouraged. Support for the old DAX schema's has been deprecated and will
be removed in a future version.

For users, who still want to run using the old DAX formats i.e 3.0 or earlier, can for the time being set the following
property in the properties and point it to dax-3.0 xsd of the installation.

pegasus.schema.dax /some/install/pegasus-3.0/etc/dax-3.0.xsd

Site Catalog Format

Pegasus 3.0 by default now parses Site Catalog format conforming to the SC schema 3.0 (XML3) available here
[http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-sc-converter that will convert users old site catalog (XML) to the XML3 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML -o sample.sites.xml3 -O XML3

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml3

To use the converted site catalog, in the properties do the following

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML3

2. point pegasus.catalog.site.file to the converted site catalog

http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd
http://pegasus.isi.edu/wms/docs/schemas/dax-3.2/dax-3.2.xsd

Useful Tips

332

Transformation Catalog Format

Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file /lfs1/software/install/
pegasus/pegasus-3.0.0cvs/etc/sample.tc.text

To use the converted transformation catalog, in the properties do the following

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

Properties and Profiles Simplification
Starting with Pegasus 3.0 all profiles can be specified in the properties file. Profiles specified in the properties file
have the lowest priority. Profiles are explained in the detail in the configuration chapter. As a result of this a lot of
existing Pegasus Properties were replaced by profiles. The table below lists the properties removed and the new profile
based names.

Table 16.3. Table 1: Property Keys removed and their Profile based replacement

Old Property Key New Property Key

pegasus.local.env no replacement. Specify env profiles for local site in the
site catalog

pegasus.condor.release condor.periodic_release

pegasus.condor.remove condor.periodic_remove

pegasus.job.priority condor.priority

pegasus.condor.output.stream pegasus.condor.output.stream

pegasus.condor.error.stream condor.stream_error

pegasus.dagman.retry dagman.retry

pegasus.exitcode.impl dagman.post

pegasus.exitcode.scope dagman.post.scope

pegasus.exitcode.arguments dagman.post.arguments

pegasus.exitcode.path.* dagman.post.path.*

pegasus.dagman.maxpre dagman.maxpre

pegasus.dagman.maxpost dagman.maxpost

pegasus.dagman.maxidle dagman.maxidle

pegasus.dagman.maxjobs dagman.maxjobs

pegasus.remote.scheduler.min.maxwalltime globus.maxwalltime

pegasus.remote.scheduler.min.maxtime globus.maxtime

pegasus.remote.scheduler.min.maxcputime globus.maxcputime

pegasus.remote.scheduler.queues globus.queue

Profile Keys for Clustering

The pegasus profile keys for job clustering were renamed. The following table lists the old and the new names for
the profile keys.

Useful Tips

333

Table 16.4. Table 2: Old and New Names For Job Clustering Profile Keys

Old Pegasus Profile Key New Pegasus Profile Key

collapse clusters.size

bundle clusters.num

Transfers Simplification
Pegasus 3.0 has a new default transfer client pegasus-transfer that is invoked by default for first level and second
level staging. The pegasus-transfer client is a python based wrapper around various transfer clients like globus-url-
copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source and destination url and figures out automatically which
underlying client to use. pegasus-transfer is distributed with the PEGASUS and can be found in the bin subdirectory .

Also, the Bundle Transfer refiner has been made the default for pegasus 3.0. Most of the users no longer need to set
any transfer related properties. The names of the profiles keys that control the Bundle Transfers have been changed .
The following table lists the old and the new names for the Pegasus Profile Keys and are explained in details in the
Profiles Chapter.

Table 16.5. Table 3: Old and New Names For Transfer Bundling Profile Keys

Old Pegasus Profile Key New Pegasus Profile Keys

bundle.stagein stagein.clusters | stagein.local.clusters |
stagein.remote.clusters

bundle.stageout stageout.clusters | stageout.local.clusters |
stageout.remote.clusters

Worker Package Staging

Starting Pegasus 3.0 there is a separate boolean property pegasus.transfer.worker.package to enable work-
er package staging to the remote compute sites. Earlier it was bundled with user executables staging i.e if
pegasus.catalog.transformation.mapper property was set to Staged .

Clients in bin directory
Starting with Pegasus 3.0 the pegasus clients in the bin directory have a pegasus prefix. The table below lists the old
client names and new names for the clients that replaced them

Table 16.6. Table 1: Old Client Names and their New Names

Old Client New Client

rc-client pegasus-rc-client

tc-client pegasus-tc-client

pegasus-get-sites pegasus-sc-client

sc-client pegasus-sc-converter

tailstatd pegasus-monitord

genstats and genstats-breakdown pegasus-statistics

show-job pegasus-plots

cleanup pegasus-cleanup

dirmanager pegasus-dirmanager

exitcode pegasus-exitcode

rank-dax pegasus-rank-dax

transfer pegasus-transfer

Useful Tips

334

Best Practices For Developing Portable Code
This document lists out issues for the algorithm developers to keep in mind while developing the respective codes.
Keeping these in mind will alleviate a lot of problems while trying to run the codes on the Grid through workflows.

Supported Platforms
Most of the hosts making a Grid run variants of Linux or in some case Solaris. The Grid middleware mostly supports
UNIX and it's variants.

Running on Windows

The majority of the machines making up the various Grid sites run Linux. In fact, there is no widespread deployment
of a Windows-based Grid. Currently, the server side software of Globus does not run on Windows. Only the client
tools can run on Windows. The algorithm developers should not code exclusively for the Windows platforms. They
must make sure that their codes run on Linux or Solaris platforms. If the code is written in a portable language like
Java, then porting should not be an issue.

If for some reason the code can only be executed on windows platform, please contact the pegasus team at pegasus aT
isi dot edu . In certain cases it is possible to stand up a linux headnode in front of a windows cluster running Condor
as it's scheduler.

Packaging of Software
As far as possible, binary packages (preferably statically linked) of the codes should be provided. If for some reason
the codes, need to be built from the source then they should have an associated makefile (for C/C++ based tools) or
an ant file (for Java tools). The building process should refer to the standard libraries that are part of a normal Linux
installation. If the codes require non-standard libraries, clear documentation needs to be provided, as to how to install
those libraries, and make the build process refer to those libraries.

Further, installing software as root is not a possibility. Hence, all the external libraries that need to be installed can
only be installed as non-root in non-standard locations.

MPI Codes
If any of the algorithm codes are MPI based, they should contact the Grid group. MPI can be run on the Grid but the
codes need to be compiled against the installed MPI libraries on the various Grid sites. The pegasus group has some
experience running MPI code through PBS.

Maximum Running Time of Codes
Each of the Grid sites has a policy on the maximum time for which they will allow a job to run. The algorithms catalog
should have the maximum time (in minutes) that the job can run for. This information is passed to the Grid sites while
submitting a job, so that Grid site does not kill a job before that published time expires. It is OK, if the job runs only
a fraction of the max time.

Codes cannot specify the directory in which they should be
run

Codes are installed in some standard location on the Grid Sites or staged on demand. However, they are not invoked
from directories where they are installed. The codes should be able to be invoked from any directory, as long as one
can access the directory where the codes are installed.

This is especially relevant, while writing scripts around the algorithm codes. At that point specifying the relative paths
do not work. This is because the relative path is constructed from the directory where the script is being invoked. A
suggested workaround is to pick up the base directory where the software is installed from the environment or by

Useful Tips

335

using the dirname cmd or api. The workflow system can set appropriate environment variables while launching jobs
on the Grid.

No hard-coded paths
The algorithms should not hard-code any directory paths in the code. All directories paths should be picked up ex-
plicitly either from the environment (specifying environment variables) or from command line options passed to the
algorithm code.

Wrapping legacy codes with a shell wrapper
When wrapping a legacy code in a script (or another program), it is necessary that the wrapper knows where the
executable lives. This is accomplished using an environmental variable. Be sure to include this detail in the component
description when submitting a component for use on the Grid -- include a brief descriptive name like GDA_BIN.

Propogating back the right exitcode
A job in the workflow is only released for execution if its parents have executed successfully. Hence, it is very im-
portant that the algorithm codes exit with the correct error code in case of success and failure. The algorithms should
exit with a status of 0 in case of success, and a non zero status in case of error. Failure to do so will result in erroneous
workflow execution where jobs might be released for execution even though their parents had exited with an error.

The algorithm codes should catch all errors and exit with a non zero exitcode. The successful execution of the algorithm
code can only be determined by an exitcode of 0. The algorithm code should not rely upon something being written
to the stdout to designate success for e.g. if the algorithm code writes out to the stdout SUCCESS and exits with a
non zero status the job would be marked as failed.

In *nix, a quick way to see if a code is exiting with the correct code is to execute the code and then execute echo $?.

$ component-x input-file.lisp
... some output ...
$ echo $?
0

If the code is not exiting correctly, it is necessary to wrap the code in a script that tests some final condition (such as
the presence or format of a result file) and uses exit to return correctly.

Static vs. Dynamically Linked Libraries
Since there is no way to know the profile of the machine that will be executing the code, it is important that dynamically
linked libraries are avoided or that reliance on them is kept to a minimum. For example, a component that requires
libc 2.5 may or may not run on a machine that uses libc 2.3. On *nix, you can use the ldd command to see what
libraries a binary depends on.

If for some reason you install an algorithm specific library in a non standard location make sure to set the
LD_LIBRARY_PATH for the algorithm in the transformation catalog for each site.

Temporary Files
If the algorithm codes create temporary files during execution, they should be cleared by the codes in case of errors
and success terminations. The algorithm codes will run on scratch file systems that will also be used by others. The
scratch directories get filled up very easily, and jobs will fail in case of directories running out of free space. The
temporary files are the files that are not being tracked explicitly through the workflow generation process.

Handling of stdio
When writing a new application, it often appears feasible to use stdin for a single file data, and stdout for a single file
output data. The stderr descriptor should be used for logging and debugging purposes only, never to put data on it. In
the *nix world, this will work well, but may hiccup in the Windows world.

Useful Tips

336

We are suggesting that you avoid using stdio for data files, because there is the implied expectation that stdio data gets
magically handled. There is no magic! If you produce data on stdout, you need to declare to Pegasus that your stdout
has your data, and what LFN Pegasus can track it by. After the application is done, the data product will be a remote
file just like all other data products. If you have an input file on stdin, you must track it in a similar manner. If you
produce logs on stderr that you care about, you must track it in a similar manner. Think about it this way: Whenever
you are redirecting stdio in a *nix shell, you will also have to specify a file name.

Most execution environments permit to connect stdin, stdout or stderr to any file, and Pegasus supports this case.
However, there are certain very specific corner cases where this is not possible. For this reason, we recommend that
in new code, you avoid using stdio for data, and provide alternative means on the commandline, i.e. via --input fn
and --output fn commandline arguments instead relying on stdin and stdout.

Configuration Files
If your code requires a configuration file to run and the configuration changes from one run to another, then this file
needs to be tracked explicitly via the Pegasus WMS. The configuration file should not contain any absolute paths to
any data or libraries used by the code. If any libraries, scripts etc need to be referenced they should refer to relative
paths starting with a ./xyz where xyz is a tracked file (defined in the workflow) or as $ENV-VAR/xyz where
$ENV-VAR is set during execution time and evaluated by your application code internally.

Code Invocation and input data staging by Pegasus
Pegasus will create one temporary directory per workflow on each site where the workflow is planned. Pegasus will
stage all the files required for the execution of the workflow in these temporary directories. This directory is shared by
all the workflow components that executed on the site. You will have no control over where this directory is placed and
as such you should have no expectations about where the code will be run. The directories are created per workflow
and not per job/alogrithm/task. Suppose there is a component component-x that takes one argument: input-file.lisp (a
file containing the data to be operated on). The staging step will bring input-file.lisp to the temporary directory. In
*nix the call would look like this:

$ /nfs/software/component-x input-file.lisp

Note that Pegasus will call the component using the full path to the component. If inside your code/script you invoke
some other code you cannot assume a path for this code to be relative or absolute. You have to resovle it either
using a dirname $0 trick in shell assuming the child code is in the same directory as the parent or construct the path
by expecting an enviornment variable to be set by the workflow system. These env variables need to be explicitly
published so that they can be stored in the transformation catalog.

Now suppose that internally, component-x writes its results to /tmp/component-x-results.lisp. This is not good. Com-
ponents should not expect that a /tmp directory exists or that it will have permission to write there. Instead, compo-
nent-x should do one of two things: 1. write component-x-results.lisp to the directory where it is run from or 2. com-
ponent-x should take a second argument output-file.lisp that specifies the name and path of where the results should
be written.

Logical File naming in DAX
The logical file names used by your code can be of two types.

• Without a directory path e.g. f.a, f.b etc

• With a directory path e.g. a/1/f.a, b/2/f.b

Both types of files are supported. We will create any directory structure mentioned in your logical files on the remote
execution site when we stage in data as well as when we store the output data to a permanent location. An example
invocation of a code that consumes and produces files will be

$/bin/test --input f.a --output f.b

OR

$/bin/test --input a/1/f.a --output b/1/f.b

Useful Tips

337

Note

A logical file name should never be an absolute file path, e.g. /a/1/f.a In other words, there should not be
a starting slash (/) in a logical filename.

Slot Partitioning and CPU Affinity in Condor
By default, Condor will evenly divide the resources in a machine (such as RAM, swap space and disk space) among
all the CPUs, and advertise each CPU as its own slot with an even share of the system resources. If you want to have
your custom configuration, you can use the following setting to define the maximum number of different slot types:

MAX_SLOT_TYPES = 2

For each slot type, you can divide system resources unevenly among your CPUs. The N in the name of the macro
listed below must be an integer from 1 to MAX_SLOT_TYPES (defined above).

SLOT_TYPE_1 = cpus=2, ram=50%, swap=1/4, disk=1/4
SLOT_TYPE_N = cpus=1, ram=20%, swap=1/4, disk=1/8

Slots can also be partitioned to accommodate actual needs by accepted jobs. A partitionable slot is always unclaimed
and dynamically splitted when jobs are started. Slot partitioning can be enable as follows:

SLOT_TYPE_1_PARTITIONABLE = True
SLOT_TYPE_N_PARTITIONABLE = True

Condor can also bind cores to each slot through CPU affinity:

ENFORCE_CPU_AFFINITY = True
SLOT1_CPU_AFFINITY=0,2
SLOT2_CPU_AFFINITY=1,3

Note that CPU numbers may vary from machines. Thus you need to verify what is the association for your machine.
One way to accomplish this is by using the lscpu command line tool. For instance, the output provided from this tool
may look like:

NUMA node0 CPU(s): 0,2,4,6,8,10
NUMA node1 CPU(s): 1,3,5,7,9,11

The following example assumes a machine with 2 sockets and 6 cores per socket, where even cores belong to socket
1 and odd cores to socket 2:

NUM_SLOTS_TYPE_1 = 1
NUM_SLOTS_TYPE_2 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SLOT_TYPE_2_PARTITIONABLE = True

SLOT_TYPE_1 = cpus=6
SLOT_TYPE_2 = cpus=6

ENFORCE_CPU_AFFINITY = True

SLOT1_CPU_AFFINITY=0,2,4,6,8,10
SLOT2_CPU_AFFINITY=1,3,5,7,9,11

Please read the section on "Configuring The Startd for SMP Machines" in the Condor Administrator's Manual for
full details.

338

Chapter 17. Funding, citing, and
anonymous usage statistics
Citing Pegasus in Academic Works

The preferred generic way to cite Pegasus is:

Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Ewa Deelman, Gurmeet
Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman,
John Good, Anastasia Laity, Joseph C. Jacob, Daniel S. Katz. Scientific Programming Journal, Vol 13(3), 2005,
Pages 219-237.

Usage Statistics Collection

Purpose
Pegasus WMS is primarily a NSF funded project as part of the NSF SI2 [http://www.nsf.gov/funding/pgm_summ.jsp?
pims_id=504817] track. The SI2 program focuses on robust, reliable, usable and sustainable software infrastructure
that is critical to the CIF21 vision. As part of the requirements of being funded under this program, Pegasus WMS is
required to gather usage statistics of Pegasus WMS and report it back to NSF in annual reports. The metrics will also
enable us to improve our software as they will include errors encountered during the use of our software.

Overview
We plan to instrument and augment the following clients in our distribution to report the metrics.

• pegasus-plan

• pegasus-transfer

• pegasus-monitord

For the Pegasus WMS 4.2 release, only the pegasus-plan client has been instrumented to send metrics.

All the metrics are sent in JSON format to a server at USC/ISI over HTTP. The data reported is as generic as possible
and is listed in detail in the section titled "Metrics Collected".

Configuration
By default, the clients will report usage metrics to a server at ISI. However, users have an option to configure the
report by setting the following environment variables

• PEGASUS_METRICS

A boolean value (true | false) indicating whether metrics reporting is turned ON/OFF

• PEGASUS_USER_METRICS_SERVER

A comma separated list of URLs of the servers to which to report the metrics in addition to the default server.

Metrics Collected
All metrics are sent in JSON format and the metrics sent by the various clients include the following data

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817

Funding, citing, and anony-
mous usage statistics

339

Table 17.1. Common Data Sent By Pegasus WMS Clients

JSON KEY DESCRIPTION

client the name of the client (e.g "pegasus-plan")

version the version of the client

type type of data - "metrics" | "error"

start_time start time of the client (in epoch seconds with millisecond
precision)

end_time end time of the client (in epoch seconds with millisecond
precision)

duration the duration of the client

exitcode the exitcode with which the client exited

wf_uuid the uuid of the executable workflow. It is generated by
pegasus-plan at planning time.

Pegasus Planner Metrics

The metrics messages sent by the planner in addition include the following data

Table 17.2. Metrics Data Sent by pegasus-plan

JSON KEY DESCRIPTION

root_wf_uuid the root workflow uuid. For non hierarchal workflows the
root workflow uuid is the same as the workflow uuid.

data_config the data configuration mode of pegasus

compute_tasks the number of compute tasks in the workflow

dax_tasks the number of dax tasks in the abstract workflow (DAX)

dag_tasks the number of dag tasks in the abstract workflow (DAX)

total_tasks the number of the total tasks in the abstract workflow
(DAX)

dax_input_files the number of input files in the abstract workflow (DAX)

dax_inter_files the number of intermediate files in the abstract workflow
(DAX)

dax_output_files the number of output files in the abstract workflow (DAX)

dax_total_files the number of total files in the abstract workflow (DAX)

compute_jobs the number of compute jobs in the executable workflow

clustered_jobs the number of clustered jobs in the executable workflow.

si_tx_jobs the number of data stage-in jobs in the executable work-
flow.

so_tx_jobs the number of data stage-out jobs in the executable work-
flow.

inter_tx_jobs the number of inter site data transfer jobs in the executable
workflow.

reg_job the number of registration jobs in the executable work-
flow.

cleanup_jobs the number of cleanup jobs in the executable workflow.

create_dir_jobs the number of create directory jobs in the executable
workflow.

Funding, citing, and anony-
mous usage statistics

340

JSON KEY DESCRIPTION

dax_jobs the number of sub workflows corresponding to dax tasks
in the executable workflow.

dag_jobs the number of sub workflows corresponding to dag tasks
in the executable workflow.

chmod_jobs the number of jobs that set the xbit of the staged executa-
bles

total_jobs the total number of jobs in the workflow

In addition if pegasus-plan encounters an error during the planning process the metrics message has an additional field
in addition to the fields listed above.

Table 17.3. Error Message sent by pegasus-plan

JSON KEY DESCRIPTION

error the error payload is the stack trace of errors caught during
planning

Note

pegasus-plan leaves a copy of the metrics sent in the workflow submit directory in the file ending with
".metrics" extension. As a user you will always have access to the metrics sent.

341

Chapter 18. Glossary

Glossary
A

Abstract Workflow See DAX

C
Concrete Workflow See Executable Workflow

Condor-G A task broker that manages jobs to run at various distributed sites, using
Globus GRAM to launch jobs on the remote sites.http://cs.wisc.edu/condor

Clustering The process of clustering short running jobs together into a larger job. This is
done to minimize the scheduling overhead for the jobs. The scheduling over-
head is only incurred for the clustered job. For example if scheduling over-
head is x seconds and 10 jobs are clustered into a larger job, the scheduling
overhead for 10 jobs will be x instead of 10x.

D
DAGMan The workflow execution engine used by Pegasus.

Directed Acyclic Graph (DAG) A graph in which all the arcs (connections) are unidirectional, and which has
no loops (cycles).

DAX The workflow input in XML format given to Pegasus in which transforma-
tions and files are represented as logical names. It is an execution-independent
specification of computations

Deferred Planning Planning mode to set up Pegasus. In this mode, instead of mapping the job
at submit time, the decision of mapping a job to a site is deferred till a later
point, when the job is about to be run or near to run.

E
Executable Workflow A workflow automatically genetared by Pegasus in which files are represent-

ed by physical filenames, and in which sites or hosts have been selected for
running each task.

F
Full Ahead Planning Planning mode to set up Pegasus. In this mode, all the jobs are mapped before

submitting the workflow for execution to the grid.

G
Globus The Globus Alliance is a community of organizations and individuals devel-

oping fundamental technologies behind the "Grid," which lets people share
computing power, databases, instruments, and other on-line tools securely

Glossary

342

across corporate, institutional, and geographic boundaries without sacrificing
local autonomy.

See Globus Toolkit

Globus Toolkit Globus Toolkit is an open source software toolkit used for building Grid sys-
tems and applications.

GRAM A Globus service that enable users to locate, submit, monitor and cancel re-
mote jobs on Grid-based compute resources. It provides a single protocol for
communicating with different batch/cluster job schedulers.

Grid A collection of many compute resources , each under different administrative
domains connected via a network (usually the Internet).

GridFTP A high-performance, secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. It is based upon the Internet FTP proto-
col, and uses basic Grid security on both control (command) and data chan-
nels.

Grid Service A service which uses standardized web service mechanisms to model and
access stateful resources, perform lifecycle management and query resource
state. The Globus Toolkit includes core grid services for execution manage-
ment, data management and information management.

L
Logical File Name The unique logical identifier for a data file. Each LFN is associated with a set

of PFN’s that are the physical instantiations of the file.

M
Metadata Any attributes of a dataset that are explicitly represented in the workflow sys-

tem. These may include provenance information (e.g., which component was
used to generate the dataset), execution information (e.g., time of creation of
the dataset), and properties of the dataset (e.g., density of a node type).

Monitoring and Discovery Service A Globus service that implements a site catalog.

P
Physical File Name The physical file name of the LFN.

Partitioner A tool in Pegasus that slices up the DAX into smaller DAX’s for deferred
planning.

Pegasus A system that maps a workflow instance into an executable workflow to run
on the grid.

R
Replica Catalog A catalog that maps logical file names on to physical file names.

Replica Location Service A Globus service that implements a replica catalog

S
Site A set of compute resources under a single administrative domain.

Glossary

343

Site Catalog A catalog indexed by logical site identifiers that maintains information about
the various grid sites. The site catalog can be populated from a static database
or maybe populated dynamically by monitoring tools.

T
Transformation Any executable or code that is run as a task in the workflow.

Transformation Catalog A catalog that maps transformation names onto the physical pathnames of the
transformation at a given grid site or local test machine.

W
Workflow Instance A workflow created in Wings and given to Pegasus in which workflow com-

ponents and files are represented as logical names. It is an execution-indepen-
dent specification of computations

344

Appendix A. Tutorial VM
Introduction

This appendix provides information on how to launch the Pegasus Tutorial VM. The VM is a quick way to get started
using Pegasus. It comes pre-configured with Pegasus, DAGMan and Condor so that you can begin running workflows
immediately.

In the following sections we will cover how to start, log into, and stop the tutorial VM locally, using the VirtualBox
virtualization software, and remotely on Amazon EC2.

VirtualBox
VirtualBox is a free desktop virtual machine manager. You can use it to run the Pegasus Tutorial VM on your desktop
or laptop.

Install VirtualBox
First, download and install the VirtualBox platform package from the VirtualBox website: https://www.virtualbox.org

Download VM Image
Next, download the Pegasus Tutorial VM from the Pegasus download page: http://pegasus.isi.edu/downloads

Unzip the downloaded file and move the .vmdk file it contains to somewhere that you can find it later.

Create Virtual Machine
Start VirtualBox. You should get a screen that looks like this:

Figure A.1. VirtualBox Welcome Screen

https://www.virtualbox.org
http://pegasus.isi.edu/downloads

Tutorial VM

345

Click on the "New" button. The "Create New Virtual Machine Wizard" will appear:

Figure A.2. Create New Virtual Machine Wizard

Click "Continue" to get to the VM Name and OS Type step:

Figure A.3. VM Name and OS Type

In the Name field type "Pegasus Tutorial". Set the Operating System to "Linux" and the Version to "Red Hat (64 bit)".

Warning

Make sure to select "Red Hat (64 bit)" as the Version. If this is incorrect the virtual machine may not be
able to start.

Tutorial VM

346

Click "Continue" to get to the Memory step. You can leave this at the default of 512 MB.

Figure A.4. Memory

Click "Continue" again to get to the "Virtual Hard Disk" step:

Figure A.5. Virtual Hard Disk

Leave "Start-up Disk" checked. Choose "Use existing hard disk". Click the folder icon and locate the .vmdk file that
you downloaded earlier.

When you have selected the .vmdk file, choose "Open" and then click "Continue" to get to the Summary page:

Tutorial VM

347

Figure A.6. Summary

Click "Create". You will get back to the welcome screen showing the new virtual machine:

Figure A.7. Welcome Screen with new virtual machine

Click on the name of the virual machine and then click "Start". After a few seconds you should get to the login screen:

Tutorial VM

348

Figure A.8. Login Screen

Log in as user "tutorial" with password "pegasus".

After you log in you can return to the tutorial chapter to complete the tutorial.

Terminating the VM

When you are done with the tutorial you can shut down the VM by typing:

$ sudo /sbin/poweroff

at the prompt and then enter the tutorial user's password.

Alternatively, you can just close the window and choose "Power off the machine".

Amazon EC2
In order to launch the tutorial VM you need to sign up for an Amazon Web Services account here: http://
aws.amazon.com

Launching the VM

Once you have an account, sign into the AWS Management Console at this URL: http://console.aws.amazon.com.
You will get a page that looks like this:

http://aws.amazon.com
http://aws.amazon.com
http://console.aws.amazon.com

Tutorial VM

349

Figure A.9. AWS Management Console

Choose the "EC2" icon under "Amazon Web Services". You will get this page:

Figure A.10. EC2 Management Console

Tutorial VM

350

First, make sure the “Region:” drop-down in the upper left-hand corner is set to “US West (Oregon)”.

Click on the “AMIs” link on the left side and set “Viewing:” to “All Images”, “All Platforms”, and type “Pegasus
Tutorial VM” in the search box:

Figure A.11. Locating the Tutorial VM

You will see several versions of the VM. If you don’t see any AMIs named “Pegasus Tutorial VM” you may need to
click the Refresh button. We update the VM regularly, so your search results will not match the picture above.

Check the check box next to the latest Pegasus Tutorial VM and click the “Launch” button. The "Request Instances
Wizard" will pop up:

Tutorial VM

351

Figure A.12. Request Instances Wizard: Step 1

In the first step of the Request Instances Wizard choose the “Large” instance type and click “Continue”:

Figure A.13. Request Instances Wizard: Step 2

Don’t change anything on the “Advanced Instance Options” step and click “Continue”:

Tutorial VM

352

Figure A.14. Request Instances Wizard: Step 3

On the “Storage Device Configuration” step make sure “Delete on Termination” is set to "true", then click “Continue”:

Figure A.15. Request Instances Wizard: Step 4

On the next step type “Pegasus Tutorial” into the “Value” field and click “Continue”:

Tutorial VM

353

Figure A.16. Request Instances Wizard: Step 5

On the next page choose one of your existing key pairs and click “Continue”. If you don’t have an existing key pair
you can also choose “Proceed without a Key Pair” (you will log in with a username/password).

Figure A.17. Request Instances Wizard: Step 6

Tutorial VM

354

On the next page choose “Create a new Security Group”. Name the security group “Pegasus Tutorial” and give it a
description. Create an inbound TCP rule to allow connections on port 22 (SSH) from source 0.0.0.0/0 and click "Add
Rule". This rule allows you to SSH into your EC2 instance. Create another TCP rule to allow connections on port
5000 from source 0.0.0.0/0 and click "Add Rule" again. This rule is for the Pegasus Dashboard web interface. Then
click “Continue”.

Note that you will only need to create this security group once. If you launch the Pegasus Tutorial VM again the
security group should appear in the list of existing security groups.

Figure A.18. Request Instances Wizard: Step 7

On the last step of the wizard validate your selections and click “Launch”.

Tutorial VM

355

Figure A.19. Running Instances

Finally, navigate to the “Instances” section and check the checkbox next to the “Pegasus Tutorial” instance. Copy the
DNS name to the clipboard. In this example the name is: ec2-50-112-45-59.us-west-2.compute.amazonaws.com.
Yours will almost surely be different.

At this point your VM will take a few minutes to boot. Wait until the “Status Checks” column reads: “2/2 checks
passed” before continuing. You may need to click the Refresh button.

Logging into the VM
Log into the VM using SSH. The username is ‘tutorial’ and the password is ‘pegasus’.

On UNIX machines such as Linux or Mac OS X you can log in via SSH by opening a terminal and typing:

$ ssh tutorial@ec2-50-112-45-59.us-west-2.compute.amazonaws.com
The authenticity of host 'ec2-50-112-45-59.us-west-2.compute.amazonaws.com (50.112.45.59)' can't be
 established.
RSA key fingerprint is 56:b0:11:ba:8f:98:ba:dd:75:f6:3c:09:ef:b9:2a:ac.
Are you sure you want to continue connecting (yes/no)? yes
tutorial's password: pegasus
[tutorial@localhost ~]$

where “ec2-50-112-45-59.us-west-2.compute.amazonaws.com” is the DNS name of your VM that you copied from
the AWS Management Console.

If you are on Windows you will need to install an SSH client. You can download the PuTTY SSH client and find
documentation for how to configure it here: http://www.chiark.greenend.org.uk/~sgtatham/putty

Shutting down the VM
When you are finished with the tutorial, make sure you terminate the VM. If you forget to do this you will be charged
for all of the hours that the VM runs.

To terminate the VM click on “Instances” link on the left side of the AWS Management Console, check the box next
to the “Pegasus Tutorial” VM, and click “Instance Actions”-->“Terminate”:

http://www.chiark.greenend.org.uk/~sgtatham/putty

Tutorial VM

356

Figure A.20. Terminate Instance

Then click "Yes, terminate":

Figure A.21. Yes, Terminate Instance

